Kent Subdivison No. 2

Weber City, Utah

Storm Drainage Analysis - 100 Year Event
NOAA Atlas 14 Volume 1 Version 5. Station ID 42-6414. Sugar Factory, West Haven, Utah
Calculations by Wall Engineering, Inc, Lynn Wall, P.E.
26 May, 2021
filename: Jen Summers Kent Sub 2 August 12, 2022.xIsx

1. Drainage Area

Drain Area \#1 -	$26,528 \mathrm{sq} \mathrm{ft}$	0.6090 acres	Asphalt and Concrete Surface
Drain Area \#2 -	0 sq ft	0.0000 acres	Roof Area
Drain Area \#3 -	$259,617 \mathrm{sq} \mathrm{ft}$	5.9600 acres	Landscape Area
Drain Area \#4 -	0 sq ft	0.0000 acres	Gravel Surface
Drain Area \#5 -	0 sq ft	0.0000 acres	Unimproved Surface
Drain Area \#6 -	0 sq ft	0.0000 acres	Pond
	Total Area $=$	$\mathbf{6 . 5 6 9 0}$ acres	

2. Coefficient of Runoff:

Drain Area \#1-	Asphalt and Concrete Surface	C $=\mathbf{0 . 8 5}$
Drain Area \#2-	Roof Area	$\mathbf{C}=\mathbf{0 . 8 5}$
Drain Area \#3 -	Landscape Area	$\mathrm{C}=\mathbf{0 . 1 5}$
Drain Area \#4 -	Gravel Surface	$\mathrm{C}=\mathbf{0 . 9 0}$
Drain Area \#5 -	Unimproved Surface	$\mathrm{C}=\mathbf{0 . 1 5}$
Drain Area \#6 -	Pond	$\mathrm{C}=\mathbf{1 . 0 0}$

Composite $\mathrm{C}=$
 0.21

3. Peak Run-off:

Using the "Rational Formula" to calculate the peak run-off Q :

$$
\begin{aligned}
& \text { Q = CIA } \\
& \qquad \begin{array}{l}
\text { Q }=\text { Quantity of run-off (cfs) } \\
C
\end{array}=\text { Coefficient of run-off based on surface type } \\
& \text { I }=\text { Intensity of storm (in/hr) } \\
& \\
& \text { A }=\text { Area of drainage basin (acres) }
\end{aligned}
$$

$$
\begin{aligned}
& =\text { To be calculated } \\
& =0.21 \\
& =\text { Shown in table } \\
& =6.569
\end{aligned}
$$

4. Allowable Discharge:

Allowable discharge $=\quad 0.2 \mathrm{cfs} /$ acre
$=0.2$ cfs/acre $x \quad 6.5690 \quad$ acres $=\quad 1.31 \mathrm{cfs}$

This flow rate is to be used as the allowable discharge from the detention basin.

5. 80th Percentile Storm:

Detention Required for 80th Percentile Storm. Use Table A-1, LID Manual, West Haven City.

80th Percentile Storm Per LID A-1	0.49 inch $=$	0.0408	ft
Total Area $=$	286,145	sf	
Total Detention Volume First Half Inch	11,684	cf	
Detention Volume for 80th Percentile Storm	$\mathbf{8 7 , 3 9 8}$	gallons	

6. Volume of Runoff - $\mathbf{1 0 0}$ year storm period:

Time	Rainfall NOAA Atlas 14 Vol 1 Ver 5	Intensity	Allowable Discharge	Volume Generated	Detention Volume
	South Weber				Required
tc	(inches)	(in/hr)	Not Detained	Inflow	(cu ft)

7. Orifice Sizing - $\mathbf{1 0 0}$ year storm period:

Given:
$\mathbf{Q}=\quad 1.31 \mathrm{cfs}$
$g=\quad 32.2 \mathrm{ft} / \mathrm{sec}^{2}$
$H=\quad 2$ feet in basin from overflow to flowline of outlet pipe (estimated).
$\mathrm{Cd}=\quad 0.62$ for square edge openings
Ao = Area of orifice opening to be calculated.
Do $=$ Diameter of orifice opening to be calculated
$\mathrm{Q}=(\mathrm{Cd})(\mathrm{Ao})(2 \mathrm{gH})^{1 / 2}$
Solving for Ao
Ao $\left.=\mathrm{Q} /\left[(\mathrm{CD})(2 \mathrm{gH})^{1 / 2}\right)\right]$
$\mathrm{Ao}=\quad 0.19 \mathrm{sq} \mathrm{ft}$
Ao $=\quad 26.89 \mathrm{sq} \mathrm{in}$
Do= 5.85 Inches

Use $\quad 2.93$ inch radius orifice,

