

2053 N Hillcrest Road Saratoga Springs, UT 84045 W: 801-972-6222 F: 801-972-6235

andersoneng.com

March 2, 2021

Rocky Schutjer RAGE Development LLC 2181 Hugo Avenue Salt Lake City, UT 84117

Subject: Structural Analysis T-Mobile Site: SL01743A Prom RMP Glassman Way Site Address: 4700 South Glassman Way Ogden, Utah 84403

Dear Mr. Schutjer,

T-Mobile site SL01743A Prom RMP Glassman Way, is a three-sector site located at the 64 foot level on a 68-foot steel utility monopole. The purpose of this report is to summarize the structural analysis of the utility monopole and attached antenna mounting system, and to verify the monopole is suitable for the proposed loading configuration.

Analysis Results

Steel Monopole with Proposed Equipment Configuration: OVERCAPACITY

Upgraded Guyed Steel Monopole with Proposed Equipment Configuration: ACCEPTABLE 84%

The existing steel utility monopole is overcapacity and needs to be upgraded with four guy wires in order to be structurally sufficient to support the loading from the proposed equipment. Details of the proposed guy wire upgrade are included in the attached drawings and Section 4.2. Assumptions requiring field verification are included in Section 5.1.

Calculations for the antenna mount and supporting structural elements, in accordance with the TIA-222-H Standard, the National Electric Safety Code, and ASCE 7-16, are included with this letter. Please contact us at (801) 972-6222 should you have any questions or need additional information.

Reviewed by: ANDERSON Engineering Co., Inc.

you D. Sol

Ryan D. Eddy, P. E. Portfolio Manager

STRUCTURAL ANALYSIS REPORT

PURPOSE

The purpose of this structural analysis is to evaluate the effects of the proposed changes to the existing utility pole and document the assumptions made as part of the analysis. The analysis, in compliance with TIA-222-H Section 15.3, evaluates the design loads acting on the antenna mount and supporting structural system. T-Mobile is proposing to make the changes shown in Table 3.1.

DESIGN CRITERIA

1 Source of Data

Anderson Engineering (Anderson) has collected sufficient up-to-date information in the evaluation to accurately represent the existing monopole. Information as described below has been used in this analysis.

1.1 Previous Structural Analysis

No previous structural analyses were provided.

1.2 Installation Documents, Material Lists, and Fabrication Drawings

No installation documents, material lists, or fabrication drawings concerning the structure were provided.

1.3 Geotechnical Reports/Foundation Data

GSH Geotechnical, Inc. (September 17, 2020) The study included drilled borings and provided soil parameters for the site, and embedded pole capacities. A copy of this report is included in the Appendix.

1.4 As-built Drawings or the Original Installation and/or Subsequent Modifications

No drawings or information about the original installation were provided. It is assumed no subsequent structural modifications have taken place on the structure since the original installation.

Schutjer, Rocky SL01743A Prom RMP Glassman Way SA March 2, 2021 Page 3 of 7

1.5 Monopole Mapping

Tower mapping was completed from the ground using a LIDAR field scanner during a site visit on April 19, 2019. The monopole mapping provided information on monopole equipment, including the elevation, dimensions, spacing, and orientation of the equipment. Additionally, photographs and measurements at the base of the monopole were taken during the site visit.

Mapping of the structural components and appurtenances was based on measurements collected during the site visit and from the scan data.

A label on the monopole states that the pole is rated as a "class 1 wood equivalent pole."

2 Assumptions

The original monopole drawings were not available for reference; thus, a definitive capacity for the monopole or foundation cannot be defined. Conservative assumptions have been used to determine if the monopole has sufficient strength to support the proposed modifications. Consequently, additional capacity may be available with a more refined structural model based on additional data. Details of the assumed values are included on the calculation sheet in the appendix.

Structural calculations are based on known data derived from gathered information as described above. Conservative assumptions, where data gaps exist, have been used in this study to determine if the existing mount and structure have sufficient structural strength to support the proposed equipment configuration. This analysis is contingent on key assumptions that must be verified during installation of new equipment. If any of the assumptions as shown below appear to be invalid, our office should be notified immediately to determine how the unlike condition affects the capacity of the monopole.

2.1 Existing Monopole

- This report does not constitute a maintenance and condition assessment. No certifications regarding maintenance and condition are expressed or implied.
- The monopole material properties are as shown on the tnx report in the appendix.
- The steel wall thickness at the base is a minimum of 0.1875 inches. This is consistent with a measurement at the base as well as similar Class 1 steel poles.
- The monopole and components have been adequately maintained in accordance with TIA and NESC standards and the manufacturer's specifications.
- All monopole components are in a condition that allows each member to carry its full design capacity.

- No modifications to the monopole have taken place.
- Maximum seismic base shear is less than the maximum wind base shear.

2.2 Foundation

- The foundation was designed and installed to meet the capacity of the monopole.
- The foundation has been adequately designed, installed, and maintained according to original design documents.
- The depth setting of the pole is nine feet (10% the height of the pole plus two feet) into soils as described in the geotechnical investigation.

2.3 Antenna Mount

- Connections and welds, at a minimum, meet the capacity of the primary structural members.
- The antennas and components will be installed and maintained in accordance with TIA standards and manufacturer's specifications.
- The existing antenna mount is connected to the monopole with a Commscope MC-RM1030-3 Ring Mount that has been modified with angle iron at the top and bottom of the mount to adapt the mount to fit the 8-inch diameter pole.

2.4 Appurtenances

- RRUs will be mounted to the existing antenna mount mast at the top of the monopole.
- The antennas and RRUs will be installed in accordance with the manufacturer's recommendations.
- The mount supporting the equipment configuration specified in this report will be replaced with a Commscope MC-K10S-9-96 Monopole Co-Location T-Frame Kit as specified in the mount analysis completed previously.
- All new coax will be installed adjacent to the existing coax on the monopole.

3 Analysis Criteria

- 1. The monopole is in Weber County, Utah
- 2. The monopole is evaluated based on an Exposure B, 103 mph nominal 3-sec gust in accordance with the ASCE 7-16 and the TIA-222-H Standard.
- 3. Additional wind forces on wires are calculated and applied based on the 2017 NESC code.
- 4. Roughness B
- 5. Risk Category: II Other Structure
- 6. For all new equipment, the weight and dimensions have been estimated based on the proposed equipment.

3.1 Proposed Changes

A table of the current equipment on the tower is included on the tnxTower Material Take Off Summary drawing in the Appendix.

Table 3.1 summarizes the proposed T-Mobile equipment changes on the utility pole. No additional changes to the existing equipment have been analyzed.

Status	Sector	Туре	Model	Quantity
REMOVE	ALPHA	ANTENNA	CMA-BDHH/6521/E0-6/TB05 (Quad)	1
ADD	ALPHA	ANTENNA	Ericsson - AIR6449 B41 (Massive MIMO)	1
REMAIN	ALPHA	ANTENNA	RFS APXVAARR24 43-U-NA20	1
REMAIN	ALPHA	ANTENNA	ERICSSON AIR32 KRD901146-1 B66A/B2A	1
REMOVE	ALPHA	ТМА	GENERIC TWIN STYLE 1A – PCS (At Antenna)	1
REMAIN	ALPHA	RRU	ERICSSON 4449 B71+B85 (At Antenna)	1
NEW	ALPHA	RRU	ERICSSON 4415 B66A (At Antenna)	1
REMAIN	ALPHA	CABLE	Fiber Jumper - 10 ft.	6
ADD	ALPHA	CABLE	Fiber Jumper - 10 ft.	6
REMAIN	ALPHA	CABLE	Jumper 10 Ft. Sureflex 4.3-10 to 4.3-10	4
ADD	ALPHA	CABLE	Jumper 10 Ft. Sureflex 4.3-10 to 4.3-10	4
REMOVE	ALPHA	CABLE	Coax Jumper – 10 ft.	2
REMOVE	ALPHA	CABLE	7/8" Coax - 85 ft	2
DISCONNECT	ALPHA	CABLE	7/8" Coax - 85 ft	2
REMOVE	BETA	ANTENNA	CMA-BDHH/6521/E0-6/TB05 (Quad)	1
ADD	BETA	ANTENNA	Ericsson - AIR6449 B41 (Massive MIMO)	1
REMAIN	BETA	ANTENNA	RFS APXVAARR24 43-U-NA20	1
REMAIN	BETA	ANTENNA	ERICSSON AIR32 KRD901146-1 B66A/B2A	1
REMOVE	BETA	ТМА	GENERIC TWIN STYLE 1A - PCS (At Antenna)	1
REMAIN	BETA	RRU	ERICSSON 4449 B71+B85 (At Antenna)	1
NEW	BETA	RRU	ERICSSON 4415 B66A (At Antenna)	1
REMAIN	BETA	CABLE	Fiber Jumper - 10 ft.	6
ADD	BETA	CABLE	Fiber Jumper - 10 ft.	6
REMAIN	BETA	CABLE	Jumper 10 Ft. Sureflex 4.3-10 to 4.3-10	4
ADD	BETA	CABLE	Jumper 10 Ft. Sureflex 4.3-10 to 4.3-10	4
REMOVE	BETA	CABLE	Coax Jumper – 10 ft.	2
REMOVE	BETA	CABLE	7/8" Coax - 85 ft	2
DISCONNECT	BETA	CABLE	7/8" Coax - 85 ft	2
REMOVE	GAMMA	ANTENNA	CMA-BDHH/6521/E0-6/TB05 (Quad)	1
ADD	GAMMA	ANTENNA	Ericsson - AIR6449 B41 (Massive MIMO)	1

Table 3.1 Proposed Equipment Changes^a

Schutjer, Rocky SL01743A Prom RMP Glassman Way SA March 2, 2021 Page 6 of 7

Status	Sector	Туре	Model	Quantity
REMAIN	GAMMA	ANTENNA	RFS APXVAARR24 43-U-NA20	1
REMAIN	GAMMA	ANTENNA	ERICSSON AIR32 KRD901146-1 B66A/B2A	1
REMOVE	GAMMA	ТМА	GENERIC TWIN STYLE 1A – PCS (At Antenna)	1
NEW	GAMMA	RRU	ERICSSON 4449 B71+B85 (At Antenna)	1
NEW	GAMMA	RRU	ERICSSON 4415 B66A (At Antenna)	1
REMAIN	GAMMA	CABLE	Fiber Jumper - 10 ft.	6
ADD	GAMMA	CABLE	Fiber Jumper - 10 ft.	6
REMAIN	GAMMA	CABLE	Jumper 10 Ft. Sureflex 4.3-10 to 4.3-10	4
ADD	GAMMA	CABLE	Jumper 10 Ft. Sureflex 4.3-10 to 4.3-10	4
REMOVE	GAMMA	CABLE	Coax Jumper – 10 ft.	2
REMOVE	GAMMA	CABLE	7/8" Coax - 85 ft	2
DISCONNECT	GAMMA	CABLE	7/8" Coax - 85 ft	2
REMAIN	SITE	ENCLOSURE	RBS 6102	1
REMAIN	SITE	ENCLOSURE	Ancillary Equipment (Ericsson)	1
REMAIN	SITE	ENCLOSURE	RBS 3106	1
ADD	SITE	ENCLOSURE	ENCLOSURE 6160	1
ADD	SITE	EQUIPMENT	B160	1
NEW	SITE	HCS	ERICSSON 6X12 HCS 6AWG 30m	2
NEW	SITE	HCS	ERICSSON 6X24 HCS 6AWG 30m	1
REMAIN	SITE	RADIO	RUS01 B2 G1900	3
REMAIN	SITE	RADIO	RUS01 B2 U1900	3
REMAIN	SITE	RADIO	RUS01 B4	6

Notes:

^a Proposed equipment lists compiled data found on the drawings and RFDS data sheet provided by T-Mobile. Copies of these document are found in the appendix.

4 Analysis

4.1 Results

The steel utility pole was modeled and analyzed using tnx Tower version 8.0.7.4. Additional loads were calculated based on the 2017 National Electric Safety Code and applied as forces in the tnx model. Output information for the analysis is included in the appendix.

The foundation embedment depth and type were assumed based on standard embedment for Class 1 steel poles. Soil properties and foundation capacities were based on parameters from the GSH Geotechnical Investigation.

Based on the information known about the pole (as detailed in this report), the analysis shows that the pole does not have sufficient strength in its current configuration with the addition of the above-described equipment. However, with the tower upgrades installed as discussed is Section 4.2, the pole with the proposed equipment configuration is rated at 84% of utilized capacity.

4.2 Pole Upgrades

To reinforce the foundation and the pole, it is recommended that four 5/8" 1x7 EHS guy wires be installed approximately 46 feet up the pole. The guy pull-offs should be two Maclean Power UCB30 Pole Bands with two opposing guy wires connected per band. Install guy anchors at a radius of 29 feet at the locations detailed in the drawings. A guy anchor has been selected based on soil parameters and anticipated holding capacity. Install anchors as per manufacturer recommendation to ensure a minimum capacity of at least 25,000 lbs per anchor.

Anchors to be protected from the road using jersey barriers or other equivalent protection. Guy wires should be insulated and installed according to the requirements established by the National Electric Safety Code and Rocky Mountain Power.

With the upgrades installed, as detailed above and in the attached drawings, the utility pole will support the proposed equipment. The percent of rated capacity for each of the following components of the system are as follows: pole is at 52%, guy wires are at 70%, foundation loads are at approximately 84%, and guy anchors are at approximately 70%.

5 Conclusions and Recommendations

The existing utility pole will not support the new equipment in its proposed configuration and tower modifications will be required to support the new equipment. The utility pole with the installed upgrades discussed in Section 4.2 will support the proposed equipment.

While not necessary, it is recommended that obsolete equipment (in addition to the equipment shown above to be removed) also be removed from the monopole to lower stress demands and ultimately increase the life of the monopole.

5.1 Assumptions Requiring Field Verification

Assumptions detailed in Section 2 of this report should be verified by the contractor prior to construction.

6 Appendices

SL01743A Prom RMP Glassman Upgrade Drawings SL01743A Prom RMP Glassman Calculations SL01743A Prom RMP Glassman tnx Tower Material Take-Off SL01743A Prom RMP Glassman tnx Tower Report SL01743A Prom RMP Glassman RFDS SL01743A Prom RMP Glassman ASCE Design Hazards Report Geotechnical Investigation GSH Geotechnical, Inc. (September 17, 2020)

THESE PLANS AND SPECIFICATIONS ARE THE PROPERTY OF ANDERSON ENGINEERING COMPANY, INC., 2053 NORTH HILLCREST ROAD, SARATOGA SPRINGS, UT 84045 AND SHALL NOT BE COPIED, REDUCED, OR REPRODUCED WITHOUT THEIR WRITTEN PERMISSION.

	DATE: 2-MAR-21 DRAWN BY: MBD					
	CHECKED BY: RDE FILE: SL01743A REVISIONS					
	DATE	DESC	RIPTION	INITIAL		
			121 WEST ELECTION RD SUITE 330 DRAPER, UT 84020 801-816-4422	FAX 801-816-4420		
_	AND ROLESSION	STEV ANDE	202 K 26-2203 EN D. RSON			
	DEV	R/ ELOF	AGE PMENT	LLC		
		ANE NGINEER 801-	DERS			
	SITE NU SLC SITE NAI CITY, ST SHEET:	MBER:)174 ME: R ATE: O UTILITY	13A MP GLASSMA IGDEN, UT POLE ELEVA	IN WAY		
		S	-2			

GENERAL NOTES:

1. ADHERE TO ALL OSHA AND NESC SAFETY STANDARDS & WARNINGS FOR GUYED UTILITY POLES.

2. CONTRACTOR RESPONSIBLE FOR RETROFIT TO HAVE EXTENSIVE EXPERIENCE WITH GUYED UTILITY POLE ERECTION & MODIFICATION.

3. ALL NEW METAL CONNECTIONS AND WIRE ROPE TO BE PROTECTED FOR CORROSION RESISTANCE.4. ALL CONNECTIONS AT WIRE ROPE GROUND ANCHORAGE AND AT TOWER TO WIRE ROPE, TO BE

RATED FOR AN ULTIMATE/BREAKING FORCE OF 1.5 TIMES CAPACITY OF THE NEW CABLE. 5. PROVIDE LOCK WASHERS FOR ALL NEW BOLTED

CONNECTIONS.

6. CONTRACTOR TO NOTIFY CONTRACT REPRESENTATIVE IF ANY EXISTING MEMBER, CONNECTION OR GUY SHOWS ABNORMAL SIGNS OF STRESS, WEAR, OR IMPROPER INSTALLATION. 7. PROVIDE TEMPORARY SUPPORT AT BASE OF TOWER DURING CONSTRUCTION. SUBMIT TEMPORARY SUPPORT PLAN TO CONTRACT

REPRESENTATIVE FOR REVIEW. 8. ALL GUY WIRES MATERIALS, CONNECTORS, AND

8. ALL GUY WIRES MATERIALS, CONNECTORS, AND OTHER ASSOCIATED EQUIPMENT SHALL MEET THE REQUIREMENTS AND BE INSTALLED IN ACCORDANCE WITH TIA-222-H AND NESC.

9. STEEL GUY ANCHORAGES IN DIRECT CONTACT WITH THE SOIL SHALL AS A MINIMUM, HAVE CORROSION CONTROL IN ACCORDANCE WITH TIA-222 (5.6.2)

10. INSTALLATION SHALL BE IN ACCORDANCE WITH DESIGN DOCUMENTS, INSTALLATION DOCUMENTS AND THE ANSI/TIA-322, ANSI/ASSE A100.48 AND NESC STANDARDS.

11. GROUND AND INSULATE GUY WIRES IN ACCORDANCE WITH ROCKY MOUNTAIN POWER REQUIREMENTS AND NESC.

 PROVIDE REQUIRED CLEARANCES FROM DISTRIBUTION LINES TO GUY WIRES PER ROCKY MOUNTAIN POWER AND NESC GUIDELINES.
 FIELD VERIFY DIMENSIONS AND GUY ANCHORAGE POINTS PRIOR TO STARTING CONSTRUCTION.
 INSTALL ANCHOR AS PER MANUFACTURER RECOMMENDATION TO ENSURE A MINIMUM CAPACITY OF AT LEAST 25,000 LBS.

For determing the design loads for wires and appurtenances on utility poles based on NESC 2017.

JOB DETAIL

Job Name Location

CALCULATION REFERENCE

Code

Nominal design wind speed Loading District Radial ice thickness Concurrent ice wind speed

Eqipment Input Data

Location 1 - Communciation Space
Span
Measured diameter
Height
Angle
Selected cable diameter
Weight
Assumed cable design tension
Vertical Force on Pole
Location 2
Location 2
Span
Span Measured diameter
Span Measured diameter Height
Span Measured diameter Height Angle
Span Measured diameter Height Angle Selected cable diameter
Span Measured diameter Height Angle Selected cable diameter Weight
Span Measured diameter Height Angle Selected cable diameter Weight Assumed cable design tension

Vertical Force on Pole

SL01743A Prom RMP Glassman Way 4700 S Glassman Way Ogden, Utah 84403 Orginator Check MD/ SCA SDA

V _{asd} =	90	mph	NESC 201	7, Figure 250-2
	Medium Lo	ading Zo	ne	NESC 2017, Figure 250-1
i=	0.25	in	NESC 201	7, Table 250-1
V _i =	40	mph	NESC 201	7, Figure 250-3

S _{c1} =	203	ft
DIA _{c1} =	0.8	in
H _{c1} =	26	ft
Φ _{c1} =	0	0
DIA _{cs1} =	0.85	in
W _{c1} =	0.5	lbs/ft
DT _{c1} =	2300	lbs
Fy _{c1} =	101.5	lbf

measured from scan data measured from scan data height above ground level measured from scan data for calculating design tension #N/A #N/A

S _{c2} =	203	ft
DIA _{c2} =	0.8	in
H _{c2} =	40	ft
Φ _{c2} =	0	0
DIA _{cs2} =	0.783	in
W _{c2} =	0.546	lbs/ft
DT _{c2} =	8150	lbs
Fy _{c2} =	110.8	lbf

measured from scan data measured from scan data height above ground level measured from scan data for calculating design tension 397 ACSR (assumption based on diameter) 397 ACSR (assumption based on diameter) Location 3

Location 4

Span Measured diameter Height Angle Selected cable diameter Weight Assumed cable design tension Vertical Force on Pole

Extreme Wind Loading NESC Rule 250C

Overload Capacity Factor Wind

	kv
Es	Es
Bs	Bs
Gust Response Factor	G _{rf}
Importance Factor	ŀ
Shape Factor (Drag Coefficient)	C _d
Velocity Pressure Exposure Coefficient	K _{zpole}
Extreme Wind Loading	W _{XPole}
tnx Appurt. Wind Loading	q _{tnx}
Velocity Pressure Correction	q _{tnx} '

S _{c3} =	44	ft
DIA _{c3} =	0.6	in
q=	0.546	lb/ft
L=	38.33	ft
h=	2	ft
R _x =	50.14	lbf
R _x = d=	50.14 23.5	lbf ft
R _x = d= R _y =	50.14 23.5 41.20	lbf ft Ibf
R _x = d= R _y = A _w =	50.14 23.5 41.20 2.20	lbf ft lbf ft ²

measured from scan data estimated based on wire diameter measured from scan data estimated from scan data

measured from scan data

S _{c4} =	230	ft
DIA _{c4} =	1	in
H _{c4} =	50	ft
Ф _{с4} =	0	•
DIA _{cs4} =	0.783	in
DIA _{cs4} = W _{c4} =	0.783 <mark>0.546</mark>	in Ibs/ft
$DIA_{cs4} =$ $W_{c4} =$ $DT_{c4} =$	0.783 0.546 8150	in Ibs/ft Ibs
$DIA_{cs4} = W_{c4} = DT_{c4} = Fy_{c4} = Fy_$	0.783 0.546 8150 125.6	in Ibs/ft Ibs Ibf

measured from scan data measured from scan data height above ground level

for calculating design tension

397 ACSR (assumption based on diameter) 397 ACSR (assumption based on diameter)

OCF _w =	0.87	
kv=	1.43	
E _s =	0.34	
B _s =	0.92	
G _{rf} =	0.91	
I=	1	
C _d =	1	
K _{zpole} =	1.05	
W _{XPole} =	19.9	lb/ft²
q _{tnx} =	19.0	lb/ft²
q _{tnx} '=	0.9	lb/ft²

NESC 2017 Table 253-1 (Extreme) NESC Table 250-3 NESC Table 250-3 NESC Table 250-3 1 for utilities 1 for round structures NESC Table 250-3 NESC Table 250-3 NESC 250C from tnx report, > NESC pressures to calculate user applied force for appurtenances

2/26/2021 3 of 3

Extreme Wind Loading for Wires

Overload Capacity Factor for Traverse Wire Wind Overland capacity factor for tension

Height to Wire Conductors

Ew

Wind Span

Bw

Gust Response Factor

Velocity Pressure Exposure Coefficient

Extreme Wind Loading

Radial Ice Thickness

Area of Wires

Force on Wires

OCF _{TW} =	0.87	
$OCF_T =$	1	
H _c =	50	ft
E _w =	0.33	
WS=	203	ft
B _s =	0.58	
G _{rf} =	0.80	
K _{zwires} =	1.01	
W _{WIRES} =	16.71	lb/ft²
lce=	0.00	inches
A _{wires} =	13.25	ft ²
Fwires=	221.3	lbf

NESC Table 253-1 (Extreme) NESC Table 253-1 (Extreme) from scan data NESC Table 250-3 from scan data NESC Table 250-3 NESC Table 250-3 NESC Table 250-3 RESC Table 250-3 NESC Table 250-3

user applied force in tnx

Г				1				1	<u>68.0 ft</u>	R=29.00 ft
										R=29.00 ft PLAN
	٣	44.00	12	0.1875	8.0000	14.0000		977.4		TYPE ELEVATION RFS APXVAAR24 43-U-NA20 (OCTA) W/ PIPE MOUNT 64 64 RFS APXVAAR24 43-U-NA20 (OCTA) W/ PIPE MOUNT 64-60 64 RFS APXVAAR24 43-U-NA20 (OCTA) W/ PIPE MOUNT 64-60 64 RFS APXVAAR24 43-U-NA20 (OCTA) W/ PIPE MOUNT 64-60 64 Crisson RADIO 4449 B71+B85 64-60 64 Ericsson RADIO 4449 B71+B85 64-60 64 Ericsson RADIO 4449 B71+B85 64-60 64 Ericsson RAU 415 B25 64-60 64 Ericsson RRU 4415 B25 64-60 64 EricSSON AIR 32 KRD901146-1 B66A/B2A (OCTA) 64-60 64 EricSSON A
										GRADE Fy Fu A572-65 65 ksi 80 ksi
							A572-65		<u>24.0 ft</u>	1. Tower is located in Weber County, Utah. 2. Tower designed for Exposure B to the TIA-222-H Standard. 3. Tower designed for a 103 mph basic wind in accordance with the TIA-222-H Standard. 4. Tower is also designed for a 40 mph basic wind with 0.25 in ice. Ice is considered to increase in 5. Deflections are based upon a 60 mph wind. 6. Tower Risk Category II. 7. Topographic Category 1 with Crest Height of 0.00 ft 8. Tower RATING: 69.1%
	2	24.00	12	0.1875	14.0000	17,0000		755.0	0.0 ft	ALL REACTIONS ARE FACTORED AXIAL 20049 lb SHEAR
	Section	-ength (ft)	Number of Sides	Thickness (in)	rop Dia (in)	3ot Dia (in)	Grade	Veight (lb) 1732.4		R=29.00 ft

ED APPURTENANCE LOADING

TYPE	ELEVATION
ricsson - AIR6449 B41 (Massive MIMO)	64 - 60
ricsson - AIR6449 B41 (Massive MIMO)	64 - 60
Commscope MC-K10S-9-96 (1 of 3)	64 - 60
Commscope MC-K10S-9-96 (2 of 3)	64 - 60
Commscope MC-K10S-9-96 (3 of 3)	64 - 60
ocation 4 (3 Powerlines-1)	50
ocation 4 (3 Powerlines-2)	50
ocation 4 (3 Powerlines-3)	50
Itility Pole Crossarms	49
Itility Pole Transformer	43
ocation 3 (1 Wire)	41
ocation 2 (1 Wire)	40
ocation 1 (1 Wire)	26
TRENGTH	

GRADE	Fy	Fu

OWER DESIGN NOTES

andard. ed to increase in thickness with height.

Anderson Engineering	^{Job:} SL01743A Prom R	MP Glasmar	nn Way
2053 N. Hillcrest Rd.	Project: T-Mobile		_
Saratoga Springs, UT 84045	Client: RAGE Development	Drawn by: JHALL	App'd:
Phone: 801-972-6222	^{Code:} TIA-222-H	Date: 02/26/21	Scale: NTS
FAX: 801-972-6235	Path: Criterio Provide Statement Engineering Co., Inclinuations - General Read State 2010 RBM	P GLASSMAN WAYOO278% Tower210205 SL01743A Press Rei	^{Dwg No.} E-1

tnxTower

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply:

- Tower is located in Weber County, Utah.
- Tower base elevation above sea level: 4698.00 ft.

Job

Project

Client

- Basic wind speed of 103 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 0.2500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 40 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- Tower base elevation above sea level: 4723.00 ft..
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Safety factor used in guy design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	68.00-24.00	44.00	0.00	12	8.0000	14.0000	0.1875	0.7500	A572-65
									(65 ksi)
L2	24.00-0.00	24.00		12	14.0000	17.0000	0.1875	0.7500	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in ³	in^4	in^2	in	
L1	8.2161	4.7168	36.7463	2.7969	4.1440	8.8673	74.4579	2.3215	1.6415	8.755
	14.4277	8.3393	203.0766	4.9449	7.2520	28.0028	411.4883	4.1043	3.2495	17.331
L2	14.4277	8.3393	203.0766	4.9449	7.2520	28.0028	411.4883	4.1043	3.2495	17.331
	17.5336	10.1505	366.2183	6.0189	8.8060	41.5874	742.0575	4.9958	4.0535	21.619

tnxTower	Job SL01743A Prom RMP Glasmann Way	Page 2 of 20
Anderson Engineering 2053 N. Hillcrest Rd.	Project T-Mobile	Date 14:40:12 02/26/21
Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235	Client RAGE Development	Designed by JHALL

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
L1 68.00-24.00				1	1	1			
L2 24.00-0.00				1	1	1			

						G	uy Da	ita				
Guy Elevation	Guy Grade		Guy Size	Initial Tension	%	Guy Modulus	Guy Weight	L_u	Anchor Radius	Anchor Azimuth Adi.	Anchor Elevation	End Fitting Efficiency
ft				lb		ksi	plf	ft	ft	0	ft	%
46	EHS	А	5/8	4240.00	10%	21000	0.813	54.09	29.00	0.0000	0.00	95%
		В	5/8	4240.00	10%	21000	0.813	54.09	29.00	-55.0000	0.00	95%
		С	5/8	4240.00	10%	21000	0.813	54.09	29.00	4.0000	0.00	95%
		D	5/8	4240.00	10%	21000	0.813	54.09	29.00	-59.0000	0.00	95%

Guy Mount Torque-Arm Torque-Arm Torque-Arm Torque-Arm Torque-Arm Torque-Arm Torque-Arm Size Elevation Type Spread Leg Angle Style Grade Type ft		Guy Data(cont'd)								
ftft	Guy Elevation	Mount Type	Torque-Arm Spread	Torque-Arm Leg Angle	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size		
	ft		ft	0						

	Guy Data (cont'd)										
Guy Elevation ft	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Strap.	Pull-Off Grade	Pull-Off Type	Pull-Off Size			
46.00	A572-50 (50 ksi)	Solid Round			No	A572-50 (50 ksi)	Solid Round	5/8			

Guy Data (cont'd)										
Guy	Cable	Cable	Cable	Cable	Tower	Tower	Tower	Tower		
Elevation	Weight	Weight	Weight	Weight	Intercept	Intercept	Intercept	Intercept		
	Ă	B	Č	Ď	A	B	C	D^{-}		
ft	lb	lb	lb	lb	ft	ft	ft	ft		
46	242.18	242.18	242.18	242.18	1.51	1.51	1.51	1.51		
					2.1 sec/pulse	2.1 sec/pulse	2.1 sec/pulse	2.1 sec/pulse		

T-Mobile

RAGE Development

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

Guy Data (cont'd)

			Torque Arm		Pul	l Off	Diagonal	
Guy	Calc	Calc	K_x	K_y	K_x	K_y	K_x	K_y
Elevation	Κ	Κ		-		-		
ft	Single	Solid						
	Angles	Rounds						
46	No	No			1	1	1	1

Job

Project

Client

Guy Data (cont'd)

		Tora	ie-Arm		Pull Off				Diagonal			
Guv	Bolt Size	Number	Net Width	U	Bolt Size	Number	Net Width	U	Bolt Size	Number	Net Width	U
Elevation	in		Deduct		in		Deduct		in		Deduct	
ft			in				in				in	
46	0.6250	0	0.0000	0.75	0.0000	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A325N				A325N				A325N			

Guy Insulator Data										
Guy Elevation	#	Length	Diameter	Weight		Equivalent Unit Weight	Equivalent Diameter	Equivalent Diameter w/Ice		
ft		in	in	lb		plf	in	in		
46	2	12.0000	3.0000	100.00	А	4.477	0.6758	1.1893		
					В	4.477	0.6758	1.1893		
					С	4.477	0.6758	1.1893		
					D	4.477	0.6758	1.1893		

Guy	Pressures
-----	-----------

Guy Elevation	Guy Location	z	q_z	q_z	Ice Thickness
ft	Location	ft	psf	psf	in
46	А	23.00	15	2	0.2599
	В	23.00	15	2	0.2599
	С	23.00	15	2	0.2599
	D	23.00	15	2	0.2599

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weight
		Torque		ft				in	in	plf
		Calculation								
COAX LINES	С	No	Surface Ar	68.00 -	6	6	0.000	1.0900		0.33
			(CaAa)	61.00			0.000			
5" Rigid Conduit	С	No	Surface Ar	61.00 - 0.00	1	1	0.000	5.0000		7.50

tran Tony or	Job		Page
<i>tnx1ower</i>		4 of 20	
Anderson Engineering 2053 N. Hillcrest Rd.	Project	T-Mobile	Date 14:40:12 02/26/21
Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235	Client	RAGE Development	Designed by JHALL

_											
1	Description	Sector	Exclude	Component	Placement	Total	Number	Start/End	Width or	Perimeter	Weight
			From	Type		Number	Per Row	Position	Diameter		
			Torque		ft				in	in	plf
			Calculation								
				(CaAa)				0.000			
	3 1/2" Rigid Conduit	С	No	Surface Ar	40.00 - 0.00	1	1	0.000	3.5000		5.25
	-			(CaAa)				0.000			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Component Turn a	Placement	Total Number		$C_A A_A$	Weight
	or Leg	Sniela	From Torque	Туре	ft	Number		ft²/ft	plf
			Calculation						
ERICSSON 6X12	С	No	No	Inside Pole	68.00 - 0.00	3	No Ice	0.00	2.65
HCS 6AWG 30M							1/2" Ice	0.00	2.65
6x24	С	No	No	Inside Pole	68.00 - 0.00	1	No Ice	0.00	2.65
							1/2" Ice	0.00	2.65

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
L1	68.00-24.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	28.678	0.000	841.76
		D	0.000	0.000	0.000	0.000	0.00
L2	24.00-0.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	20.400	0.000	560.40
		D	0.000	0.000	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Inickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
L1	68.00-24.00	А	0.258	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	33.005	0.000	936.03
		D		0.000	0.000	0.000	0.000	0.00
L2	24.00-0.00	А	0.225	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	22.562	0.000	619.50
		D		0.000	0.000	0.000	0.000	0.00

Feed Line Center of Pressure

tnxTower

Job		Page
	SL01743A Prom RMP Glasmann Way	5 of 20
Project		Date
	T-Mobile	14:40:12 02/26/21
Client		Designed by
	RAGE Development	JHALL

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	68.00-24.00	5.0266	0.0000	5.1404	0.0000
L2	24.00-0.00	6.0252	0.0000	6.3159	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Job

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L1	2	COAX LINES	61.00 - 68.00	1.0000	1.0000
L1	3	5" Rigid Conduit	24.00 - 61.00	1.0000	1.0000
L1	4	3 1/2" Rigid Conduit	24.00 - 40.00	1.0000	1.0000
L2	3	5" Rigid Conduit	0.00 - 24.00	1.0000	1.0000
L2	4	3 1/2" Rigid Conduit	0.00 - 24.00	1.0000	1.0000

User Defined Loads

Description	Elevation	Offset From Centroid	Azimuth Angle		Weight	F_x	F_z	Wind Force	$C_A A_C$
	ft	ft	0		lb	lb	lb	lb	ft^2
Location 1 (1 Wire)	26.00	0.00	0.0000	No Ice	100.00	0.00	0.00	221.00	13.19
				Ice	0.00	0.00	0.00	0.00	0.00
				Service	100.00	0.00	0.00	221.00	43.43
Location 2 (1 Wire)	40.00	0.00	0.0000	No Ice	110.80	0.00	0.00	221.00	12.14
				Ice	0.00	0.00	0.00	0.00	0.00
				Service	110.00	0.00	0.00	221.00	39.97
Location 3 (1 Wire)	41.00	0.00	35.0000	No Ice	41.20	0.00	50.14	45.50	2.48
				Ice	0.00	0.00	0.00	0.00	0.00
				Service	41.00	0.00	0.00	45.00	8.08
Location 4 (3 Powerlines-1)	50.00	0.00	0.0000	No Ice	125.60	0.00	0.00	221.00	11.39
				Ice	0.00	0.00	0.00	0.00	0.00
				Service	125.60	0.00	0.00	221.00	37.50
Location 4 (3 Powerlines-2)	50.00	0.00	0.0000	No Ice	125.60	0.00	0.00	221.00	11.39
				Ice	0.00	0.00	0.00	0.00	0.00
				Service	125.60	0.00	0.00	221.00	37.50
Location 4 (3 Powerlines-3)	50.00	0.00	0.0000	No Ice	125.60	0.00	0.00	221.00	11.39
				Ice	0.00	0.00	0.00	0.00	0.00
				Service	125.60	0.00	0.00	221.00	37.50

Discrete Tower Loads

tnxTower

Job

Project

Client

SL01743A Prom RMP Glasmann Way

Page 6 of 20

Date

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

RAGE	Develo	pment

T-Mobile

Designed by JHALL

14:40:12 02/26/21

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral	-					
			Vert	0	<u>c</u>		c.2	c.2	11
			ft ft	0	ft		ft²	ft^2	lb
			ft						
RFS APXVAARR24	А	From Face	3.00	0.0000	64.00	No Ice	20.24	10.55	153.55
43-U-NA20 (OCTA) W/			-2.00			1/2" Ice	20.89	11.88	284.64
PIPE MOUNT	р	E E	0.00	0.0000	<u>(0,00, (1,00</u>)	N. I.	20.24	10.55	152 55
KFS APX VAAKK24	В	From Face	3.00	0.0000	60.00 - 64.00	NO ICE 1/2" Ice	20.24	10.55	153.55
PIPE MOUNT			0.00			1/2 100	20.89	11.00	204.04
RFS APXVAARR24	С	From Face	3.00	0.0000	60.00 - 64.00	No Ice	20.24	10.55	153.55
43-U-NA20 (OCTA) W/			-2.00			1/2" Ice	20.89	11.88	284.64
PIPE MOUNT			0.00						
Ericsson RADIO 4449	А	From Face	2.50	0.0000	60.00 - 64.00	No Ice	3.99	3.79	111.46
B/1+B82			-2.00			$1/2^{-1}$ Ice	5.04	4.97	156.30
Friesson RADIO 4449	в	From Face	2.50	0.0000	60 00 - 64 00	No Ice	3 99	3 79	111 46
B71+B85	Ъ	1 Ioni 1 acc	-2.00	0.0000	00.00 04.00	1/2" Ice	5.04	4.97	156.30
			0.00						
Ericsson RADIO 4449	С	From Face	2.50	0.0000	60.00 - 64.00	No Ice	3.99	3.79	111.46
B71+B85			-2.00			1/2" Ice	5.04	4.97	156.30
		F F	0.00	0.0000	(0.00 (1.00	NT T	1.0.4	0.02	16.00
Ericssion RRU 4415 B25	А	From Face	3.00	0.0000	60.00 - 64.00	No Ice	1.84	0.82	46.00
			-2.00			1/2 Ice	2.01	0.94	00.07
Ericssion RRU 4415 B25	В	From Face	3.00	0.0000	60.00 - 64.00	No Ice	1.84	0.82	46.00
			-2.00			1/2" Ice	2.01	0.94	60.07
			0.00						
Ericssion RRU 4415 B25	С	From Face	3.00	0.0000	60.00 - 64.00	No Ice	1.84	0.82	46.00
			-2.00			1/2" Ice	2.01	0.94	60.07
EDICCSON AID 22	•	Enom Eooo	0.00	0.0000	60.00 64.00	No Iso	651	471	172.00
KRD901146-1 B664/B24	A	FIOIII Face	-4.00	0.0000	00.00 - 04.00	1/2" Ice	6.89	4.71	217.82
(OCTA)			0.00			1/2 100	0.07	5.07	217.02
ERICCSON ÁIR 32	В	From Face	3.00	0.0000	60.00 - 64.00	No Ice	6.51	4.71	172.00
KRD901146-1 B66A/B2A			-4.00			1/2" Ice	6.89	5.07	217.82
(OCTA)	~		0.00						
ERICCSON AIR 32	С	From Face	3.00	0.0000	60.00 - 64.00	No Ice	6.51	4.71	172.00
(OCTA)			-4.00			$1/2^{-1}$ Ice	6.89	5.07	217.82
Ericsson - AIR6449 B41	А	From Face	3.00	0.0000	60 00 - 64 00	No Ice	7.39	4.79	94.50
(Massive MIMO)		1101111400	4.00	0.0000	00100 01100	1/2" Ice	8.44	6.05	159.35
			0.00						
Ericsson - AIR6449 B41	В	From Face	3.00	0.0000	60.00 - 64.00	No Ice	7.39	4.79	94.50
(Massive MIMO)			4.00			1/2" Ice	8.44	6.05	159.35
	C	E E	0.00	0.0000	<u>(0,00, (1,00</u>)	N. I.	7.20	4 70	04.50
(Massive MIMO)	C	From Face	3.00 4.00	0.0000	60.00 - 64.00	1/2" Ice	7.39 8.44	4.79	94.50
(Massive Milvio)			9.00			1/2 100	0.44	0.05	157.55
Commscope MC-K10S-9-96	С	From Face	0.00	0.0000	60.00 - 64.00	No Ice	3.30	3.30	358.00
(1 of 3)			0.00			1/2" Ice	4.20	4.20	420.00
			0.00						
Utility Pole Transformer	А	From Face	1.25	0.0000	43.00	No Ice	0.92	0.92	200.00
			0.00			$1/2^{\prime\prime}$ Ice	1.45	1.45	218.30
Utility Pole Crossarms	А	From Face	0.00	0.0000	49.00	No Ice	3.50	0.10	50.00
Starty 1 516 Crossarins		2 10111 1 000	0.00	0.0000	12.00	1/2" Ice	4.19	0.14	81.77
			0.00						
Commscope MC-K10S-9-96	В	From Face	0.00	0.0000	60.00 - 64.00	No Ice	3.30	3.30	358.00
(2 of 3)			0.00			1/2" Ice	4.20	4.20	420.00
			0.00						

4T	Job		Page
<i>tnx1ower</i>		7 of 20	
Andorson Engineering	Project		Date
2053 N. Hillcrest Rd.		T-Mobile	14:40:12 02/26/21
Saratoga Springs, UT 84045	Client		Designed by
FAX: 801-972-6222		RAGE Development	JHALL

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Ltg		Vert ft ft ft	o	ft		ft²	ft ²	lb
Commscope MC-K10S-9-96	А	From Face	0.00	0.0000	60.00 - 64.00	No Ice	3.30	3.30	358.00
(3 of 3)			$0.00 \\ 0.00$			1/2" Ice	4.20	4.20	420.00

Tower Pressures - No Ice

 $G_H = 1.100$

Section	Z	K _Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 68.00-24.00	44.75	0.785	17	41.514	Α	0.000	41.514	41.514	100.00	0.000	0.000
					В	0.000	41.514		100.00	0.000	0.000
					С	0.000	41.514		100.00	28.678	0.000
					D	0.000	41.514		100.00	0.000	0.000
L2 24.00-0.00	11.61	0.7	15	31.961	Α	0.000	31.961	31.961	100.00	0.000	0.000
					В	0.000	31.961		100.00	0.000	0.000
					С	0.000	31.961		100.00	20.400	0.000
					D	0.000	31.961		100.00	0.000	0.000

Tower Pressure - With Ice

 $G_H=1.100$

Section	z	K_Z	q_z	tz	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 68.00-24.00	44.75	0.785	3	0.2577	43.404	А	0.000	43.404	43.404	100.00	0.000	0.000
						В	0.000	43.404		100.00	0.000	0.000
						С	0.000	43.404		100.00	33.005	0.000
						D	0.000	43.404		100.00	0.000	0.000
L2 24.00-0.00	11.61	0.7	2	0.2252	32.862	Α	0.000	32.862	32.862	100.00	0.000	0.000
						В	0.000	32.862		100.00	0.000	0.000
						С	0.000	32.862		100.00	22.562	0.000
						D	0.000	32.862		100.00	0.000	0.000

Tower Pressure - Service

|--|

Project

Client

SL01743A Prom RMP Glasmann Way 8 of 20 T-Mobile 14:40:12 02/26/21

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

DACE Dovalopment	

Designed by JHALL

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1 68.00-24.00	44.75	0.785	5	41.514	Α	0.000	41.514	41.514	100.00	0.000	0.000
					В	0.000	41.514		100.00	0.000	0.000
					С	0.000	41.514		100.00	28.678	0.000
					D	0.000	41.514		100.00	0.000	0.000
L2 24.00-0.00	11.61	0.7	5	31.961	Α	0.000	31.961	31.961	100.00	0.000	0.000
					В	0.000	31.961		100.00	0.000	0.000
					С	0.000	31.961		100.00	20.400	0.000
					D	0.000	31.961		100.00	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	841.76	977.40	Α	1	0.95	17	1	1	41.514	1504.52	34.19	D
68.00-24.00			В	1	1.2		1	1	41.514			
			С	1	0.95		1	1	41.514			
			D	1	1.2		1	1	41.514			
L2 24.00-0.00	560.40	755.01	Α	1	0.95	15	1	1	31.961	1070.17	44.59	D
			В	1	1.2		1	1	31.961			
			С	1	0.95		1	1	31.961			
			D	1	1.2		1	1	31.961			
Sum Weight:	1402.16	1732.40								2574.69		

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	841.76	977.40	Α	1	1.2	17	1	1	41.514	1322.68	30.06	D
68.00-24.00			В	1	1.2		1	1	41.514			
			С	1	1.2		1	1	41.514			
			D	1	1.2		1	1	41.514			
L2 24.00-0.00	560.40	755.01	Α	1	1.2	15	1	1	31.961	945.00	39.37	D
			В	1	1.2		1	1	31.961			
			С	1	1.2		1	1	31.961			
			D	1	1.2		1	1	31.961			
Sum Weight:	1402.16	1732.40								2267.67		

Tower Forces - With Ice - Wind Normal To Face

Page 9 of 20 SL01743A Prom RMP Glasmann Way Project Date T-Mobile 14:40:12 02/26/21 Client

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

RAGE	Devel	opment
	2010.	opinion

Designed by JHALL

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	936.03	1137.26	Α	1	1.2	3	1	1	43.404	243.48	5.53	D
68.00-24.00			В	1	1.2		1	1	43.404			
			С	1	1.2		1	1	43.404			
			D	1	1.2		1	1	43.404			
L2 24.00-0.00	619.50	861.44	Α	1	1.2	2	1	1	32.862	170.96	7.12	D
			В	1	1.2		1	1	32.862			
			С	1	1.2		1	1	32.862			
			D	1	1.2		1	1	32.862			
Sum Weight:	1555.54	1998.70								414.44		

Tower Forces - With Ice - Wind 45 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	936.03	1137.26	А	1	1.2	3	1	1	43.404	212.61	4.83	D
68.00-24.00			В	1	1.2		1	1	43.404			
			С	1	1.2		1	1	43.404			
			D	1	1.2		1	1	43.404			
L2 24.00-0.00	619.50	861.44	А	1	1.2	2	1	1	32.862	150.08	6.25	D
			В	1	1.2		1	1	32.862			
			С	1	1.2		1	1	32.862			
			D	1	1.2		1	1	32.862			
Sum Weight:	1555.54	1998.70								362.70		

	Tower Forces - Service - Wind Normal To Face													
Section Elevation	Add Weight	Self Weight	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.		
Lievation	weigni	weight	c c			psf						ruce		
ft	lb	lb	е			1 5			ft^2	lb	plf			
L1	841.76	977.40	Α	1	1.133	5	1	1	41.514	456.79	10.38	D		
68.00-24.00			В	1	1.2		1	1	41.514					
			С	1	1.133		1	1	41.514					
			D	1	1.2		1	1	41.514					
L2 24.00-0.00	560.40	755.01	Α	1	1.029	5	1	1	31.961	324.92	13.54	D		
			В	1	1.2		1	1	31.961					
			С	1	1.029		1	1	31.961					
			D	1	1.2		1	1	31.961					
Sum Weight:	1402.16	1732.40								781.71				

Tower Forces - Service - Wind 45 To Face

Client

Page 10 of 20 SL01743A Prom RMP Glasmann Way Project Date T-Mobile 14:40:12 02/26/21

RAGE Development

Designed by

JHALL

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			-						Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
L1	841.76	977.40	А	1	1.2	5	1	1	41.514	401.58	9.13	D
68.00-24.00			В	1	1.2		1	1	41.514			
			С	1	1.2		1	1	41.514			
			D	1	1.2		1	1	41.514			
L2 24.00-0.00	560.40	755.01	А	1	1.2	5	1	1	31.961	286.92	11.95	D
			В	1	1.2		1	1	31.961			
			С	1	1.2		1	1	31.961			
			D	1	1.2		1	1	31.961			
Sum Weight:	1402.16	1732.40								688.50		

	Discr	ete Ap	purte	nance	e Press	sures	- No I	Ce G	н = 1.100
Description	Aimina	Waiaht	Offeret	Offeret	_	V	ñ	C A	C A
Description	Aiming	weigni	$O_{JJ}sel_x$	Ojjseiz	2	Λ _z	q_z	$C_A A_C$	C_{AAC}
	°	lh	ft	ft	ft		nsf	ft^2	ft^2
RFS APXVAARR24	270,0000	153.55	-3.36	2.00	64.00	0.870	19	20.24	10.55
43-U-NA20 (OCTA) W/	27010000	100100	0.00	2.00	0 1100	0.070		20121	10.000
PIPE MOUNT									
RFS APXVAARR24	0.0000	153.55	-2.00	-3.37	62.00	0.862	19	20.24	10.55
43-U-NA20 (OCTA) W/									
PIPE MOUNT									
RFS APXVAARR24	90.0000	153.55	3.37	-2.00	62.00	0.862	19	20.24	10.55
43-U-NA20 (OCTA) W/									
PIPE MOUNT									
Ericsson RADIO 4449	270.0000	111.46	-2.87	2.00	62.00	0.862	19	3.99	3.79
B71+B85									
Ericsson RADIO 4449	0.0000	111.46	-2.00	-2.87	62.00	0.862	19	3.99	3.79
B71+B85									
Ericsson RADIO 4449	90.0000	111.46	2.87	-2.00	62.00	0.862	19	3.99	3.79
B/1+B85	270 0000	16.00	2.07	2 00	(2 00	0.070	10	1.04	0.02
Ericssion RRU 4415 B25	270.0000	46.00	-3.37	2.00	62.00	0.862	19	1.84	0.82
Effession RRU 4415 B25	0.0000	46.00	-2.00	-3.37	62.00	0.862	19	1.84	0.82
EPICCSON AID 22	90.0000	46.00	3.37	-2.00	62.00	0.862	19	1.84	0.82
VPD001146 1	270.0000	172.00	-3.37	4.00	02.00	0.802	19	0.51	4.71
B664/B24 (OCTA)									
FRICCSON AIR 32	0,0000	172.00	-4.00	-3 37	62.00	0.862	19	6.51	4 71
KRD901146-1	0.0000	172.00	4.00	5.57	02.00	0.002	17	0.51	4.71
B66A/B2A (OCTA)									
ERICCSON AIR 32	90.0000	172.00	3.37	-4.00	62.00	0.862	19	6.51	4.71
KRD901146-1							-		
B66A/B2A (OCTA)									
Ericsson - AIR6449 B41	270.0000	94.50	-3.37	-4.00	62.00	0.862	19	7.39	4.79
(Massive MIMO)									
Ericsson - AIR6449 B41	0.0000	94.50	4.00	-3.37	62.00	0.862	19	7.39	4.79
(Massive MIMO)									
Ericsson - AIR6449 B41	90.0000	94.50	3.37	4.00	62.00	0.862	19	7.39	4.79
(Massive MIMO)									
Commscope	90.0000	358.00	0.37	0.00	62.00	0.862	19	3.30	3.30
MC-K10S-9-96 (1 of 3)									
Utility Pole Transformer	270.0000	200.00	-1.73	0.00	43.00	0.776	17	0.92	0.92
Utility Pole Crossarms	270.0000	50.00	-0.44	0.00	49.00	0.806	18	3.50	0.10
Commscope	0.0000	358.00	0.00	-0.37	62.00	0.862	19	3.30	3.30
MC-K10S-9-96 (2 of 3)									

Client

SL01743A Prom RMP Glasmann Way
Project

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

RAGE Development

T-Mobile

JHALL

Description	Aiming Azimuth	Weight	$Offset_x$	$Offset_z$	Z	K_z	q_z	$C_A A_C$ Front	$C_A A_C$ Side
	0	lb	ft	ft	ft		psf	ft^2	ft^2
Commscope MC-K10S-9-96 (3 of 3)	270.0000	358.00	-0.37	0.00	62.00	0.862	19	3.30	3.30
	Sum Weight:	3056.53							

Discrete Appurtenance Pressures - With Ice *G_H = 1.100*

Weight $Offset_x$ Description $Offset_z$ K_z $C_A A_C$ Aiming $C_A A_C$ z q_z t_z Azimuth Front Side ft^2 ft^2 1h psf in RFS APXVAARR24 270.0000 223.58 -3.36 2.00 64.00 0.870 3 20.59 11.26 0.2671 43-U-NA20 (OCTA) W/ PIPE MOUNT 0.0000 223.36 -2.00 62.00 RFS APXVAARR24 -3.37 0.862 3 20.59 11.26 0.2663 43-U-NA20 (OCTA) W/ PIPE MOUNT **RFS APXVAARR24** 90.0000 223.36 3.37 -2.00 62.00 0.862 3 20.59 11.26 0.2663 43-U-NA20 (OCTA) W/ PIPE MOUNT Ericsson RADIO 4449 270.0000 135.34 -2.87 2.00 62.00 0.862 3 4.55 4.42 0.2663 B71+B85 135.34 Ericsson RADIO 4449 62.00 3 4.42 0.0000 -2.00 -2.87 0.862 4.55 0.2663 B71+B85 Ericsson RADIO 4449 90.0000 135.34 62.00 0.862 4.42 0.2663 2.87 -2.00 3 4.55 B71+B85 Ericssion RRU 4415 B25 270.0000 53.50 -3.37 2.00 62.00 0.862 3 1.93 0.89 0.2663 Ericssion RRU 4415 B25 0.0000 53.50 -2.00 -3.37 62.00 0.862 3 1.93 0.89 0.2663 3.37 Ericssion RRU 4415 B25 90.0000 53.50 -2.0062.00 0.862 3 1.93 0.89 0.2663 ERICCSON AIR 32 270.0000 196.40 -3.37 4.00 62.00 0.862 3 6.71 4.90 0.2663 KRD901146-1 B66A/B2A (OCTA) ERICCSON AIR 32 0.0000 196.40 -4.00 -3.37 62.00 0.862 3 6.71 4.90 0.2663 KRD901146-1 B66A/B2A (OCTA) ERICCSON AIR 32 90.0000 62.00 196.40 3.37 -4.000.862 3 6.71 4.90 0.2663 KRD901146-1 B66A/B2A (OCTA) Ericsson - AIR6449 B41 270.0000 129.04 -3.37 -4.0062.00 0.862 3 7.95 5.46 0.2663 (Massive MIMO) Ericsson - AIR6449 B41 0.0000 129.04 4.00 -3.37 62.00 0.862 3 7.95 5.46 0.2663 (Massive MIMO) 129.04 Ericsson - AIR6449 B41 90.0000 3.37 4.00 62.00 0.862 3 7.95 5.46 0.2663 (Massive MIMO) 90.0000 391.02 0.37 0.00 62.00 0.862 3 3.78 0.2663 Commscope 3.78 MC-K10S-9-96 (1 of 3) Utility Pole Transformer 270.0000 209.40 0.00 43.00 0.776 1.19 0.2567 -1.73 3 1.19 270.0000 66.52 0.2601 Utility Pole Crossarms 0.00 49.00 0.806 3 -0.443.86 0.12 391.02 -0.37 3 Commscope 0.0000 0.00 62.00 0.862 3.78 3.78 0.2663 MC-K10S-9-96 (2 of 3) 270.0000 391.02 -0.37 0.00 62.00 0.862 3 3.78 3.78 0.2663 Commscope MC-K10S-9-96 (3 of 3) 3662.10 Sum Weight:

Discrete Appurtenance Pressures - Service G_H = 1.100

tnxTower

Job

Project

Client

SL01743A Prom RMP Glasmann Way

Page 12 of 20 Date

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

RAGE Development

T-Mobile

Designed by JHALL

14:40:12 02/26/21

Description	Aiming	Weight	$Offset_x$	$Offset_z$	z	K_z	q_z	$C_A A_C$	$C_A A_C$
	Azimuth °	lb	ft	ft	ft		psf	Front ft ²	Side ft ²
RFS APXVAARR24	270.0000	153.55	-3.36	2.00	64.00	0.870	6	20.24	10.55
43-U-NA20 (OCTA) W/									
PIPE MOUNT									
RFS APXVAARR24	0.0000	153.55	-2.00	-3.37	62.00	0.862	6	20.24	10.55
43-U-NA20 (OCTA) W/									
PIPE MOUNT									
RFS APXVAARR24	90.0000	153.55	3.37	-2.00	62.00	0.862	6	20.24	10.55
43-U-NA20 (OCTA) W/									
PIPE MOUNT									
Ericsson RADIO 4449	270.0000	111.46	-2.87	2.00	62.00	0.862	6	3.99	3.79
B71+B85									
Ericsson RADIO 4449	0.0000	111.46	-2.00	-2.87	62.00	0.862	6	3.99	3.79
B71+B85									
Ericsson RADIO 4449	90.0000	111.46	2.87	-2.00	62.00	0.862	6	3.99	3.79
B71+B85									
Ericssion RRU 4415 B25	270.0000	46.00	-3.37	2.00	62.00	0.862	6	1.84	0.82
Ericssion RRU 4415 B25	0.0000	46.00	-2.00	-3.37	62.00	0.862	6	1.84	0.82
Ericssion RRU 4415 B25	90.0000	46.00	3.37	-2.00	62.00	0.862	6	1.84	0.82
ERICCSON AIR 32	270.0000	172.00	-3.37	4.00	62.00	0.862	6	6.51	4.71
KRD901146-1									
B66A/B2A (OCTA)									
ERICCSON AIR 32	0.0000	172.00	-4.00	-3.37	62.00	0.862	6	6.51	4.71
KRD901146-1									
B66A/B2A (OCTA)									
ERICCSON AIR 32	90.0000	172.00	3.37	-4.00	62.00	0.862	6	6.51	4.71
KRD901146-1									
B66A/B2A (OCTA)									
Ericsson - AIR6449 B41	270.0000	94.50	-3.37	-4.00	62.00	0.862	6	7.39	4.79
(Massive MIMO)									
Ericsson - AIR6449 B41	0.0000	94.50	4.00	-3.37	62.00	0.862	6	7.39	4.79
(Massive MIMO)									
Ericsson - AIR6449 B41	90.0000	94.50	3.37	4.00	62.00	0.862	6	7.39	4.79
(Massive MIMO)									
Commscope	90.0000	358.00	0.37	0.00	62.00	0.862	6	3.30	3.30
MC-K10S-9-96 (1 of 3)									
Utility Pole Transformer	270.0000	200.00	-1.73	0.00	43.00	0.776	5	0.92	0.92
Utility Pole Crossarms	270.0000	50.00	-0.44	0.00	49.00	0.806	5	3.50	0.10
Commscope	0.0000	358.00	0.00	-0.37	62.00	0.862	6	3.30	3.30
MC-K10S-9-96 (2 of 3)									
Commscope	270.0000	358.00	-0.37	0.00	62.00	0.862	6	3.30	3.30
MC-K10S-9-96 (3 of 3)									
	Sum	3056.53							
	Weight:								

Force Totals (Does not include forces on guys)

Load	Vertical	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	
		X	Ζ	
	lb	lb	lb	lb-in
Leg Weight	1732.40			
Bracing Weight	0.00			
Total Member Self-Weight	1732.40			
Guy Weight	968.73			
Total Weight	7788.62			
Wind 0 deg - No Ice		0.00	-5374.51	5329.65
Wind 45 deg - No Ice		3844.88	-3568.58	-11067.99

tnxTower

Job SL01743A Prom RMP Glasmann Way Project T-Mobile Client Page 13 of 20 Date 14:40:12 02/26/21 Designed by

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

RAGE	Develo	pment

igned by JHALL

Load	Vertical	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	• *
		X	Ζ	
	lb	lb	lb	lb-in
Wind 90 deg - No Ice		4412.18	50.14	-16308.20
Wind 135 deg - No Ice		3844.88	3668.86	-11995.29
Wind 180 deg - No Ice		0.00	5474.79	-5329.65
Wind 225 deg - No Ice		-3844.88	3668.86	11067.99
Wind 270 deg - No Ice		-4412.18	50.14	16308.20
Wind 315 deg - No Ice		-3844.88	-3568.58	11995.29
Member Ice	266.29			
Guy Ice	60.80			
Total Weight Ice	8245.87			
Wind 0 deg - Ice		0.00	-691.70	947.60
Wind 45 deg - Ice		486.42	-452.52	-1765.91
Wind 90 deg - Ice		570.97	0.00	-2683.84
Wind 135 deg - Ice		486.42	452.52	-2029.61
Wind 180 deg - Ice		0.00	691.70	-947.60
Wind 225 deg - Ice		-486.42	452.52	1765.91
Wind 270 deg - Ice		-570.97	0.00	2683.84
Wind 315 deg - Ice		-486.42	-452.52	2029.61
Total Weight	7787.62			
Wind 0 deg - Service		0.00	-2447.70	1618.16
Wind 45 deg - Service		1733.54	-1664.87	-3360.41
Wind 90 deg - Service		2196.03	0.00	-4951.42
Wind 135 deg - Service		1733.54	1664.87	-3641.95
Wind 180 deg - Service		0.00	2447.70	-1618.16
Wind 225 deg - Service		-1733.54	1664.87	3360.41
Wind 270 deg - Service		-2196.03	0.00	4951.42
Wind 315 deg - Service		-1733.54	-1664.87	3641.95

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice+1.0 Guy
3	1.2 Dead+1.0 Wind 45 deg - No Ice+1.0 Guy
4	1.2 Dead+1.0 Wind 90 deg - No Ice+1.0 Guy
5	1.2 Dead+1.0 Wind 135 deg - No Ice+1.0 Guy
6	1.2 Dead+1.0 Wind 180 deg - No Ice+1.0 Guy
7	1.2 Dead+1.0 Wind 225 deg - No Ice+1.0 Guy
8	1.2 Dead+1.0 Wind 270 deg - No Ice+1.0 Guy
9	1.2 Dead+1.0 Wind 315 deg - No Ice+1.0 Guy
10	1.2 Dead+1.0 Ice+1.0 Temp+Guy
11	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
12	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp+1.0 Guy
13	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
14	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp+1.0 Guy
15	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
16	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp+1.0 Guy
17	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
18	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp+1.0 Guy
19	Dead+Wind 0 deg - Service+Guy
20	Dead+Wind 45 deg - Service+Guy
21	Dead+Wind 90 deg - Service+Guy
22	Dead+Wind 135 deg - Service+Guy
23	Dead+Wind 180 deg - Service+Guy

tnxTower

Project

Client

SL01743A Prom RMP Glasmann Way

T-Mobile

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

RAGE Development

Designed by JHALL

Comb.	Description
No.	
24	Dead+Wind 225 deg - Service+Guy
25	Dead+Wind 270 deg - Service+Guy
26	Dead+Wind 315 deg - Service+Guy

Maximum Member Forces

No. ft L1 68 - 24	Type Pole Guy A	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max. Torque Bottom Tension Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	Load Comb. 5 3 8 2 8 2 7 4 4 4 4 4 4 4	<i>lb</i> 0.06 -34250.89 -4755.23 -4814.13 -3210.11 -3152.10 15254.53 15459.21 13148.01 8129.51	Moment lb-in -3.12 -387820.30 509411.39 1293.89 509411.39 1293.89	<i>Moment</i> <i>lb-in</i> -4.32 237930.47 22056.00 503547.90 22056.00 503547.90 -17712.94
L1 68 - 24	Pole Guy A	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max. Torque Bottom Tension Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	Comb. 5 3 8 2 8 2 7 4 4 4 4 4 4 4	<i>lb</i> 0.06 -34250.89 -4755.23 -4814.13 -3210.11 -3152.10 15254.53 15459.21 13148.01 8129.51	lb-in -3.12 -387820.30 509411.39 1293.89 509411.39 1293.89	<i>lb-in</i> -4.32 237930.47 22056.00 503547.90 22056.00 503547.90 -17712.94
L1 68-24	Pole Guy A	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max. Torque Bottom Tension Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	5 3 8 2 8 2 7 4 4 4 4 4 4	0.06 -34250.89 -4755.23 -4814.13 -3210.11 -3152.10 15254.53 15459.21 13148.01 8129.51	-3.12 -387820.30 509411.39 1293.89 509411.39 1293.89	-4.32 237930.47 22056.00 503547.90 22056.00 503547.90 -17712.94
	Guy A	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max. Torque Bottom Tension Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	3 8 2 8 2 7 4 4 4 4 4 4	-34250.89 -4755.23 -4814.13 -3210.11 -3152.10 15254.53 15459.21 13148.01 8129.51	-387820.30 509411.39 1293.89 509411.39 1293.89	237930.47 22056.00 503547.90 22056.00 503547.90 -17712.94
	Guy A	Max. Mx Max. My Max. Vy Max. Vx Max. Torque Bottom Tension Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	8 2 8 2 7 4 4 4 4 4	-4755.23 -4814.13 -3210.11 -3152.10 15254.53 15459.21 13148.01 8129.51	509411.39 1293.89 509411.39 1293.89	22056.00 503547.90 22056.00 503547.90 -17712.94
	Guy A	Max. My Max. Vy Max. Vx Max. Torque Bottom Tension Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	2 8 2 7 4 4 4 4 4	-4814.13 -3210.11 -3152.10 15254.53 15459.21 13148.01 8129.51	1293.89 509411.39 1293.89	503547.90 22056.00 503547.90 -17712.94
	Guy A	Max. Vy Max. Vx Max. Torque Bottom Tension Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	8 2 7 4 4 4 4 4	-3210.11 -3152.10 15254.53 15459.21 13148.01 8129.51	509411.39 1293.89	22056.00 503547.90 -17712.94
	Guy A	Max. Vx Max. Torque Bottom Tension Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	2 7 4 4 4 4 4	-3152.10 15254.53 15459.21 13148.01 8129.51	1293.89	503547.90 -17712.94
	Guy A	Max. Torque Bottom Tension Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	7 4 4 4 4 4	15254.53 15459.21 13148.01 8129.51		-17712.94
	Guy A	Bottom Tension Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	4 4 4 4	15254.53 15459.21 13148.01 8129.51		
		Top Tension Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	4 4 4 4	15459.21 13148.01 8129.51		
		Top Cable Vert Top Cable Norm Top Cable Tan Bot Cable Vert	4 4 4	13148.01 8129.51		
		Top Cable Norm Top Cable Tan Bot Cable Vert	4 4	8129.51		
		Top Cable Tan Bot Cable Vert	4			
		Bot Cable Vert		167.57		
			4	-12887.82		
		Bot Cable Norm	4	8158.54		
		Bot Cable Tan	4	207.77		
	Guy B	Bottom Tension	7	16489.18		
		Top Tension	7	16693.58		
		Top Cable Vert	7	14188.12		
		Top Cable Norm	7	8793.30		
		Top Cable Tan	7	225.17		
		Bot Cable Vert	7	-13930.68		
		Bot Cable Norm	7	8817.88		
		Bot Cable Tan	7	272.48		
	Guy C	Bottom Tension	8	15240.71		
	-	Top Tension	8	15445.33		
		Top Cable Vert	8	13135.71		
		Top Cable Norm	8	8122.85		
		Top Cable Tan	8	175.46		
		Bot Cable Vert	8	-12876.61		
		Bot Cable Norm	8	8150.11		
		Bot Cable Tan	8	218.79		
	Guy D	Bottom Tension	3	16279.57		
	-	Top Tension	3	16483.93		
		Top Cable Vert	3	14010.41		
		Top Cable Norm	3	8681.98		
		Top Cable Tan	3	226.81		
		Bot Cable Vert	3	-13754.34		
		Bot Cable Norm	3	8704.36		
		Bot Cable Tan	3	276.85		
L2 24 - 0	Pole	Max Tension	1	0.00	0.00	0.00
		Max. Compression	3	-35826.72	-484673.59	233553.13
		Max. Mx	3	-35826.72	-484673.59	233553.13
		Max. My	8	-33061.45	318701.97	-247159.01
		Max. Vy	2	470.71	-148676.03	121179.92
		Max. Vx	9	880.12	161225.36	-16553.38
		Max. Torque	4			16342.57

tnxTower

Anderson Engineering

2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222

FAX: 801-972-6235

SL01743A Prom RMP Glasmann Way

RAGE Development

Date 14:40:12 02/26/21

T-Mobile

Designed by JHALL

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
Mast	Max. Vert	3	35826.89	-403.34	200.67
	Max. H _x	7	35339.40	351.20	-384.12
	Max. H _z	2	27197.04	-288.38	281.79
	Max. M _x	3	233552.10	-403.34	200.67
	Max. M _z	3	484674.09	-403.34	200.67
	Max. Torsion	4	16338.24	59.54	107.23
	Min. Vert	10	19712.30	-38.98	-114.25
	Min. H _x	3	35826.89	-403.34	200.67
	Min. H _z	6	25529.50	202.55	-476.59
	Min. M _x	8	-247159.97	-113.06	-293.68
	Min. M _z	7	-465797.20	351.20	-384.12
	Min. Torsion	8	-15806.47	-113.06	-293.68
Guy D @ 29 ft	Max. Vert	7	-396.81	100.51	284.89
Elev 0 ft					
Azimuth 167 deg					
	Max. H _x	3	-13754.34	1721.66	8536.89
	Max. Hz	3	-13754.34	1721.66	8536.89
	Min. Vert	3	-13754.34	1721.66	8536.89
	Min. H _x	6	-414.81	78.13	292.58
	Min. H _z	7	-396.81	100.51	284.89
Guy C @ 29 ft Elev 0 ft	Max. Vert	4	-393.50	173.03	240.84
Azimuth 139 deg					
	Max. H _x	8	-12876.61	5518.70	6001.35
	Max. H _z	8	-12876.61	5518.70	6001.35
	Min. Vert	8	-12876.61	5518.70	6001.35
	Min. H _x	4	-393.50	173.03	240.84
	Min. H _z	4	-393.50	173.03	240.84
Guy B @ 29 ft Elev 0 ft	Max. Vert	3	-268.30	-63.09	-210.26
Azimum -9 deg	Mov. U	2	207.48	11 61	220.00
	Max U	2	-307.40	-44.04	-230.90
	Min Vort	ט ד	-200.30	-03.09	-210.20 8716 85
	Min H	7	-13930.08	-1149./3	-0/40.03
	Min U	7	-13930.00	-1149.73	-0/40.03
Guy A @ 29 ft Elev 0 ft	Max. Vert	8	-268.67	-135.25	-169.26
Azimuth -45 deg					
0	Max. H _x	8	-268.67	-135.25	-169.26
	Max. H _z	8	-268.67	-135.25	-169.26
	Min. Vert	4	-12887.82	-5915.87	-5622.05
	Min. H _x	4	-12887.82	-5915.87	-5622.05
			10005.00		

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning $Moment, M_z$	Torque
	lb	lb	lb	lb-in	lb-in	lb-in
Dead Only	21143.59	29.04	76.90	17887.92	-11595.54	-0.89
1.2 Dead+1.0 Wind 0 deg - No	27197.04	288.38	-281.79	-60943.07	-258341.02	5651.96
Ice+1.0 Guy 1.2 Dead+1.0 Wind 45 deg - No	35826.89	403.34	-200.67	-233552.10	-484674.09	-10540.78

Client

Project

Job

tnxTower

Job

Project

Client

SL01743A Prom RMP Glasmann Way

Page 16 of 20 Date 14:40:12 02/26/21

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

RAGE	Develo	pment

T-Mobile

Designed by JHALL

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment M	Overturning Moment M	Torque
Combination	lb	lb	lb	lb-in	lb-in	lb-in
Ice+1.0 Guy						
1.2 Dead+1.0 Wind 90 deg - No Ice+1.0 Guy	32143.34	-59.54	-107.23	-215404.22	-310620.62	-16338.24
1.2 Dead+1.0 Wind 135 deg - No Ice+1.0 Guy	24583.60	191.72	96.53	-107601.57	-107843.10	-12171.72
1.2 Dead+1.0 Wind 180 deg -	25529.50	-202.55	476.59	87157.41	204630.54	-5068.18
1.2 Dead+1.0 Wind 225 deg -	35339.40	-351.20	384.12	243162.01	465797.20	11123.25
1.2 Dead+1.0 Wind 270 deg -	33061.47	113.06	293.68	247159.97	318701.21	15806.47
1.2 Dead+1.0 Wind 315 deg -	25955.09	-146.76	121.19	166277.62	111467.12	11631.96
1.2 Dead+1.0 Ice+1.0	19712.30	38.98	114.25	25961.30	-16032.38	-2.57
1.2 Dead+1.0 Wind 0 deg+1.0	19806.82	75.38	82.96	26465.80	-45289.09	946.48
1.2 Dead+1.0 Wind 45 deg+1.0	20049.34	94.22	79.66	5812.49	-62733.59	-1756.54
1.2 Dead+1.0 Wind 90 deg+1.0	19953.69	24.84	79.24	-2473.01	-42292.60	-2678.94
1.2 Dead+1.0 Wind 135	19750.55	44.56	94.29	1800.83	-22260.87	-2029.30
1.2 Dead+1.0 Vind 180	19761.19	2.70	145.95	25180.33	12686.64	-944.02
1.2 Dead+1.0 Wind 225	19995.24	-16.49	148.26	45118.62	30490.72	1758.16
1.2 Dead+1.0 Vind 270	19945.26	52.28	149.37	54000.60	10641.99	2664.89
1.2 Dead+1.0 Vind 315	19764.16	32.87	135.03	50343.94	-9590.63	2016.26
Dead+Wind 0 deg -	21710.04	135.88	-156.66	-35483.25	-100278.18	1663.74
Dead+Wind 45 deg -	23357.18	322.47	-146.20	-92351.37	-204887.52	-3294.80
Dead+Wind 90 deg -	22568.46	204.52	-27.66	-71135.20	-162727.06	-4969.97
Dead+Wind 135 deg -	21350.24	169.77	136.75	-12766.42	-68707.14	-3670.38
Dead+Wind 180 deg -	21475.61	-74.00	308.23	68393.22	73427.27	-1571.42
Dead+Wind 225 deg -	23032.47	-263.92	290.38	118223.90	179506.36	3377.59
Dead+Wind 270 deg -	22905.93	-154.78	179.04	104999.85	148311.21	4875.21
Dead+Wind 315 deg - Service+Guy	21485.25	-114.21	18.89	49511.86	47833.01	3585.35

Solution Summary

	Sum of Applied Forces				Sum of Reactions			
Load	PX	PY	PZ	PX	Ρ̈́Υ	PZ	% Error	
Comb.	lb	lb	lb	lb	lb	lb		
1	0.00	-7788.62	0.00	-0.06	7788.62	-0.52	0.007%	
2	21.21	-9153.38	-5547.68	-21.09	9153.37	5547.60	0.001%	
3	4018.60	-9153.12	-3719.42	-4018.50	9153.10	3719.36	0.001%	
4	4632.25	-9151.86	27.87	-4632.10	9151.85	-27.95	0.002%	
5	3971.73	-9151.91	3774.34	-3971.47	9151.90	-3774.45	0.003%	

Project

Client

SL01743A Prom RMP Glasmann Way

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

RAGE Development	RAGE	Development
------------------	------	-------------

T-Mobile

14:40:12 02/26/21 Designed by JHALL

17 of 20

Page

Date

	Sur	n of Applied Forces	5		Sum of Reaction	s	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
6	-21.21	-9151.82	5647.96	21.08	9151.82	-5647.88	0.001%
7	-4018.60	-9152.08	3819.70	4018.51	9152.07	-3819.66	0.001%
8	-4632.25	-9153.34	72.41	4632.06	9153.32	-72.33	0.002%
9	-3971.73	-9153.29	-3674.06	3971.64	9153.29	3674.09	0.001%
10	0.00	-9609.84	0.00	0.25	9609.84	-0.49	0.006%
11	5.63	-9610.05	-737.66	-5.28	9610.05	737.46	0.004%
12	532.52	-9609.98	-492.55	-532.25	9609.98	492.40	0.003%
13	629.38	-9609.65	-5.91	-629.16	9609.64	5.79	0.003%
14	520.09	-9609.66	480.51	-519.37	9609.65	-480.87	0.008%
15	-5.63	-9609.64	737.66	4.88	9609.63	-737.27	0.009%
16	-532.52	-9609.71	492.55	532.28	9609.70	-492.43	0.003%
17	-629.38	-9610.04	5.91	629.16	9610.04	-5.81	0.003%
18	-520.09	-9610.03	-480.51	519.42	9610.02	480.80	0.008%
19	6.44	-7788.86	-2500.27	-6.23	7788.85	2500.15	0.003%
20	1786.28	-7788.78	-1710.67	-1786.17	7788.77	1710.60	0.002%
21	2262.85	-7788.40	-6.76	-2262.66	7788.39	6.66	0.003%
22	1772.05	-7788.41	1696.90	-1771.78	7788.41	-1697.03	0.004%
23	-6.44	-7788.38	2500.27	6.07	7788.38	-2500.07	0.005%
24	-1786.28	-7788.47	1710.67	1786.19	7788.46	-1710.62	0.001%
25	-2262.85	-7788.85	6.76	2262.76	7788.84	-6.72	0.001%
26	-1772.05	-7788.83	-1696.90	1771.63	7788.83	1697.08	0.006%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	Convergeu:	of Cycles	Tolerance	Tolerance
1	Ves	6	0.0000001	0.00005383
2	Yes	14	0.00000001	0.00005402
3	Yes	16	0.00000001	0.00005246
4	Yes	15	0.00000001	0.00008329
5	Yes	12	0.00000001	0.00008342
6	Yes	13	0.00000001	0.00005027
7	Yes	16	0.00000001	0.00004632
8	Yes	15	0.00000001	0.00009033
9	Yes	14	0.00000001	0.00003811
10	Yes	7	0.00000001	0.00004442
11	Yes	10	0.00000001	0.00004930
12	Yes	11	0.00000001	0.00006474
13	Yes	11	0.00000001	0.00004731
14	Yes	9	0.00000001	0.00007409
15	Yes	9	0.00000001	0.00007937
16	Yes	11	0.00000001	0.00005288
17	Yes	11	0.00000001	0.00004490
18	Yes	9	0.00000001	0.00006746
19	Yes	11	0.00000001	0.00004881
20	Yes	13	0.00000001	0.00005453
21	Yes	12	0.00000001	0.00007036
22	Yes	10	0.00000001	0.00003675
23	Yes	10	0.00000001	0.00005731
24	Yes	13	0.00000001	0.00004018
25	Yes	13	0.00000001	0.00003755
26	Yes	10	0.00000001	0.00006432

tnxTower

SL01743A Prom RMP Glasmann Way

Anderson Engineering 2053 N. Hillcrest Rd. Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235

RAGE Development

T-Mobile

Designed by JHALL

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	68 - 24	9.022	20	1.3036	0.0694
L2	24 - 0	0.901	20	0.3647	0.0130

Job

Project

Client

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
64.00	RFS APXVAARR24 43-U-NA20	20	8.095	1.2104	0.0630	16291
	(OCTA) W/ PIPE MOUNT					
62.00	RFS APXVAARR24 43-U-NA20	20	7.635	1.1639	0.0600	13576
	(OCTA) W/ PIPE MOUNT					
60.00	RFS APXVAARR24 43-U-NA20	20	7.178	1.1175	0.0570	10182
	(OCTA) W/ PIPE MOUNT					
50.00	Location 4 (3 Powerlines-1)	20	4.987	0.8897	0.0427	4525
49.00	Utility Pole Crossarms	20	4.780	0.8675	0.0414	4287
46.00	Guy	20	4.177	0.8014	0.0373	3702
43.00	Utility Pole Transformer	20	3.603	0.7365	0.0334	3258
41.00	Location 3 (1 Wire)	20	3.238	0.6940	0.0309	3016
40.00	Location 2 (1 Wire)	20	3.062	0.6730	0.0297	2908
26.00	Location 1 (1 Wire)	20	1.093	0.4000	0.0150	1962

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	68 - 24	27.129	3	3.9765	0.2379
L2	24 - 0	2.374	3	1.0161	0.0417

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
64.00	RFS APXVAARR24 43-U-NA20	3	24.284	3.6753	0.2201	5188
	(OCTA) W/ PIPE MOUNT					
62.00	RFS APXVAARR24 43-U-NA20	3	22.870	3.5253	0.2095	4323
	(OCTA) W/ PIPE MOUNT					
60.00	RFS APXVAARR24 43-U-NA20	3	21.468	3.3758	0.1989	3242
	(OCTA) W/ PIPE MOUNT					
50.00	Location 4 (3 Powerlines-1)	3	14.753	2.6445	0.1479	1440
49.00	Utility Pole Crossarms	3	14.120	2.5734	0.1430	1364
46.00	Guy	3	12.276	2.3631	0.1287	1177
43.00	Utility Pole Transformer	3	10.524	2.1578	0.1148	1036
41.00	Location 3 (1 Wire)	3	9.413	2.0240	0.1060	959

turTowar	Job		Page
inx I ower		19 of 20	
Anderson Engineering	Project	T-Mobile	Date 14·40·12 02/26/21
2053 N. Hillcrest Rd. Saratoga Springs 1/T 84045	Client		Designed by
Phone: 801-972-6222 FAX: 801-972-6235	Chich	RAGE Development	JHALL

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
40.00	Location 2 (1 Wire)	3	8.876	1.9581	0.1016	924
26.00	Location 1 (1 Wire)	3	2.939	1.1205	0.0499	623

Guy Design Data

Section	Elevation	Size	Initial	Breaking	Actual	Allowable	Required	Actual
No.			Tension	Load	T_u	ϕT_n	S.F.	S.F.
	ft		lb	lb	lb	lb		
L1	46.00 (A) (6)	5/8 EHS	4240.00	40280.06	15459.20	24168.00	1.000	1.563 🖌
	46.00 (B) (5)	5/8 EHS	4240.00	40280.06	16693.60	24168.00	1.000	1.448 🖌
	46.00 (C) (4)	5/8 EHS	4240.00	40280.06	15445.30	24168.00	1.000	1.565 🖌
	46.00 (D) (3)	5/8 EHS	4240.00	40280.06	16483.90	24168.00	1.000	1.466 🗸

Compression Checks

			Ро	le Des	sign [Data			
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L1 L2	68 - 24 (1) 24 - 0 (2)	TP14x8x0.1875 TP17x14x0.1875	44.00 24.00	22.00 46.00	68.2 111.6	6.5280 8.3393	-32628.20 -34288.10	245428.00 151183.00	0.133 0.227

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		lb-in	lb-in	ϕM_{nx}	lb-in	lb-in	ϕM_{ny}
L1	68 - 24 (1)	TP14x8x0.1875	484436.00	1260160.00	0.384	0.00	1260160.00	0.000
L2	24 - 0 (2)	TP17x14x0.1875	454988.00	2064090.00	0.220	0.00	2064090.00	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T_u	ϕT_n	Ratio T _u
	ft		lb	lb	ϕV_n	lb-in	lb-in	ϕT_n
L1	68 - 24 (1)	TP14x8x0.1875	472.43	117746.00	0.004	16155.10	1307580.00	0.012
L2	24 - 0 (2)	TP17x14x0.1875	346.43	147944.00	0.002	14252.60	2133830.00	0.007

trantowar	Job		Page
inxlower		SL01743A Prom RMP Glasmann Way	20 of 20
Anderson Engineering	Project		Date
2053 N. Hillcrest Rd.		T-Mobile	14:40:12 02/26/21
Saratoga Springs, UT 84045 Phone: 801-972-6222 FAX: 801-972-6235	Client	RAGE Development	Designed by JHALL

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		lb	lb	ϕV_n	lb-in	lb-in	ϕT_n

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	68 - 24 (1)	0.133	0.384	0.000	0.004	0.012	0.518	1.000	4.8.2 🖌
L2	24 - 0 (2)	0.227	0.220	0.000	0.002	0.007	0.447	1.000	4.8.2 🗸

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
No.	ft	Type		Element	lb	lb	Capacity	Fail
L1	68 - 24	Pole	TP14x8x0.1875	1	-32628.20	245428.00	51.8	Pass
L2	24 - 0	Pole	TP17x14x0.1875	2	-34288.10	151183.00	44.7	Pass
L1	68 - 24	Guy A@46	5/8	6	15459.20	24168.00	64.0	Pass
L1	68 - 24	Guy B@46 (-55 deg)	5/8	5	16693.60	24168.00	69.1	Pass
L1	68 - 24	Guy C@46 (4 deg)	5/8	4	15445.30	24168.00	63.9	Pass
L1	68 - 24	Guy D@46 (-59 deg)	5/8	3	16483.90	24168.00	68.2	Pass
							Summary	
						Pole (L1)	51.8	Pass
						Guy A (L1)	64.0	Pass
						Guy B (L1)	69.1	Pass
						Guy C (L1)	63.9	Pass
						Guy D (L1)	68.2	Pass
						RATING =	69.1	Pass

Program Version 8.0.7.5 - 8/3/2020 File:C:/OneDrive/Anderson Engineering Co., Inc/Structures - General/Rage/SL01743A PROM RMP GLASSMAN WAY/2021/tnxTower/210226 SL01743A Prom RMP.eri

10/22/2020

RAN Template: 67D5A997DB Hybrid A&L Template: 67D5997DB 2xAIR+10P

SL01743A Anchor 4 2020-10-22

SL01743A_Anchor_4
Print Name: Standard (4
PORs: Anchor Phase 1

		Section 1 - Site	e Information		
Site ID: SL01743A Status: Final Version: 4 Project Type: Anchor Approved: 10/21/2020 12:53:52 PM Approved By: Abhishek.Sinha11@T-Mobile.com Last Modified: 10/21/2020 12:53:52 PM Last Modified By: Abhishek.Sinha11@T-Mobile.com	Site Name: Pron Site Class: Utilit Site Type: Struct Plan Year: 2019 Market: SALT L/ Vendor: Ericsson Landlord: Pacific	Site Name: Prom RMP Glasmann Way Site Class: Utility Pole Site Type: Structure Non Building Plan Year: 2019 Market: SALT LAKE CITY UT Vendor: Ericsson Landlord: PacifiCorp (OR)		Latitude: 41.17605923 Longitude: -111.95667700 Address: 4700 S Glassman Way City, State: Ogden, UT Region: WEST	
RAN Template: 67D5A997DB Hybrid			AL Template: 67D5997DB	_2xAIR+10P	
Sector Count: 3	Antenna Count: 9	Coax Line Count: 6		TMA Count: 0	RRU Count: 6

Section 3 - Proposed Template Images

67D5997DB_2xAIR+1OP_3 HCS_With AIR6449.JPG

Section 4 - Siteplan Images

----- This section is intentionally blank. -----

RAN Template: 67D5A997DB Hybrid A&L Template: 67D5997DB 2xAIR+10P

SL01743A_Anchor_4
Print Name: Standard (4) PORs: Anchor Phase 1

3

Section 5 - RAN Equipment										
		Existing DAN Excision of								
Existing RAN Equipment										
		Template: 67D94DB Hybrid (evolved from 4A)								
Enclosure	1	2								
Enclosure Type	(RBS 6102)	Ancillary Equipment (Ericsson)	RE							
3aseband	DUW30 DUG20 BB 5216 BB 6630 U1900 C1900 L2100 N600 L1900 L700 L700									

Enclosure Type	(RBS 6102)	(Ancillary Equipment (Ericsson))	(RBS 3106)
Baseband	DUW30 U1900		DUW30 (U2100 (DECOMMISSIONED))
Hybrid Cable System		(Ericsson 6x12 HCS 6AWG 30m (x 3)	
Multiplexer	XMU		
Radio	RUS01 B2 (x 3) G1900 RUS01 B2 (x 3) RUS01 B4 (x 6)		(RU22 (x 6))

	Proposed RAN Equipment									
Template: 67D5A997DB Hybrid										
Enclosure	1	2	3	4	5					
Enclosure Type	RBS 6102	Ancillary Equipment (Ericsson)	Enclosure 6160	B160	(RBS 3106)					
Baseband	DUW30) DUG20 (G1900) (G1900) (BB 6630) (BB 5216 (L1900) (L2100) (L2100		BB 6648 N2500 (12500)		DUW30 (U2100 (DECOMMISSIONED))					
Hybrid Cable System		Ericsson 6x12 HCS 6AWG 30m (x 3) PSU 4813								
Multiplexer	XMU									
Radio	RUS01 B2 (x 3) RUS01 B2 (x 3) G1900 U1900 RUS01 B4 (x 6)				(RU22 (x 6))					
RAN Scope of Work:	RAN Scope of Work:									
04/29/2020 - Remove 6 coat	04/29/2020 - Remove 6 coax lines to make space for 6x12 HCS in the conduit.									

Section 6 - A&L Equipment

Existing Template: 67D94DB_1xAIR+1QP+1OP Proposed Template: 67D5997DB_2xAIR+1OP

Sector 1 (Existing) view from behind										
Coverage Type	A - Outdoor Macro									
Antenna	1		2			3				
Antenna Model	CellMax - CMA-BDHH/6521/E0-6/TB05 (Qu	ad)	RFS - APXVAARR2	4_43-U-NA20 (Octo)			Ericsson - AIR32 KR	D901146-1_B66A_B2A	(Octo)	
Azimuth	330		330				330			
M. Tilt	(4)		(4)				(4)			
Height	(64)		(64)				(64)			
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
Active Tech.	(U1900) (G1900)		N600 L700	N600 L700 L600			L2100	L2100	(L1900)	L1900
Dark Tech.										
Restricted Tech.										
Decomm. Tech.		U2100								
E. Tilt	2		4	4			2	2	2	2
Cables	7/8" Coax - 85 ft. (x2)	7/8" Coax - 85 ft. (x2)	Fiber Jumper - 10 ft.	Fiber Jumper - 10 ft.			Fiber Jumper - 10 ft.			
	Coax Jumper - 10 ft. (x2)		JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)						
TMAs	Generic Twin Style 1A - PCS (AtAntenna)									
Diplexers / Combiners										
Radio			Radio 4449 B71+B85 (At Antenna)							
Sector Equipment										
Unconnected Equipment:										
Scope of Work:										
We were failing at 147% we Remove 6 coax lines to help	We were failing at 147% we are planning to do a MOD. L1900-Capacity is pending. For L700 RRUS11 B12 were installed on the ground and LNX antennas. Leased for 18 coax lines. Remove 6 coax lines to help structural.									

Sector 1 (Proposed) view from behind										
Coverage Type	A - Outdoor Macro									
Antenna	1	1	2				3			
Antenna Model	(Ericsson - AIR6449 B41 (Active Antenna - Massive MIMO))		RFS - APXVAARR24	4_43-U-NA20 (Octo)			Ericsson - AIR32 KR	D901146-1_B66A_B2A	A (Octo)	
Azimuth	330		330				330			
M. Tilt	4		4				4			
Height	64		64				64			
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
Active Tech.	N2500) (L2500)	N2500 (L2500)	N600 L700 L600	N600 L700 L600	L1900 U1900	L1900 U1900	L2100	L2100	L1900 G1900	L1900 G1900
Dark Tech.										
Restricted Tech.										
Decomm. Tech.							U2100			
E. Tilt	2	2	4	4	2	2	2	2	2	2
Cables	(Fiber Jumper - 10 ft. (x2)	(Fiber Jumper - 10 ft. (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft.			
TMAs										
Diplexers / Combiners										
Radio			Radio 4449 B71+B85 (At Antenna)		Radio 4415 B25 (At Antenna)					
Sector Equipment										
Unconnected Equipment:										
Cable: 7/8" Coax - 85 ft.	Cable: 7/8" Coax - 85 ft.									
Scope of Work:										

Sector 2 (Existing) view from behind										
Coverage Type	A - Outdoor Macro									
Antenna	1			2			3			
Antenna Model	CellMax - CMA-BDHH/6521/E0-6/TB05 (Qua	ad)	RFS - APXVAARR24	4_43-U-NA20 (Octo)			Ericsson - AIR32 KR	D901146-1_B66A_B2A	(Octo)	
Azimuth	90		90				90			
M. Tilt	-3		-3				-3			
Height	64		64				64			
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
Active Tech.	(U1900) (G1900)		N600 L700 L600	N600 L700 L600			L2100	L2100	L1900	L1900
Dark Tech.										
Restricted Tech.										
Decomm. Tech.		U2100								
E. Tilt	2		4	4			2	2	2	2
Cables	(7/8" Coax - 85 ft. (x2)) (Coax Jumper - 10 ft. (x2))	(7/8" Coax - 85 ft. (x2))	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)			Fiber Jumper - 10 ft.			
TMAs	Generic Twin Style 1A - PCS (AtAntenna)									
Diplexers / Combiners										
Radio			Radio 4449 B71+B85 (At Antenna)							
Sector Equipment										
Unconnected Equipment: Scope of Work: We were failing at 147% we Remove 6 coax lines to help	Scope of Work: We were failing at 147% we are planning to do a MOD. L1900-Capacity is pending. For L700 RRUS11 B12 were installed on the ground and LNX antennas. Leased for 18 coax lines. Remove 6 coax lines to help structural.									

Sector 2 (Proposed) view from behind											
Coverage Type	A - Outdoor Macro										
Antenna		1		2				3			
Antenna Model	Ericsson - AIR6449 B41 (Active Antenna - Massive MIMO)		RFS - APXVAARR24	4_43-U-NA20 (Octo)			Ericsson - AIR32 KR	D901146-1_B66A_B2A	A (Octo)		
Azimuth	90		90				90				
M. Tilt	3		-3				-3				
Height	64		64				64				
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	
Active Tech.	N2500 (L2500)	N2500 (L2500)	N600 L700 L600	N600 L700 L600	L1900 U1900	L1900 (U1900)	L2100	L2100	L1900 G1900	L1900 G1900	
Dark Tech.											
Restricted Tech.											
Decomm. Tech.							U2100				
E. Tilt	2	2	4	4	2	2	2	2	2	2	
Cables	(Fiber Jumper - 10 ft. (x2)	(Fiber Jumper - 10 ft. (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft.				
TMAs											
Diplexers / Combiners											
Radio			Radio 4449 B71+B85 (At Antenna)		Radio 4415 B25 (At Antenna)						
Sector Equipment											
Unconnected Equipment:											
Cable: 7/8" Coax - 85 ft.	Cable: 7/8" Coax - 85 ft.										
Scope of Work:											

	Sector 3 (Existing) view from behind										
Coverage Type	A - Outdoor Macro										
Antenna	1			2				3			
Antenna Model	CellMax - CMA-BDHH/6521/E0-6/TB05 (Qua	ad)	RFS - APXVAARR24	4_43-U-NA20 (Octo)			Ericsson - AIR32 KR	D901146-1_B66A_B2A	(Octo)		
Azimuth	(195)		195				195				
M. Tilt	2		2				2				
Height	64)		64				64				
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	
Active Tech.	(U1900) (G1900)		N600 L700 L600	N600 L700 L600			L2100	L2100	L1900	L1900	
Dark Tech.											
Restricted Tech.											
Decomm. Tech.		U2100									
E. Tilt	2		4	4			2	2	2	2	
Cables	(7/8" Coax - 85 ft. (x2)) (Coax Jumper - 10 ft. (x2))	(7/6" Coax - 85 ft. (x2))	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)			Fiber Jumper - 10 ft.				
TMAs	Generic Twin Style 1A - PCS (AtAntenna)										
Diplexers / Combiners											
Radio			Radio 4449 B71+B85 (At Antenna)								
Sector Equipment											
Unconnected Equipment: Scope of Work: We were failing at 147% we Remove 6 coax lines to help	Inconnected Equipment: icope of Work: We were failing at 147% we are planning to do a MOD. L1900-Capacity is pending. For L700 RRUS11 B12 were installed on the ground and LNX antennas. Leased for 18 coax lines. Remove 6 coax lines to help structural.										

Sector 3 (Proposed) view from behind										
Coverage Type	A - Outdoor Macro									
Antenna		1	2				3			
Antenna Model	(Ericsson - AIR6449 B41 (Active Antenna - Massive MIMO))		RFS - APXVAARR2	4_43-U-NA20 (Octo)			Ericsson - AIR32 KR	D901146-1_B66A_B2A	A (Octo)	
Azimuth	(195)		195				(195)			
M. Tilt	2		2				2			
Height	64		64				64			
Ports	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
Active Tech.	N2500 L2500	N2500 (L2500)	N600 L700 L600	N600 L700 L600	L1900 U1900	L1900 (U1900)	L2100	L2100	L1900 G1900	L1900 G1900
Dark Tech.										
Restricted Tech.										
Decomm. Tech.							U2100			
E. Tilt	2	2	4	4	2	2	2	2	2	2
Cables	(Fiber Jumper - 10 ft. (x2)	(Fiber Jumper - 10 ft. (x2))	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft. JUMPER 10 FT SUREFLEX 4.3- 10 TO 4.3-10 (x2)	Fiber Jumper - 10 ft.			
TMAs										
Diplexers / Combiners										
Radio			Radio 4449 B71+B85 (At Antenna)		Radio 4415 B25 (At Antenna)					
Sector Equipment										
Unconnected Equipment:	-	-								
Cable: 7/8" Coax - 85 ft.	Cable: 7/8" Coax - 85 ft.									
Scope of Work:										

Section	7.	- Power	Systems	Faui	inmen	t
Section	1.	- FOwer	Systems	Equi	pillell	ι

Existing Power Systems Equipment

----- This section is intentionally blank. -----

Proposed Power Systems Equipment

ASCE 7 Hazards Report

Address: No Address at This Location Standard:ASCE/SEI 7-16Risk Category:IISoil Class:

Elevation: 4697.53 ft (NAVD 88) Latitude: 41.176069 Longitude: -111.956727

Wind

Results:

Wind Speed:	103 Vmph
10-year MRI	74 Vmph
25-year MRI	80 Vmph
50-year MRI	84 Vmph
100-year MRI	89 Vmph
Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4
Date Accessed:	Mon Jul 15 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Ice

Results:

lce	e Thickness:	0.25 in.
Co	oncurrent Temperature:	15 F
Gu	ist Speed:	40 mph
Data So	ource:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Ac	cessed:	Mon Jul 15 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Snow

Results:

Elevation:	4697.5 ft
Data Source:	ASCE/SEI 7-16, Table 7.2-8
Date Accessed:	Mon Jul 15 2019

In "Case Study" areas, site-specific case studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale.

Ground snow load determination for such sites shall be based on an extreme value statistical analysis of data available in the vicinity of the site using a value with a 2 percent annual probability of being exceeded (50-year mean recurrence interval).

Values provided are ground snow loads. In areas designated "case study required," extreme local variations in ground snow loads preclude mapping at this scale. Site-specific case studies are required to establish ground snow loads at elevations not covered.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

REPORT UPDATED GEOTECHNICAL STUDY OGDEN TOWER SITE APPROXIMATELY 4700 SOUTH GLASMANN WAY OGDEN, UTAH

Submitted To:

Anderson Engineering Company, Inc. 2053 North Hillcrest Road Saratoga Springs, Utah 84045

Submitted By:

GSH Geotechnical, Inc. 473 West 4800 South Salt Lake City, Utah 84123

September 17, 2020

Job No. 2554-002-20

September 17, 2020 Job No. 2554-002-20

Mr. Ryan D. Eddy Anderson Engineering Company, Inc. 2053 North Hillcrest Road Saratoga Springs, Utah 84045

Mr. Eddy:

Re: Report Updated Geotechnical Study Ogden Tower Site Approximately 4700 South Glasmann Way Ogden, Utah

1. INTRODUCTION

1.1 GENERAL

This report presents the results of our updated geotechnical study performed at the site of the Ogden Tower Site located at approximately 4700 South Glasmann Way in Ogden, Utah. The general location of the site with respect to existing roadways and features, as of 2020, is presented on Figure 1, Vicinity Map. A plan view of the site with existing features and proposed development is presented on Figure 2, Site Plan. The approximate location of the boring drilled in conjunction with this study is also presented on Figure 2.

1.2 OBJECTIVES AND SCOPE

The objectives and scope of this study were planned in discussions between Mr. Ryan D. Eddy of Anderson Engineering Company, Inc. and Mr. Robert Gifford of GSH Geotechnical, Inc. (GSH).

In general, the objectives of this study were to:

- 1. Define and evaluate the subsurface soil and groundwater conditions.
- 2. Provide recommendations, parameters, foundations, and pavement information to be utilized in the design and construction of the proposed facility.

In accomplishing these objectives, our scope has included the following:

- 1. A field program consisting of the drilling, logging, and sampling of 1 boring to a depth of 31.0 feet.
- 2. A laboratory testing program.
- 3. An office program consisting of the correlation of available data, engineering analyses, and the preparation of this summary report.

1.3 AUTHORIZATION

Authorization was provided by returning a signed copy of the Professional Services Agreement No. 20-0723 dated July 13, 2020.

1.4 PROFESSIONAL STATEMENTS

Supporting data upon which our recommendations are based are presented in subsequent sections of this report. Recommendations presented herein are governed by the physical properties of the soils encountered in the exploration boring, projected groundwater conditions, and the layout and design data discussed in Section 2, Proposed Construction, of this report. If subsurface conditions other than those described in this report are encountered and/or if design and layout changes are implemented, GSH must be informed so that our recommendations can be reviewed and amended, if necessary.

Our professional services have been performed, our findings developed, and our recommendations prepared in accordance with generally accepted engineering principles and practices in this area at this time.

2. **PROPOSED CONSTRUCTION**

The project consists of retrofitting the existing tower with additional equipment. The foundation of the tower must be confirmed as adequate or redesigned to support the additional loads. The existing tower extends 68 feet above ground and is 17 inches in diameter. The depth and diameter of the existing foundation is unknown and must be confirmed prior to proper assessment of the foundation capacity. The retrofitted tower loads are anticipated to be approximately 20 kips (axial) and 8 kips (shear).

3. SITE INVESTIGATIONS

3.1 FIELD PROGRAM

In order to define and evaluate the subsurface soil and groundwater conditions at the site, 1 boring was completed near the existing tower location to a depth of approximately 31.0 feet below the

surface with a track-mounted drill rig equipped with hollow-stem augers. The approximate location of the boring drilled in conjunction with this study is presented on Figure 2. Additionally, an excavation, to a depth of 2.0 feet, was conducted at the base of the existing tower. The purpose of the excavation was to determine the type and size of the existing foundation. Photographic documentation of the excavation is presented in Attachment 1, Foundation Exploration.

The field portion of our study was performed under the direction of an experienced member of our geotechnical staff. During the course of drilling operations, samples of the typical soils encountered were obtained for subsequent laboratory testing and examination. The soils were classified in the field based upon visual and textural examination. These classifications have been supplemented by subsequent inspection and testing in our laboratory. A detailed graphical representation of the subsurface conditions encountered at Boring B-1 is presented on Figure 3, Boring Log. Soils were classified in accordance with the nomenclature described on Figure 4, Key to Boring Log (USCS).

A 3.0-inch outside diameter, 2.42-inch inside diameter (Dames & Moore), and a 2.0-inch outside diameter, 1.38-inch inside diameter drive sampler (SPT) were utilized at select locations and depths. The blow counts recorded on the boring log were those required to drive the sampler 12 inches with a 140-pound hammer dropping 30 inches.

Following completion of exploration operations, 1.25-inch diameter slotted PVC pipe was installed in the boring to provide a means of monitoring the groundwater fluctuations. The boring was backfilled with auger cuttings.

3.2 LABORATORY TESTING

3.2.1 General

In order to provide data necessary for our engineering analyses, a laboratory testing program was performed. The program included moisture, density, partial gradation, direct shear, and chemical tests. The following paragraphs describe the tests and summarize the test data.

3.2.2 Moisture and Density Tests

To provide index parameters and to correlate other test data, moisture and density tests were performed on selected samples. The results of these tests are presented on the boring log, Figure 3.

3.2.3 Partial Gradation Tests

To aid in classifying the granular soils, moisture and partial gradation tests were performed. Results of the tests are tabulated on the following page and on the boring log, Figure 3.

Boring No.	Depth (feet)	Percent Passing No. 200 Sieve	Moisture Content Percent	Soil Classification
B-1	25.0	35.9	22.9	SM
B-1	30.0	51.6	26.9	SM*

*Sample contained clay layers.

3.2.4 Direct Shear Test

Direct shear tests were performed on 2 in situ samples of the natural sand soils. During the direct shear test, the sample was loaded and saturated within 30 seconds after the load was applied. The results of the direct shear test are tabulated below:

Boring No.	Sample Depth (ft)	Unified Soils Classification	Moisture Content (percent)	Apparent Cohesion (psf)	Internal Friction Angle (degrees)
B-1	2.5	SM	11.2	0	43
B-1	5.0	SM	10.5	275	39

3.2.5 Chemical Tests

To determine if the site soils will react detrimentally with concrete, chemical tests were performed on a representative sample of the near-surface soil encountered at the site. The results of the chemical tests are tabulated below:

Boring	Depth	Soil	pН	Total Water-Soluble Sulfate
No.	(feet)	Classification		(mg/kg-dry)
B-1	2.5	SM	8.03	70.7

4. SITE CONDITIONS

4.1 SURFACE

The site consists of the existing utility tower located at approximately 4700 South Glasmann Way in Ogden, Utah. Site vegetation consists of sparse weeds and grasses throughout the immediate vicinity. The topography is relatively flat with a total relief of less than approximately 1 foot.

The site is bounded to the northwest by single-family residential structures in a forested area; to the east and southeast by a gravel access roadway with single-family residential structures beyond; and southwest by a reservoir.

4.2 SUBSURFACE SOIL AND GROUNDWATER

The following paragraphs provide generalized descriptions of the subsurface profiles and soil conditions encountered within the boring conducted during this study. As previously noted, soil conditions may vary in unexplored locations.

Boring B-1 consists primarily of silty fine sand to the maximum depth explored of 31.0 feet. The sand soils encountered are loose to medium dense, slightly moist to saturated, and brown in color. Layers of sandy clay and clayey sand up to 2 inches thick were encountered between 24.5 and 31.0 feet beneath the ground surface.

The natural sand and gravel soils are anticipated to exhibit relatively high strength and relatively low compressibility characteristics under the anticipated load range.

For a more detailed description of subsurface conditions, please refer to Figure 3, Boring Log.

Groundwater was not encountered during drilling operations

5. DISCUSSIONS AND RECOMMENDATIONS

5.1 SUMMARY OF FINDINGS

Investigations to determine the type of existing foundation were inconclusive. Dimensions of the existing foundation must be confirmed prior to determination of the foundations ability to support the proposed additional forces. The following discussion and recommendations, presented in Section 5.4, Drilled Pier Foundations, is a summary of the likely diameters and depths of the existing foundation. Assumptions have been made in order to determine the ultimate capacities, such as clean excavation, properly dewatered, depth, diameter, etc.

A new tower (if required) must be constructed according to the recommendations below.

The results of our analyses indicate the foundation for the tower may consist of drilled piers or enlarged spread footing (to resist overturning).

GSH recommends that the enlarged spread footing (if utilized) for the monopole be supported on a minimum 8 inches of relatively clean (less than 8 percent fines) structural fill overlying suitable natural soils.

Non-engineered fill soils may be present at the site due to the previous development. Loose/disturbed soils and non-engineered fills (if encountered) must be completely removed and replaced with granular structural fill within the footprint of the enclosure.

In the following sections, detailed discussions pertaining to on-site soil parameters for temporary excavations, utility trench backfill, drilled pier foundations, enlarged spread footing, and the geoseismic setting of the site are provided.

5.2 EARTHWORK

5.2.1 Site Preparation

Site preparation will consist of the stripping and removal of the surface vegetation/topsoil, loose or disturbed soils, non-engineered fill (if encountered), and any deleterious materials encountered extending a minimum of 4 feet beyond the enlarged spread footing foundation.

GSH recommends that the enlarged spread footing (if utilized) be supported on a minimum of 8 inches of relatively clean structural fill (washed gravel) with less than 8 percent fines. Subsequent to the above operations and prior to the placement of structural fill, concrete slabs, and/or drilled shafts, the exposed subgrade must be proof rolled by passing moderate-weight compaction equipment over the surface at least twice. If any loose, soft, or disturbed zones are encountered, they must be completely removed and replaced with granular structural fill. If additional removal required is greater than 2 feet, GSH must be notified to review conditions.

5.2.2 Structural Fill

Structural fill is defined as all fill which will ultimately be subjected to structural loadings, such as imposed by the pier and slab. Structural fill may be required as site grading fill, replacement fill below the enlarged spread footing, and potential backfill for utilities. All structural fill must be free of sod, rubbish, topsoil, frozen soil, and other deleterious materials.

Structural site grading fill is defined as fill placed over fairly large open areas to raise the overall site grade. For structural site grading fill, the maximum particle size should generally not exceed 4 inches; although, occasional larger particles, not exceeding 8 inches in diameter, may be incorporated if placed randomly in a manner such that "honeycombing" does not occur and the desired degree of compaction can be achieved. The maximum particle size within structural fill placed within confined areas should generally be restricted to 2 inches.

Imported granular soils shall consist of relatively well graded mixtures of sands and gravels containing less than 15 percent fines (clays/silts) and no more than 30 percent retained on the threequarter-inch sieve. Fine-grained soils are not recommended as structural fill. The 8 inches of clean soil directly below the shelter slab shall consist of a granular material with less than 8 percent fines (clays/silts).

Non-structural site grading fill is defined as all fill material not designated as structural fill or in structural areas and may consist of any cohesive or granular soils not containing excessive amounts of degradable material.

5.2.3 Fill Placement and Compaction

All structural fill shall be placed in lifts not exceeding 8 inches in loose thickness. Structural fills shall be compacted in accordance with the percent of the maximum dry density as determined by the AASHTO¹ T-180 (ASTM² D1557) compaction criteria in accordance with the following table:

Location	Total Fill Thickness (feet)	Minimum Percentage of Maximum Dry Density
Beneath an area extending a minimum 3 feet beyond the perimeter of the drilled pier, and enclosure	0 to 5	95
Site grading fill outside area defined above	0 to 5	90
Utility trench backfill below structural areas		96

Structural fills greater than 5 feet thick are not anticipated at the site.

Subsequent to stripping and prior to the placement of structural site grading fill, the subgrade shall be prepared as discussed in Section 5.2.1, Site Preparation, of this report. In confined areas, subgrade preparation should consist of the removal of all loose or disturbed soils.

Non-structural fill may be placed in lifts not exceeding 12 inches in loose thickness and compacted by passing construction, spreading, or hauling equipment over the surface at least twice.

5.2.4 General Excavations

The soils encountered within the boring consisted of silty sand. Temporary construction excavations in site soils, above the water table, not exceeding 4 feet, should be no steeper than one-half horizontal to one vertical (0.5H:1V). For excavations up to 8 feet, in site soils and above the water table, the slopes should be no steeper than one horizontal to one vertical (1H:1V). Excavations deeper than 8 feet (excluding the drilled pier) are not anticipated at the site. Open excavations encountering saturated or clean cohesionless soils may become difficult to maintain, requiring very flat sideslopes and/or shoring, bracing/dewatering as these soils will tend to flow into the excavation.

All excavations must be inspected periodically by qualified personnel. If any signs of instability or excessive sloughing are noted, immediate remedial action must be initiated.

¹ American Association of State Highway and Transportation Officials

² American Society for Testing and Materials

5.2.5 Utility Trenches

All utility trench backfill material below structurally loaded facilities (flatwork, etc.) shall be placed at the same density requirements established for structural fill. If the surface of the backfill becomes disturbed during the course of construction, the backfill shall be proof rolled and/or properly compacted prior to the construction of any exterior flatwork over a backfilled trench. Proof rolling shall be performed by passing moderately loaded rubber tire-mounted construction equipment uniformly over the surface at least twice. If excessively loose or soft areas are encountered during proof rolling, they shall be removed to a maximum depth of 2 feet below design finish grade and replaced with structural fill.

Fined-grained soils (clays/silts) are not recommended as trench backfill in structural areas.

5.3 ENLARGED SPREAD FOOTING

The results of our analysis indicate that a new tower may be supported upon an enlarged spread footing established upon suitable natural soils and/or structural fill extending to suitable natural soils. For design, the following parameters are provided:

Minimum Recommended Depth of Embedment for Frost Protection	- 30 inches
Minimum Recommended Depth of Embedment for Non-frost Conditions	- 15 inches
Minimum Recommended Width for Spread Footings	- 36 inches
Recommended Net Bearing Capacity for Real Load Conditions	- 2,500 pounds per square foot

The term "net bearing capacity" refers to the allowable pressure imposed by the portion of the structure located above lowest adjacent final grade. Therefore, the weight of the footing and backfill to lowest adjacent final grade need not be considered. Real loads are defined as the total of all dead plus frequently applied live loads. Total load includes all dead and live loads, including seismic and wind.

5.3.1 Installation

Under no circumstances shall the footing be installed upon non-engineered fills, loose or disturbed soils, topsoil, surface vegetation, root systems, rubbish, construction debris, or other deleterious materials. If unsuitable soils are encountered, they must be removed and replaced with compacted granular fill. If granular soils become loose or disturbed, they must be recompacted prior to pouring the concrete.

The width of structural replacement fill below footings should be equal to the width of the footing plus one foot for each foot of fill thickness.

5.3.2 Settlements

Based on column loadings, soil bearing capacities, and the foundation recommendations as discussed above, we expect settlements beneath the footing to be less than approximately one inch.

5.4 DRILLED PIER FOUNDATIONS

5.4.1 Design Parameters

The parameters and capacity of potential pier foundations are presented in the following sections. As stated above the dimensions of the existing foundation must be confirmed prior to determination of the foundations ability to support the proposed additional forces.

A new drilled concrete pier foundation (if required) may be used to support a new tower at the site. Additionally, we anticipate that drilled pier design may be governed by lateral loading and acceptable lateral deflections. Soil parameters presented in this report for lateral design were calculated utilizing the LPILE computer method. The primary parameter for evaluation of lateral pile and drilled pier capacity is the coefficient of lateral subgrade reaction (k).

In this report, recommended values for k are presented as k_{LPILE} for the different soil strata encountered within the boring. Recommended soil parameter values for the soils encountered in the boring log for lateral and vertical pier design are provided in the following tables:

Boring No.	Depth Range (feet)	Soil Type	Estimated Effective Unit Weight (pcf)	Estimated Cohesion (psf)	Estimated ø	Static k _{LPILE} Recommended (pci)
B-1	0-4.0	SM	120	0	43	25
B-1	4.0-8.0	SM	120	275	39	25
B-1	8.0-17.8	SM	120	275	39	90
B-1	17.8-31.0	SM	120	275	39	60

Average values for bearing capacity and side friction of the drilled pier may be taken from the table on the following page. These values are based on the existing soil conditions encountered within Boring B-1. Additionally, these values are based on a clean pier excavation.

Depth Range (feet)	Ultimate End-Bearing (psf)	Ultimate Skin Friction (psf)	Ultimate Uplift Friction (psf)
0-4.0	6,000	224	148
4.0-8.0	6,000	583	385
8.0-17.8	12,000	1,254	828
17.8-31.0	16,800	2,371	1,565

GSH performed a lateral analysis utilizing values in the table above for the potential diameters, of 12, 17, 18, and 24 inches, for the existing pier foundation or future pier foundation (if needed). Each diameter was analyzed for pier depths between 10 to 20 feet below the surface. <u>The analysis is based on a maximum lateral deflection of 1 inch</u>. A vertical load of 20,000 pounds was used in the calculations. A moment load at the pile head was not incorporated.

Pile Diameter (in)	Pile Depth (feet)	Ultimate Maximum Shear Load (lbs)	Maximum Moment in Pile (in-lbs)
	10	9,721	252,677
12	15	9,729	254,375
	20	9,716	253,733
	10	18,437	591,233
17	15	21,245	768,031
	20	21,092	760,282
	10	19,180	621,671
18	15	22,883	855,616
	20	22,710	847,699
	10	22,871	774,602
24	15	39,815	1,918,325
	20	41,471	2,121,577

5.4.2 Installation

The pier excavation shall be inspected to ensure it is clean of loose soil that may slough into the excavation. The pier excavation should have a straight smooth side and not be allowed to flare near the ground surface. The excavation shall be inspected for irregularities that may affect the pier performance to determine if the excavation meets the structural engineer's design tolerances. The pier should be reinforced its entire length. Concrete shall be placed immediately following drilling to reduce the safety risk of the open excavation and additional sloughing following drying of the sand soils.

Concrete shall be pumped or tremmied to the bottom of the excavation and not allowed to free-fall more than 3 feet. Placement of the concrete shall continue to be pumped until all floating water/cement paste is expelled and coarse aggregate is visible at the surface. The volume of concrete shall be compared with planned pier volume.

5.4.3 Settlements

Post-static settlements of drilled piers designed with a minimum embedment depth of 10 to 20 feet are projected to be less than approximately 1 inch.

5.5 LATERAL RESISTANCE

Lateral loads imposed upon foundations due to wind or seismic forces may be resisted by the development of passive earth pressures and friction between the base of the footings and the supporting soils. In determining frictional resistance, a coefficient of friction of 0.40 may be utilized for natural granular soils or granular structural fill. Passive resistance provided by properly placed and compacted granular structural fill above the water table may be considered equivalent to a fluid with a density of 300 pounds per cubic foot. Below the water table, this granular soil should be considered equivalent to a fluid with a density of 150 pounds per cubic foot.

A combination of passive earth resistance and friction may be utilized provided that the friction component of the total is divided by 1.5.

5.6 CEMENT TYPES

The laboratory tests indicate that the natural soils tested contain a negligible amount of watersoluble sulfates. Based on our test results, concrete in contact with the on-site soil will have a low potential for sulfate reaction (ACI 318, Table 4.3.1). Therefore, all concrete which will be in contact with the site soils may be prepared using Type I or IA cement.

5.7 GEOSEISMIC SETTING

5.7.1 General

Utah municipalities have adopted the International Building Code (IBC) 2018. The IBC 2018 code refers to ASCE 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE 7-16) determines the seismic hazard for a site based upon mapping of bedrock accelerations prepared by the United States Geologic Survey (USGS) and the soil site class. The USGS values are presented on maps incorporated into the IBC code and are also available based on latitude and longitude coordinates (grid points).

5.7.2 Faulting

Based on our review of available literature, no active faults pass through or immediately adjacent to the site. The nearest active mapped fault consists of the Weber Section of the Wasatch Fault zone, located about 1.1 mile to the northeast of the site.

5.7.3 Site Class

For dynamic structural analysis, the Site Class D – Default Soil Profile as defined in Chapter 20 of ASCE 7-16 (per Section 1613.3.2, Site Class Definitions, of IBC 2018) can be utilized.

5.7.4 Ground Motions

The IBC 2018 code is based on USGS mapping, which provides values of short and long period accelerations for average bedrock values for the Western United States and must be corrected for local soil conditions. The following table summarizes the peak ground and short and long period accelerations for the MCE event and incorporates the appropriate soil amplification factor for a Site Class D – Default* Soil Profile. Based on the site latitude and longitude (41.1761 degrees north and 111.9567 degrees west, respectively) and Risk Category I, the values for this site are tabulated below:

Spectral Acceleration Value, T	Bedrock Boundary [mapped values] (% g)	Site Coefficient	Site Class D - Default* [adjusted for site class effects] (% g)	Design Values** (% g)
0.2 Seconds (Short Period Acceleration)	S _S = 136.2	$F_a = 1.200$	S _{MS} = 163.4	S _{DS} = 109.0
1.0 Second (Long Period Acceleration)	$S_1 = 49.6$	$F_v = 1.804$	$S_{M1} = 89.5$	$S_{D1} = 59.7$

* If a measured site class in accordance with IBC 2018/ ASCE 7-16 is beneficial based on the project structural engineers review, please contact GSH for additional options for obtaining this measured site class.

**IBC 2018/ASCE 7-16 may require a site-specific study based on the project structural engineer's evaluation and recommendations. If needed, GSH can provide additional information and analysis including a complete site-specific study in accordance with chapter 21 of ASCE 7-16.

5.7.5 Liquefaction

The site is located in an area that has been identified by the Utah Geological Survey (UGS) as being a "moderate to low" liquefaction potential zone. Liquefaction is defined as the condition when saturated, loose, granular soils lose their support capabilities because of excessive pore water

pressure, which develops during a seismic event. Clayey soils, even if saturated, will generally not liquefy during a major seismic event.

Due to the density of the granular soils and the lack of groundwater, liquefaction is not anticipated to occur within the soils encountered at this site.

5.8 SITE VISITS

If the existing tower does not meet the parameters above and a new tower is to be constructed, GSH must verify that all topsoil/disturbed soils and any other unsuitable soils have been removed, that non-engineered fills (if encountered) have been removed and/or properly prepared, and that suitable soils have been encountered prior to placing site grading fills, footings, slabs, and pavements. Additionally, GSH must observe fill placement and verify in-place moisture content and density of fill materials placed at the site.

5.9 **CLOSURE**

If you have any questions or would like to discuss these items further, please feel free to contact us at (801) 685-9190.

Respectfully submitted,

GSH Geotechnical, Inc.

Dion A Obermeyer

DAO/ADS:jlh

Figure	1,	Vicinity Map
Figure	2,	Site Plan
Figure	3,	Boring Log
Figure	4,	Key to Boring Log (USCS)
	Figure Figure Figure Figure	Figure1,Figure2,Figure3,Figure4,

Attachment 1, Foundation Exploration

Addressee (email)

Reviewed by:

LAND Alan D. Spilker, P.E

State of Utah No. 334228 President/Senior Geotechnical Engineer

Staff Geologist

ANDERSON ENGINEERING COMPANY INC JOB NO. 2554-002-20

REFERENCE: ALL TRAILS - NATIONAL GEOGRAPHIC TERRAIN DATED 2020

ANDERSON ENGINEERING COMPANY INC JOB NO. 2554-002-20

REFERENCE: ADAPTED FROM GOOGLE EARTH DATED 18 JULY 2019

	BORING LOG Page: 1 of 2								BOF	RIN	G:	B-1
CLI	ENT:	Anderson Engineering Company,	Inc.	PRO	DJEC	T NU	MBE	R: 25	554-0	02-20)	
PRO	JEC.	: Ogden Tower Site		DA	TE ST	FAR7	TED:	8/28/	20	D	ATE	FINISHED: 8/28/20
LOC	ATI	DN: Approximately 4700 South G	lasmann Way, Ogden, Utah								GS	SH FIELD REP.: HB
DRILLING METHOD/EQUIPMENT: 3-3/4" ID Hollow-Stem Auger HAMMER: Automatic WEIGHT: 140 lbs DROP: 30												
GRO	DUNI	DWATER DEPTH: 17.8' (9/2/20)		_	1	1	1		ī			ELEVATION:
WATER LEVEL	U S C S	DESCRI	DEPTH (FT.)	BLOW COUNT	SAMPLE SYMBOL	MOISTURE (%)	DRY DENSITY (PCF)	% PASSSING 200	(%) TIMIT (%)	PLASTICITY INDEX	REMARKS	
	SM	Ground S	Surface	-0								elightly mojet
	5141	brown										loose
				Ī	18							
				F								
				F								
				-5	16							
					10							
				Ē								
				ŀ								
				-								
				-10								medium dense
					27	Ń	7.1	94				
				Γ								
				F								
				F								
1				ŀ								
				_15	<u> </u>							moist
1		grades with trace clay			37		25.4	98				
1				f								
				ł								
–				\mathbf{F}								saturated
				ļ								
1												
1				\int^{20}	39		25.9	95				
				ł								
1				ł								
1				+								
1					<u> </u>	╞┲┲╴						
1				-25	15		22.4		35.9			

See Subsurface Conditions section in the report for additional information.

BORING LOG Page: 2 of 2								OR	RIN	G:	B-1
VT:	Anderson Engineering Company,	Inc.	PRC	JECT	ΓNU	MBE	R: 25	554-0	02-20)	
ECT	: Ogden Tower Site	DAT	TE ST	CART	ED:	8/28/	20	D.	ATE	FINISHED: 8/28/20	
U S C S	DESCRIF	TION	DEPTH (FT.)	BLOW COUNT	SAMPLE SYMBOL	MOISTURE (%)	DRY DENSITY (PCF	% PASSSING 200	LIQUID LIMIT (%)	PLASTICITY INDEX	REMARKS
_			-25	15		22.4		35.9			
	grades with occasional layers of fine	-		11							
	grades with occasional layers of clay	vey fine sand up to 2" thick	-30	14		35.9		51.6			
	End of Exploration at 31.0'. Installed 1.25" diameter slotted PVC p	ipe to 31.0'.	-35 -40 -45 -50								
		End of Exploration at 31.0°. Installed 1.25" diameter slotted PVC p	Description BORRING I Page: 2 of 2 Page: 2 of 2 Page: 2 of 2 Page: 2 of 2 CT: Ogden Tower Site DESCRIPTION Description DESCRIPTION Set Image: Set 2 of 2 Image: Set 2 of 2 DESCRIPTION Set Image: Set 2 of 2 Image: Set 2 of 2 DESCRIPTION Set 2 of 2 DESCRIPTION Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 DESCRIPTION Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 DESCRIPTION Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 of 2 Image: Set 2 Image: Set 2 of 2 Image: Set 2 Image: Set 2 Image:	Description BORRING LO Page: 2 of 2 PRO CCT: Ogden Tower Site DAT D DESCRIPTION FRO D DESCRIPTION 25 grades with occasional layers of fine sandy clay up to 2" thick 30 End of Exploration at 31.0°. 70 Installed 1.25" diameter slotted PVC pipe to 31.0'. -35 -40 -40 -41 -45	Description BORING LOG Project Project T: Anderson Engineering Company, Inc. PROJECT CT: Ogden Tower Site DATE ST J DESCRIPTION Image: 2 of 2 J DESCRIPTION Image: 2 of 2 grades with occasional layers of fine sandy clay up to 2" thick 30 14 End of Exploration at 31.0" Installed 1.25" diameter slotted PVC pipe to 31.0'. -35 Installed 1.25" diameter slotted PVC pipe to 31.0'. -40 -41	Description BORING LOG Page: 2 of 2 PROJECT NU T: Anderson Engineering Company, Inc. PROJECT NU CT: Ogden Tower Site DATE START DESCRIPTION University Gamma 13 grades with occasional layers of fine sandy clay up to 2" thick 30 grades with occasional layers of clayey fine sand up to 2" thick 30 Find of Exploration at 31.0'. 14 Installed 1.25" diameter slotted PVC pipe to 31.0'. 40 40 40 41 40 45 50	Provide the second seco	Description BORING LOG Page: 2 of 2 BROME COMPANY Product NUMBER: 22 T: Anderson Engineering Company, Inc. PROJECT NUMBER: 22 DATE STARTED: 8/28/ CT: Ogden Tower Site DATE STARTED: 8/28/ DATE STARTED: 8/28/ J DESCRIPTION (1) U U/00/00/18/ U/00/00/1	Description BORRING LOG BOR Page: 2 of 2 PROJECT NUMBER: 25540 PROJECT NUMBER: 25540 CT: Orden Tower Site DATE STARTED: S2820 Image: 2000 DESCRIPTION Image: 2000 Image: 2000 Image: 2000 DESCRIPTION Image: 2000 Image: 2000 Image: 2000 Image: 2000 Image: 2000 DESCRIPTION Image: 2000 Image: 2000 Image: 2000 Image: 2000 Image: 2000 DESCRIPTION Image: 2000 Image: 2	Description BORRING LOG Page: 2 of 2 BORRING T: Anderson Engineering Company, Inc. PROJECT NUMBER: 2554-002-00 D CT: Ogden Tower Site DATE STARTED: 828-20 D J DESCRIPTION III ON UN	Description BORNING LOG Page: 2 of 2 BORNING:

See Subsurface Conditions section in the report for additional information.

CLII PRO PRO	CLIENT: Anderson Engineering Company, Inc. ROJECT: Ogden Tower Site PROJECT NUMBER: 2554-002-20									Kŀ	EY	ТС) B	OR	RIN	G LOG		
I KO	JLCIN	CIVIDL	.rc. 2554-002-2	20					1			1						
WATER LEVEL	U S C S	U DESCRIPTION (1.3) S C S								SAMPLE SYMBOL	MOISTURE (%)	DRY DENSITY (PCF)	% PASSSING 200	LIQUID LIMIT (%)	PLASTICITY INDEX	REMARKS		
1	2			3	COLUM	N DI	FSCRIP	(4) ГІО	5 NS	6	7	8	9	10	(1)	(12)		
	Water I	Level:	Depth to meas	sured groundwate	er table. See	10 III	Liquid Lir	nit (%	<u> 5</u> <u> </u>	Vater	conte	nt at v	which	a soil	chan	ges from plastic to		
	symbol	below. (Unifie	d Soil Classifi	ication System) I	Description	•	liquid beha Plasticity l	vior. I ndex	(%)	: Ran	ge of	water	conte	ent at	whicl	h a soil exhibits		
(2)	of soils	encoun	tered; typical	symbols are expl	lained below.	(11)	plastic prop	pertie	s.					1.	1 .11			
3	Descrip include	<u>tion:</u> L color, 1	Description of moisture, grain	material encount n size, density/co	ered; may nsistency,	(12)	Remarks: made by di	Com tiller	ments or fie	s and o ld per	obser sonne	vatior el. Ma	ns rega ay inc	arding lude o	g drill other	ing or sampling field and laboratory		
4	Depth (<u>ft.):</u> De	epth in feet be	low the ground s	urface.		test results	using	g the f	follow	ving a	bbrev	iation	is:				
5	Blow Co	ount: 1	Number of blo	ws to advance sa	mpler 12"	i	CEMENTATIO	N:				MO	DIFIER	S: MO	ISTURE	CONTENT (FIELD TEST):		
6	Sample	Symbolist 6	, using a 140-1 <u>ol:</u> Type of so	il sample collect	ed at depth		Weakly: Crur handling or sli	nbles o ight fin	or break ger pre	s with ssure.			Frace <5%	Dry dry	to the	ence of moisture, dusty, touch.		
0	interval Moistur	shown e (%):	; sampler sym	bols are explaine	d below. measured in		Moderately: considerable f	Crumb inger p	les or b ressure	oreaks v e.	vith		Some 5-12%	Mo	ist: Da	mp but no visible water.		
(7)	laborato	ry; exp	pressed as perc	entage of drywe	ight of		Strongly: Wil	l not ci	crumble or break with With Saturated: Visible water, usually									
8	laborato	nsity (j ry; exp	pcf): The dens pressed in pour	nds per cubic foo	sured in it.		niiger pressuit						> 12%	son	below	water table.		
9	<u>% Passi</u> No. 200	<u>ing 20(</u> sieve;	D: Fines content expressed as a	nt of soils sample a percentage.	e passing a		Descriptions and results. Descript advanced; they a	l stratum tions on re not w	n lines a the logs /arranteo	re interp apply o to be re	retive; fi nly at th epresent:	eld desc e specifi ative of s	riptions c boring subsurfa	may hav locatior ce condi	e been n is and at tions at o	nodified to reflect lab test the time the borings were other locations or times.		
		MA	JOR DIVIS	IONS	USCS SVMBOLS		TYPIC	AL	DESCRIPTIONS STRATIFICATION:									
S)				CLEAN GRAVELS	GW	Well-O	Graded Gravels	s, Grav	vel-Sand Mixtures, Little or No Fines ravel-Sand Mixtures, Little or No 1-Silt Mixtures						Sea	um up to 1/8" /er 1/8" to 12"		
USC			GRAVELS More than 50%	(little or no fines)	GP	Poorly Fines	-Graded Grave	els, Gra							Occasional: One or less per 6" of thickness Numerous; More than one per 6" of thickness			
M ()	COAF	RSE-	of coarse fraction retained	GRAVELS WITH FINES	GM	Silty C	Gravels, Gravel	-Sand-										
STE	GRAI SOI	NED LS	on No. 4 sieve.	(appreciable amount of fines)	GC	Clayey	/ Gravels, Grav	vel-Sar	and-Clay Mixtures TYPICAL SA							CAL SAMPLER		
ΝS	More than material i	50% of s larger	SANDS	CLEAN SANDS	SW	Gravel	lly Sands, Little or No Fines						GRAPHIC SYMBOLS					
IOL	than N sieve s	lo. 200 size.	More than 50% of coarse	(little or no fines)	SP	Poorly	Poorly-Graded Sands, Gravelly Sands, Little or No Fines									Bulk/Bag Sample		
CAJ			fraction passing through No. 4	SANDS WITH FINES	SM	Silty S	ands, Sand-Sil	t Mixt	tures							Standard Penetration Split Spoon Sampler		
SIFI			sieve.	(appreciable amount of fines)	SC	Clayey	/ Sands, Sand-	Clay M	lixture	5						Rock Core		
AS					ML	Inorga Clayey	nic Silts and V Fine Sands or	'ery Fii r Claye	ne Sano y Silts	ls, Roci with Sl	k Flour light Pl	, Silty asticity	or		Ζ	No Recovery		
L CI	FIN GRAI	E- NED	SILTS AND C Limit less	CL	Inorga Sandy	nic Clays of L Clays, Silty C	ow to M lays, L	Mediur ean Cla	n Plasti ays	city, G	ravelly	Clays,		X	3.25" OD, 2.42" ID D&M Sampler			
SOL	SOI More the	LS			OL	Organ	ic Silts and Or	ganic S	Silty Cl	ays o f	Low P	asticity			X	3.0" OD, 2.42" ID D&M Sampler		
ΕD	material is	smaller	SILTS AND C	CLAYS Liquid	MH	Inorga Soils	nıc Sılts, Mica	cious c	or Diatomacious Fine Sand or Silty						Ī	California Sampler		
NIF	than No. 200 sieve size.		Limit greater	СН	Inorga	nic Clays of H	igh Pla	lasticity, Fat Clays							Thin Wall			
Ū					OH	Organ	ic Silts and Or	ganic C	Clays of Medium to High Plasticity						WATER SYMPON			
	E E	HGHI	Y ORGANI	C SOILS	PT	Peat, Humus, Swamp Soils with High Organic Contents					Water Level							
Note: Dual Symbols are used to indicate borderline soil classifications.																		

FIGURE 4

Attachment 1 – Foundation Exploration

September 25, 2020 Job No. 2554-002-20

Mr. Ryan D. Eddy Anderson Engineering Company, Inc. 2053 North Hillcrest Road Saratoga Springs, Utah 84045

Mr. Eddy:

Re: Letter – Addendum #1 Tower Foundation Update Ogden Tower Site Approximately 4700 South Glasmann Way Ogden, Utah

Introduction

This letter serves as an addendum to the geotechnical study completed by GSH for the abovementioned site dated September 17, 2020¹. GSH was notified by Mr. Ryan Eddy of Anderson Engineering Company, Inc. that the foundation of the cell tower located at the above-referenced site may be a driven steel pipe pile.

Steel Pipe Pile Foundation

As stated in the previously referenced report, investigations to determine the type of existing foundation were inconclusive. Dimensions of the existing foundation must be confirmed prior to determination of the foundation's ability to support the proposed additional forces. The following parameters for the potentially existing steel pipe pile foundation are based on a 0.1875-inch pipe wall thickness and a diameter of 17-inch diameter steel circular pipe pile. Assumptions have been made in order to determine the ultimate capacities, such as properly installed, etc.

GSH performed a lateral analysis utilizing the soil values presented in Section 5.4, Drilled Pier Foundations, of the above-referenced report. The 0.1875-inch pipe wall thickness and 17-inch diameter was analyzed for pier depths between 10 to 20 feet below the surface. <u>The analysis is based on a maximum lateral deflection of 1 inch</u>. A vertical load of 20,000 pounds was used in the calculations. A moment load at the pile head was not incorporated.

¹ "Report, Updated Geotechnical Study, Ogden Tower Site, Approximately 4700 South Glasmann Way, Ogden, Utah." GSH Job No. 2554-002-20.

Steel Pipe Pile Diameter (in)	Steel Pipe Pile Wall Thickness (in)	Steel Pipe Pile Depth (feet)	Ultimate Maximum Shear Load (lbs)	Maximum Moment in Pile (in-lbs)
		10	20,770	689,919
17	0.1875	15	29,524	1,244,170
		20	29,478	1,253,154

Closure

If you have any questions or would like to discuss these items further, please feel free to contact us at 801.685.9190.

Respectfully submitted,

GSH Geotechnical, Inc.

Dion A. Obermeyer, Staff Geologist

DAO/ADS:jlh

Addressee (email)

cc: Mr. Corey Anderson (email) Anderson Engineering Company, Inc.

Reviewed by:

Alan D. Spilker, P.E. State of Utah No. 334228 President/Senior Geotechnical Engineer

FESSIA

No, 334228 ALAN D,