

Project:

Powder Mountain Lot 80

8483 E. Spring Park Summit Powder Mountain Resort Weber County, UT

Project Number: 9085A

Prepared For:

Scandinavian

6410 N. Business Park Loop Rd. Unit E Park City, Utah 84098

Date:

November 2019

Prepared By:

Alex Hawkins, PE

Project Manager:

David A. Jenkins, PE, SE

Ensign Engineering

45 West 10000 South, Suite 500

Sandy, Utah 84070

P: (801) 255-0529

F: (801) 255-4449

ensigneng.com

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

GENERAL PROJECT INFORMATION

Client: Scandinavian

Project: Powder Mountain Lot 80

Project Address: 8483 E. Spring Park

Summit Powder Mountain Resort

Latitude: 41.363 North (Approximate)
Longitude: -111.747 West (Approximate)

Elevation above Sea Level: 8,557 ft

PROJECT DESCRIPTION

Provide structural calculations for Scandinavian Log Home

GENERAL DESIGN CRITERIA

Structure Type:	Structure Type	Building Height, h _n (ft)	28
Design Code:	2018 IBC	Number of Stories	2
Risk Category:	II	Light-frame Construction?	No

DESIGN LOADS & SERVICEABILITY REQUIREMENTS

Dead Loads:			
-Roof DL:			
	Total Roof DL:	15	psf
-Floor DL:			
	Total Floor DL:	20	psf
-Wall DL:			
	Exterior Walls:	20	psf
Interior	Bearing Walls:	15	psf
	Log Walls:	30	nsf

<u> </u>		
Surface Roughness Category:	С	
Roof Exposure:	Partially Expo	osed
Thermal Condition:	All other structures	
Roof Surface:	Non-Slippery	(Rough)
Obstructed?	No	
Roof Pitch	1	/12
Roof Angle, θ	4.8	-
Ground Snow Load, p_g :	384	psf
Exposure Factor, C _e :	1.00	
Thermal Factor, C.:	1.00	

 $\begin{array}{c|c} Thermal \ Factor, \ C_{i}: & 1.00 \\ Importance \ Factor, \ I_{s}: & 1.00 \\ Slope \ Factor, \ C_{s}: & 1.00 \\ \hline Minimum \ Roof \ Snow \ Load, \ p_{m}: & 20 \\ \end{array} \text{psf}$

Flat Roof Snow Load, p_f: 269 psf (Balanced)
Sloped Roof Snow Load, p_s: 269 psf (Balanced)

Seismic Snow Load, p_{f,seismic}: ______psf

Wind Loads:

Snow Loads:

Basic Wind Speed, V:	104	mph (3-second gust)
ASD Wind Speed, V_{asd} :	81	mph (3-second gust)
Exposure:	С	

Seismic Loads:

S _S :	0.802	g
S ₁ :	0.277	g
Site Soil Class:	С	
Importance Factor, I_E :	1.00	

Deflection Limits:		Total Load	Live Load
Roof:	L/	240	360
Floor:	L/	360	480
Horizontal:	L/		240

Live Loads:

Roof Live:	20	psf
Floor Live:	40	psf
Main Floor Corridor / Stair:	40	psf
Balconies:	60	psf

Rain Loads:

Rain Intensity, I (in/hr): 1.5

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

FOUNDATION CRITERIA & SPECIFICATIONS

Geotechnical Report: Company: AGEC

Date: July 12, 2019

Report / Project Number: 03092-001

Contact: David A. Glass, P.E.

Allowable Bearing Pressure: 2,800 psf

Allowable Bearing Increase for Wind & Seismic Loads: 1.33

Increase for Dynamic Static Loading Loading Passive Pressure: 375 -40.8 pcf Active Pressure: 41.7 15.1 pcf At Rest Pressure: 55 22.5 pcf

Coefficient of Friction, µ: 0.48

Foundation Type:

Footing Type: Concrete Spread Footing

Min. Depth to Frost: 42 in

MATERIAL SPECIFICATIONS

CONCRETE & REINFORCING STEEL SPECIFICATIONS:

Concrete Strength, f 'c:

Footings: 3,000 psi (As allowed by Utah State Code Amendment)

Concrete Walls: 4,500 psi (Buried foundation walls can be 3000 psi as allowed by

Utah State Code Amendment)

 Grade Beams:
 4,000 psi

 Slab on Grade:
 4,000 psi

 Bearing/Shear Walls:
 4,000 psi

Deformed Reinforcing Bars: ASTM A615 Grade 60

ASTM A706 Grade 60 Weldable Rebar is to be used where welds are

specified on contract documents

Welded Wire Fabric: ASTM A185 - Flat sheets, not rolls

STEEL FRAMING SPECIFICATIONS

Structural Steel: W-Shape: ASTM A992, $F_v = 50$ ksi

Tubing: ASTM A500, Grade B, $F_v = 46$ ksi

Channels, Plates and Angles: ASTM A36, F_y = 36 ksi

Pipe: ASTM A53, Grade B, $F_y = 35$ ksi

Machine Bolts: ASTM A307 High-strength Bolts: ASTM A325 or A490

Welds: E70XX Electrodes, Comply with AWS D1.1

Page 4 of 81

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	
-	

WOOD FRAMING SPECIFICATIONS

Unless noted otherwise, the following species and grades of lumber shall be used.

Sawn Lumber: Species: Douglas Fir-Larch (North)

2x4 studs up to 8'-0" long: Stud Grade 2x4 studs over 8'-0" long: Grade #2 Other studs: Grade #2

Posts: Grade #1
Joists: Grade #2
Beams: Grade #2
Headers: Grade #2
Subpurlins: Grade #2
Purlins: Grade #2

Glue Laminated Beams: Species: Douglas Fir-Larch (North)

Simple Spans: 24F-V4 Continuous Spans: 24F-V8

Sheathing: APA Rated OSB

Framing Hardware: Simpson Strong-Tie Connectors

Structural Nails: Common Wire Type (unless noted otherwise)

Bolts in Wood: ASTM A307

Checked By: DAJ

SNOW DRIFT ANALYSIS - DRIFTS DUE TO ADJACENT STRUCTURES

RAIVIF		
CHAPTER 7, ASCE 7-16		IBC 2018 / ASCE 7-16
	Design Parameters	
Surface Roughness Category	С	
Roof Exposure	Partially Exposed	
Thermal Conditions	All other structures	
Roof Surface	Non-Slippery (Rough)	
Obstructed?	No	
Roof Pitch	1 /12	
Roof Angle, θ	4.8	-
Snow Drift Analysis Required?	Yes	-

Ground Snow Load, pg (psf)	384	Utah Snow Load Study
Exposure Factor, C _e	1.00	Table 7.3-1
Thermal Factor, C _t	1.00	Table 7.3-2
Importance Factor, I _s	1.00	Table 1.5-2
Slope Factor, C _s :	1.00	Figure 7.4-1
Flat Roof Snow Load, pf (psf)	269	Equation 7.3-1
Sloped Snow Load, p _s (psf):	269	Equation 7.4-1

Snow Density, γ (pcf)	30.0	Equation 7.7-1
Balanced Snow Load Height, h _b (ft)	8.96	p_f/γ
Horizontal Separation, s (ft)	0.0	
Vertical Separation, h (ft)	9.0	
Length of Upper Roof, L_u (ft)	27.5	
Length of Lower Roof, L_L (ft)	27.0	

Snow Drift Analysis

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

SNOW DRIFT ANALYSIS - DRIFTS DUE TO ADJACENT STRUCTURES

	IBC 2018 / ASCE 7-16
Design Parameters	_
С	
Partially Exposed	
All other structures	
Non-Slippery (Rough)	
No	
1 /12	
4.8	
Yes	
	C Partially Exposed All other structures Non-Slippery (Rough) No 1 /12 4.8

Ground Snow Load, pg (psf)	384	Utah Snow Load Study
Exposure Factor, C _e	1.00	Table 7.3-1
Thermal Factor, C _t	1.00	Table 7.3-2
Importance Factor, I _s	1.00	Table 1.5-2
Slope Factor, C _s :	1.00	Figure 7.4-1
Flat Roof Snow Load, pf (psf)	269	Equation 7.3-1
Sloped Snow Load, ps (psf):	269	Equation 7.4-1

Snow Density, γ (pcf)	30.0	Equation 7.7-1
Balanced Snow Load Height, h _b (ft)	8.96	p_f/γ
Horizontal Separation, s (ft)	0.0	
Vertical Separation, h (ft)	13.0	
Length of Upper Roof, L _u (ft)	45.0	
Length of Lower Roof, L_L (ft)	6.5	

Snow Drift Analysis

(Aerodynamic Shade) Region, Leeward Drift on Lower Roof; Drift Length Is the Smaller of (6H - S) and $6H_D$

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

SEISMIC FORCE ANALYSIS - EQUIVALENT LATERAL FORCE PROCEDURE

CHAPTER 12, ASCE 7-16 IBC 2018 / ASCE 7-16								
Design Parameters								
Risk Category	II	Table 1604.5	Structure Type A	All other stru	ctural systems			
Importance Factor, I_E	1.00	Table 1.5-2	T ₀ (sec)	0.086	Section 11.4.6			
			T _S (sec)	0.432	Section 11.4.6			
S _S (g)	0.802	Mapped	T _L (sec)	8	Section 11.4.6			
S ₁ (g)	0.277	Mapped	S _a (g)	N/A	if T <t<sub>0 (Equation 11.4-5)</t<sub>			
Site Class	С	Geotech Report	S _a (g)	0.642	$T_0 < T < T_S$ (Section 11.4-6)			
Fa	1.20	Table 1613.2.3(1)	S _a (g)	N/A	T_S < T < T_L (Equation 11.4-7)			
F _v	1.50	Table 1613.2.3(2)	C_{t}	0.02	Table 12.8-2			
S _{MS} (g)	0.962	FaSs	x	0.75	Table 12.8-2			
S _{M1} (g)	0.416	$F_{v}S_{1}$	T _a (sec)	0.243	Equation 12.8-7			
S _{DS} (g)	0.642	2/3(S _{MS})	Response Modification Factor, R	2.5	Table 12.2-1			
S _{D1} (g)	0.277	2/3(S _{M1})	Overstrength Factor, Ω_0	2.5	Table 12.2-1			
Seismic Design Category	D	Table 1613.2.5(1,2)	$C_{S,Calculated}$	0.257	Equation 12.8-2			
Building Height, h _n (ft)	28		C _{S MAX}	0.683	Equation 12.8-3 & 12.8-4			
Number of Stories	2		C _{S MIN}	0.028	Equation 12.8-5 & 12.8-6			
Light-frame Construction?	No		C _s	0.257	Section 12.8.1.1			

Vertical Distribution of Seismic Forces								
Component	Unit Weight	Area	Weight, w _i	Elevation, h _i	w _i h _i ^k	Fi	0.7F _i	
Component	(psf)	(ft ²)	(kips)	(ft)	(kip-ft)	(kips)	(kips)	
Roof Level:			-		-	-	-	
Roof + Seismic Snow	69	2,878	197.89	24	4,749.39	58.79	41.16	
Loft Roof + Seismic Snow	69	674	46.34	26	1,204.95	14.92	10.44	
Walls	30	2,257	67.70	24	1,624.68	20.11	14.08	
			-		-	-	-	
			-		-	-	-	
Main Level:			-		-	-	-	
Level 3 Floor	20	2,992	59.84	10	598.40	7.41	5.19	
Walls	30	1,460	43.80	10	438.00	5.42	3.80	
			-		-	-	-	
			-		-	-	-	
			-		-	-	-	
		Σw_i	416	Σw _i h _i ^k	8,615	V _x (kips)	106.65	
Notes:				k	1	0.7V _x (kips)	74.66	

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

SEISMIC FORCE ANALYSIS - DIAPHRAGM FORCES

CHAPTER 12, ASCE 7-16					IBC 2018 / ASCE 7-16		
Design Parameters							
Risk Category	II	Table 1604.5	S _{DS} (g)	0.642	2/3(S _{MS})		
S _S (g)	0.802	Mapped	S _{D1} (g)	0.277	2/3(S _{M1})		
S ₁ (g)	0.277	Mapped	Seismic Design Category	D	Table 1613.2.5(1,2)		
Site Class	С	Geotech Report	Importance Factor, I _E	1.00	Table 1.5-2		

	Diaphragm Design Forces								
Level	Strength Level F _i (k)	Sum F _i (k)	w _{px} (k)	Sum w _i (k)	F _{px} (k) Eq. 12.10-1	F _{px,min} (k) Eg. 12.10-2	F _{px,max} (k) Eq. 12.10-3	LRFD: F _{px,design} (k)	Scale Factor F _{px} / F _x
					,		,		
Roof	97.71	97.7	311.93	311.9	97.7	40.0	80.1	80.1	1.00
Main	12.83	110.5	103.64	415.6	27.6	13.3	26.6	26.6	2.07
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-

Project No.: 9085A
Checked By: DAJ
_

SEISMIC FORCE ANALYSIS - STRUCTURAL WALLS AND THEIR ANCHORAGE

CHAPTER 12, ASCE 7-16					IBC 2018 / ASCE 7-16		
Design Parameters							
Risk Category	II	Table 1604.5		Calculation Comments:			
Importance Factor, I _E	1.00	Table 1.5-2					
S _S (g)	0.802	Mapped					
S ₁ (g)	0.277	Mapped					
Site Class	С	Geotech Report					
F_{a}	1.20	Table 1613.2.3(1)					
$F_{v}_{}$	1.50	Table 1613.2.3(2)					
S _{MS} (g)	0.962	FaSs					
$S_{M1}(g)$	0.416	F_vS_1					
$S_{DS}(g)$	0.642	2/3(S _{MS})					
$S_{D1}(g)$	0.277	2/3(S _{M1})					
Seismic Design Category	D	Table 1613.2.5(1,2)					
Building Height, h _n (ft)	28						
Number of Stories	2						
Light-frame Construction?	No						

Out-of-Plane Forces on Structural Walls and their Anchorage							
	12.11.1 - V	12.11.1 - Wall Forces		12.11.2 - Anchorage Forces			
Component	Unit Weight (psf)	Unit Force, f _p (psf)	Diaphragm Length, L _f (ft)	Trib. Wall Height (ft)	Trib. Wall Width (ft)	Amplification Factor, k _a	Wall Anchor Force, F _p (lb)
		-				-	-
Log Wall	30	7.7	45	10	2	1.45	223
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-
		-				-	-

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

WIND FORCE ANALYSIS - DIRECTIONAL PROCEDURE

CHAPTER 27	(PART 1), ASC	E 7-16						IBC 201	8 / ASCE 7-1
				Design Pa	arameters				
Basic Wind S	Speed, V (mph)	104	Section 26.5		K _{zt} Fac	tor Applicable?	No		
Expo	sure Category	С	Section 26.7		Height of Hill	or Ridge, H (ft)	N/A	Table 26.8-1	
Groun	d Elevation (ft)	8,557			-	L _h (ft)	N/A	Table 26.8-1	
	e Classification	Enclosed	Section 26.2			H/L _h	0.00	-	
	ive / Negative?	Positive				x (ft)	N/A	Table 26.8-1	
	ss. Coef., GC _{pi}		Table 26.13-1		Horizonta	l Attenuation, μ	N/A	Table 26.8-1	
	of Height, h (ft)					t Attenuation, γ		Table 26.8-1	
	g Length, L (ft)	70	_		9	$K_1 / (H / L_h)$	N/A	Table 26.8-1	
	ng Width, B (ft)	70	_			K ₁		Table 26.8-1	
244	L/B	1.00	-			K ₂	0.00	Table 26.8-1	
	h/L	0.34	-			K ₃	0.00	Table 26.8-1	
	Roof Pitch	1	/12		Topographic	Factor, K _{zt} at h	1.00	Section 26.8	
	Roof Angle, θ	4.8	/ 12			nality Factor, K _d	0.85	Section 26.6	
Terra	ain Constant, α	9.5	Table 26.11-1			ation Factor, K _e	0.73	Section 26.9	
	Constant, z_q (ft)	900	Table 26.11-1			Effect Factor, G	0.85	Section 26.11	
	Coefficient, K _h	0.937	Table 26.11-1			ssure, q _h (psf)	16.18	Equation 26.10-	1
Lxposure	Coefficient, N _h	0.937		IWFRS Wind P			10.10	Equation 20.10-	• 1
				Pressure	lossuic Allalys	Walls		Pars	apets
				Coefficients,	Windward	Leeward	Side	Windward	Leeward
				C _p	0.80	-0.50	-0.70	1.50	-1.00
Curfoes Morle	Cumface Tume	- (ft)	V	-	0.00				-1.00
Gable	Surface Type	z (ft)	K _z	q _z (psf)	0.00		d Pressure, p		
	Wall Wall	24 15	0.937	16.2	8.09	-9.79	-12.54	-	-
Upper Wall		5	0.849	14.7	7.05	-9.79	-12.54	-	-
Main Wall	Wall	5	0.849	14.7	7.05	-9.79	-12.54	-	-
			-	-	-	-	-	-	-
			-	-	-	-	-	-	-
			-	-	-	-	-	-	-
									=
Roof Type					Roof			T	=
	Pressure		for Roof Angle			and Parallel to R		Windward	
Monoslope	Coefficients,	Windward	Leeward	0 to h/2	h/2 to h	h to 2h	> 2h	Overhang	
	C_p	-0.77	-0.37	-0.90	-0.90	-0.50	-0.30	Ū.	=
		-0.18	-0.37	-0.18	-0.18	-0.18	-0.18	0.80	
Surface Mark	Surface Type		ī	Wir	nd Pressure, p	(psf)	Ī	T	_
Gable	Wall	-	-	-	-	-	-	-	_
Upper Wall	Wall	-	-	-	-	-	-	-	_
Main Wall	Wall	-	-	-	-	-	-	-	=
-			-	-	-	-	-	-	_
-		ı	-	-	-	-	-	-	_
-		-	-	-	-	-	-	-	_
								_	=
			Surface	Forces					
		Nort	h-South, Positi	ve Internal Pres	sure			-	
			Projected						
		Mindusard or	Horizontal						
		Windward or Leeward	Pressure, p	Tributary	Unit Force	Surface			
Surface Mark	Surface Type	Surface?	(psf)	Height (ft)	(plf)	Width, W (ft)	Force (kips)		
Gable	Wall	Both	17.88	3	53.6	42	2.3	=	
Upper Wall	Wall	Both	16.84	8	134.8	70	9.4		
Main Wall	Wall	Both	16.84	10	168.4	70	11.8	Total Desigr	n Base Shea
7.0		Both	-		-	. 0	-	LRFD	ASD
		Both	-		_		_	V _x (kips)	0.6V _x (kips
		Both			_			23.5	14.1
-		DUIII	-		-		-	23.3	14.1

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

WIND FORCE ANALYSIS - DIRECTIONAL PROCEDURE

CHAPTER 27	(PART 1), ASC	E 7-16						IBC 201	8 / ASCE 7-1
				Design Pa	arameters				
Basic Wind S	Speed, V (mph)	104	Section 26.5		K _{zt} Fac	tor Applicable?	No		
Expo	sure Category	С	Section 26.7	Height of Hill or Ridge, H (ft)			N/A	Table 26.8-1	
Groun	d Elevation (ft)	8,557				L _h (ft)	N/A	Table 26.8-1	
Enclosure	e Classification	Enclosed	Section 26.2			H/L_h	0.00	_	
Positi	ive / Negative?	Positive				x (ft)	N/A	Table 26.8-1	
Internal Pre	ss. Coef., GC _{pi}	0.18	Table 26.13-1		Horizonta	l Attenuation, μ	N/A	Table 26.8-1	
	of Height, h (ft)	24			Heigh	t Attenuation, γ	N/A	Table 26.8-1	
Buildin	g Length, L (ft)	70				$K_1 / (H / L_h)$	N/A	Table 26.8-1	
Buildir	ng Width, B (ft)	70				K ₁	0.00	Table 26.8-1	
	L/B	1.00	=			K ₂		Table 26.8-1	
	h/L	0.34	_			K ₃	0.00	Table 26.8-1	
	Roof Pitch	1	/12			Factor, K _{zt} at h	1.00	Section 26.8	
	Roof Angle, $\boldsymbol{\theta}$	4.8	_		Wind Direction	ality Factor, K_d	0.85	Section 26.6	
	ain Constant, α	9.5	Table 26.11-1			ation Factor, K _e	0.73	Section 26.9	
	Constant, z _g (ft)	900	Table 26.11-1		Gust E	Effect Factor, G	0.85	Section 26.11	
Exposure	Coefficient, K_h	0.937	Table 26.10-1		Velocity Pre	ssure, q _h (psf)	16.18	Equation 26.10-	-1
				IWFRS Wind P	ressure Analys	is			
				Pressure		Walls		Para	apets
				Coefficients,	Windward	Leeward	Side	Windward	Leeward
				C _p	0.80	-0.50	-0.70	1.50	-1.00
Surface Mark	Surface Type	z (ft)	K _z	q _z (psf)		Win	d Pressure, p	(psf)	
Upper Wall	Wall	15	0.849	14.7	7.05	-9.79	-12.54	-	-
Main Wall	Wall	5	0.849	14.7	7.05	-9.79	-12.54	-	-
			-	-	-	-	-	-	-
			-	-	-	-	-	-	-
			-	-	-	-	-	-	-
			-	-	-	-	-	-	-
									_
Roof Type					Roof				_
	Pressure	Not Applicable	for Roof Angle	Normal to F	Ridge for θ < 10°	and Parallel to R	idge for all θ	Windward	
Monoslope	Coefficients,	Windward	Leeward	0 to h/2	h/2 to h	h to 2h	> 2h	Overhang	
Monosiope	C _p	-0.77	-0.37	-0.90	-0.90	-0.50	-0.30	Overnang	_
		-0.18	-0.37	-0.18	-0.18	-0.18	-0.18	0.80	
Surface Mark	Surface Type			Wir	nd Pressure, p	(psf)			_
Upper Wall	Wall	-	-	-	-	-	-	-	_
Main Wall	Wall	-	-	-	-	-	-	-	
-		-	-	-	-	-	-	-	=
-		-	-	-	-	-	-	-	_
-		-	-	-	-	-	-	-	=
-		-	-	-	-	-	-	-	=
								_,	
				Forces				_	
		Eas	st-West, Positiv	e Internal Press	sure	1		_	
			Projected						
		Windward or	Horizontal						
		Leeward	Pressure, p	Tributary	Unit Force	Surface			
Surface Mark	Surface Type	Surface?	(psf)	Height (ft)	(plf)	Width, W (ft)	Force (kips)	=	
Upper Wall	Wall	Both	16.84	8	134.8	78	10.5	1	
Main Wall	Wall	Both	16.84	10	168.4	78	13.1	Total Design	Base Shea
-		Both	-		-		-	_	
-		Both	-		-		-	LRFD	ASD
-		Both	-		-		-	V _x (kips)	0.6V _x (kips
-		Both	-		-		-	23.6	14.2

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

WIND FORCE ANALYSIS - COMPONENTS & CLADDING

CHAPTER 30, ASCE 7-16					IBC 2018 / ASCE 7-16		
Design Parameters							
Basic Wind Speed, V (mph)	104	Section 26.5	K _{zt} Factor Applicable?	No			
Exposure Category	С	Section 26.7	Height of Hill or Ridge, H (ft)	N/A	Table 26.8-1		
Ground Elevation (ft)	8,557		L _h (ft)	N/A	Table 26.8-1		
Enclosure Classification	Enclosed	Section 26.2	H / L _h	0.00			
Positive / Negative?	Positive		x (ft)	N/A	Table 26.8-1		
Internal Press. Coef., GC _{pi}	0.18	Table 26.13-1	Horizontal Attenuation, μ	N/A	Table 26.8-1		
Mean Roof Height, h (ft)	24		Height Attenuation, γ	N/A	Table 26.8-1		
Building Length, L (ft)	78		$K_1 / (H / L_h)$	N/A	Table 26.8-1		
Building Width, B (ft)	70		K ₁	0.00	Table 26.8-1		
h/B	0.34	_	K_2	0.00	Table 26.8-1		
Roof Type	Monoslope		K ₃	0.00	Table 26.8-1		
Roof Pitch	1	/12	Topographic Factor, K _{zt} at h	1.00	Section 26.8		
Roof Angle, θ	4.8	_	Wind Directionality Factor, K _d	0.85	Section 26.6		
Is there a Parapet?	No		Ground Elevation Factor, K _e	0.73	Section 26.9		
Parapet Height, h _p (ft)	N/A		Velocity Pressure, q _h (psf)	16.18	Equation 26.10-1		
Terrain Constant, α	9.5	Table 26.11-1	Exposure Coefficient, K _p	N/A	Table 26.10-1		
Terrain Constant, z _g (ft)	900	Table 26.11-1	Topographic Factor, K _{zt} at h _p	N/A	Section 26.8		
Exposure Coefficient, K _h	0.937	Table 26.10-1	Velocity Pressure, q _p (psf)	N/A	Equation 26.10-1		

External Pressure Coefficients, GC p							
	Location	TRIBUTARY AREA (ft ²)					
	Location		20	50	100	>500	
	Zone 5: Within 7-ft of building corner	-1.3	-1.2	-1.0	-0.9	-0.7	
Walls	Zone 4: All other areas	-1.0	-0.9	-0.9	-0.8	-0.7	
	Zone 4 & 5: Positive Pressures		0.9	0.8	0.7	0.6	
	Zone 3': Within 14-ft of upper roof ridge & within 28-ft of roof sid Zone 3: Within 14-ft of lower roof corners		-2.3	-1.9	-1.6	-1.6	
			-1.7	-1.4	-1.2	-1.2	
Roof	Zone 2': Within 14-ft of upper roof edge & side edges	-1.6	-1.6	-1.6	-1.5	-1.5	
Kooi	Zone 2: Within 7-ft of lower roof edge	-1.3	-1.4	-1.3	-1.2	-1.2	
	Zone 1: Roof field	-1.1	-1.1	-1.1	-1.1	-1.1	
	All Zones: Positive Pressures		0.3	0.2	0.2	0.2	

Component & Cladding Design Wind Pressure								
	Location		Tributary Area (ft²)					
	Location		< 10	20	50	100	>500	
	Zone 5: Within 7-ft of building corner		-23.3	-21.8	-19.7	-18.2	-16.0	
Walls	Zone 4: All other areas		-18.9	-18.2	-17.5	-16.4	-16.0	
	Zone 4 & 5: Positive Pressures			16.0	16.0	16.0	16.0	
	Zone 3': Within 14-ft of upper roof ridge & within 28-ft of r			-40.1	-33.7	-28.8	-28.8	
	Zone 3: Within 14-ft of lower roof corners		-32.0	-29.6	-25.6	-22.3	-22.3	
Roof	Zone 2': Within 14-ft of upper roof edge & side	-28.8	-28.8	-28.0	-27.2	-27.2		
Rooi	Zone 2: Within 7-ft of lower roof edge		-23.9	-25.2	-23.1	-22.3	-22.3	
	Zone 1: Roof field		-20.7	-20.7	-20.7	-20.7	-20.7	
	All Zones: Positive Pressures		16.0	16.0	16.0	16.0	16.0	
	N/A	Α	-	-	-	-	-	
Parapets	IN/A	В	-	-	-	-	-	
Farapets	N/A	Α	-	-	-	-	-	
	IV/A	В	-	-	-	-	-	

Search Information

Address: 8483 E. Spring Park Summit Powder Mountain

Resort

Coordinates: 41.378963, -111.780685

Elevation: ft

Timestamp: 2019-10-01T22:27:52.542Z

Hazard Type: Wind

ASCE 7-16	ASCE 7-10	ASCE 7-05
MRI 10-Year 74 mph	MRI 10-Year 76 mph	ASCE 7-05 Wind Speed 90 mph
MRI 25-Year 80 mph	MRI 25-Year 84 mph	
MRI 50-Year 85 mph	MRI 50-Year 90 mph	
MRI 100-Year 90 mph	MRI 100-Year 96 mph	
Risk Category I 98 mph	Risk Category I 105 mph	
Risk Category II 104 mph	Risk Category II 115 mph	
Risk Category III 110 mph	Risk Category III-IV 120 mph	
Risk Category IV 114 mph		

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the https://hazards.atcouncil.org/#/wind?lat=41.378963&lng=-111.780685&address=8483 E. Spring Park Summit Powder Mountain Resort

building site described by latitude/longitude location in the report.

2018 Utah Ground Snow Load Map

Lotto basin paragraphic

Latitude: 41.363 Longitude: -111.747 Elevation: 8,557 ft

Ground Snow Load: 384 psf / 18.43 kPa

269 PSF ROOF SNOW LOAD

*This document is not legally binding. The user is urged to verify ground snow load values with the local authority having jurisdiction.

These ground snow load values represent 50-year ground snow load estimated value at a 2% probability of exceedance for the location given. The grid used in the map is 3350ft by 3350ft. Elevations for these grid cells were estimated by aggregating data from 100ft by 100ft USGS digital elevation models and may not coincide with the actual site elevation. These predictions are calculated using the process outlined in The Utah Snow Load Study.1

Final predictions given are bounded at a lower limit for a minimum ground snow load of 21 psf to meet ASCE 7. Estimated values for snow loads at elevations significantly higher than all nearby stations lead to unreasonably high snow load estimates, therefore, the predictions in the map are not allowed to extend beyond the highest 50-year station ground snow load of 429 psf. Elevations over 9,000 ft are also considered less accurate due to the limited number of stations at these elevations. The results shown in this report have included a warning if the results have reached or exceeded the upper limit.

While great efforts have been made to ensure these predictions are as accurate as possible, designers must use expert judgement to ensure that such predictions are appropriate for their particular project. The SEAU and the authors cannot accept responsibility for prediction errors or any consequences resulting therefrom.

1 Bean, Brennan; Maguire, Marc; and Sun, Yan, "The Utah Snow Load Study" (2018). Civil and Environmental Engineering Faculty Publications. Paper 3589.

made/Vereig.com.

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

SHEAR WALL SCHEDULE

CHAPTER 4.3, AWC SDPWS-2015 IBC 2018 / ASCE 7-16

Mark	Nailing Requ	iirements (in)	Notes	V _{allow} (8)	V _{allow} (8)	Sole Plate Nailing (10 & 13)
	Edge	Field		Seismic (plf)	Wind (plf)	(Sole Plate to 2x blocking or rim)
SW1	6	12	1,2,3	260	365	16d common @ 6" o.c.
SW2	4	12	1,2,3	350	490	16d common @ 4" o.c.
SW3	4	12	1,2,3,4	380	532	16d common @ 4" o.c.
SW4	3	12	1,2,3,4	490	685	(2) 16d common @ 6" o.c.
SW5	2	12	1,2,3,4	640	895	(2) 16d common @ 6" o.c.
SW6	2	12	1,3,4,6	770	1078	(2) 16d common @ 4" o.c.
SW7	3	12	1,2,3,4,5	980	1370	(2) SDS screws @ 6" o.c.
SW8	2	12	1,2,3,4,5,11	1280	1790	(2) SDS screws @ 4" o.c.
SW9	2	12	1,3,4,5,6,11	1540	2155	(2) SDS screws @ 4" o.c.
SW10	2	12	1,3,4,5,7,11	1740	2435	(2) SDS screws @ 3" o.c.

Notes:

- 1. 16 inch o.c. max stud spacing or panels applied with the long dimension across the studs per AF&PA SDPWS table 4.3A note 2.
- 2. 7/16" APA rated sheathing panel with 8d common or galvanized box nails.
- 3. Block all edges.
- 4. 3" nominal framing at abutting panel edges (AF&PA SDPWS 4.3.7.1.5.c)
- 5. Sheathing applied to both sides of wall
- 6. 15/32" APA rated sheathing with 10d common or galvanized box nails
- 7. 15/32" APA Structural I rated sheathing with 10d common or galvanized box nails
- 8. Allowable shear values per AF&PA SDPWS table 4.3A.
- For all walls, provide hot dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper nails at preservative-treated and fire-retardant-treated wood locations.
- 10. SDS screws to be 4.5" minimum length and penetrate 2" into rim board or blocking
- 11. SDS screws must be into 2x DFL blocking or 2x DFL rim board (not LVL or LSL)
- 12. Where panels are applied to both faces of the wall and nail spacing is less than 6" on center on either side offset panel joints to different framing members.
- 13. If (2) SDS screws are required on the sole plate nailing 2x blocking must be provided adjacent to rimboard or (2) 2x blocks must be provided. SDS screws require 5/8" edge and 3" end distance.

STAPLE EQUIVALENCY CHART

Staple Type	Stapling Re	quirements	V _{allow} (8)	Equivalent to Nailed Shearwall	V _{allow} (8)	Equivalent to Nailed Shearwall
Staple Type	Edge	Field	Seismic (plf)	designated above:	Wind (plf)	designated above:
	6"	6"	155	NONE	215	NONE
16 Gage 1	4"	6"	230	NONE	320	NONE
1/2" Staples	3"	6"	310	SW1	435	SW1
	2"	6"	395	SW2 and SW3	555	SW2 and SW3

Notes:

- 1. Minimum staple penetration into main member is 1".
- 2. Staples shall have a minimum crown width of 7/16".
- 3. Install staple crown parallel to the long dimension of the framing member.
- 4. Where staple spacing is 2" or less, framing at adjoining panel edges shall be 3" nominal.
- 5. Provide 3/8" distance from panel edge to staple.
- 6. Table valid for shearwalls only.
- 7. Provide hot dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper staples at perservative-treated and fire-retardant- treated wood locations.
- 8. Allowable shear values per ICC-ES Evaluation Report ESR-1539 and IBC 2018 Table 2306.3(1).
- 9. Allowable shear values shown are based on 7/16" nominal sheathing thickness.

S_{DS}= 0.64

Project No.: 9085A Checked By: DAJ

roject:	Powder Mountain Lot 80
Ву:	Alex Hawkins, PE
Date:	November 2019

WOOD SHEAR WALLS

CHAPTER 4.3, AWC SDPWS-2015 IBC 2018 / ASCE 7-16

NOTES: 1. Typically when seismic is found to govern wind loads will not be checked here. However, if wind loads are found to govern both wind

and seismic need to be checked in o 2. ASD loads are to be entered here.	rder to account for the difference in	shearwal	l capaci	ties.	Ü		I _e = C _d =	
Loft	Wind Force on Wall Line:		lbs	lbs / Dowel:	2,750	Total:	8,250	lbs
East Wall	Seismic Force on Wall Line:	5,221	lbs	# of Dowels	3		OK	
Loft	Wind Force on Wall Line:		lbs	lbs / Dowel:	2,750	Total:	5,500	lbs
West Wall	Seismic Force on Wall Line:	5,221	lbs	# of Dowels:	2		OK	
1 - 14	Mand Faces on Mall Lines		lls s	lka / Dawah	0.750	T-4-1.	0.050	lls -
Loft <u>North Wall</u>	Wind Force on Wall Line: Seismic Force on Wall Line:	5,221	lbs lbs	lbs / Dowel: # of Dowels	3	Total:	8,250 OK	lbs
1 at	Wind Force on Wall Lines		lha	lha / Dawah	0.750	Tatalı	E E00	lha
Loft <u>South Wall</u>	Wind Force on Wall Line: Seismic Force on Wall Line:	5,221	lbs lbs	lbs / Dowel: # of Dowels:	2,750	Total:	5,500 OK	lbs
Grid 1	Wind Force on Wall Line:		lbs	lbs / Dowel:	2,750	Total:	16,500	lbs
Main Floor	Seismic Force on Wall Line:	16,424	lbs	# of Dowels	6		OK	
				Length (ft):	37	Anchor Bolts:	AB32	
Grid 2	Wind Force on Wall Line:		lbs	lbs / Dowel:	2,750	Total:	16,500	lbs
Main Floor	Seismic Force on Wall Line:			# of Dowels:	6	Anahar Daltar	OK AD46	
	2W-10	28,294		Length (ft):	17	Anchor Bolts:	AB16	
Grid 3	Wind Force on Wall Line:		lbs	lbs / Dowel:	2,750	Total:	11,688	lbs
Main Floor	Seismic Force on Wall Line:			# of Dowels	4 37	Anchor Bolts:	NG AB32	
		Concre	te sne	ar Walls Length (ft):	31	Anchor Boils.	ADJZ	
Grid A	Wind Force on Wall Line:		lbs	lbs / Dowel:	2,750	Total:	13,750	lbs
Main Floor	Seismic Force on Wall Line:	13,065	lbs	# of Dowels	5		OK	
				Length (ft):	15	Anchor Bolts:	AB16	
Grid B	Wind Force on Wall Line:		lbs	lbs / Dowel:	2,750	Total:	22,000	lbs
Main Floor	Seismic Force on Wall Line:	21,650	lbs	# of Dowels:	8		OK	
				Length (ft):	10	Anchor Bolts:	AB8	
Grid C	Wind Force on Wall Line:		lbs	lbs / Dowel:	2,750	Total:	24,750	lbs
Main Floor	Seismic Force on Wall Line:	24,263	lbs	# of Dowels	9	Anal - D. //	OK	
				Length (ft):	24	Anchor Bolts:	AB16	
Grid D	Wind Force on Wall Line:		lbs	lbs / Dowel:	2,750	Total:	16,500	lbs
Main Floor	Seismic Force on Wall Line:	15,678	lbs	# of Dowels:	6	Anal - D. //	OK	
				Length (ft):	13	Anchor Bolts:	AB8	

Project: Powder Mountain Lot 80

By: Alex Hawkins, PE

Date: November 2019

Project No.: 9085A Checked By: DAJ

CHAPTER 4.3, AWC SDPWS-2015 IBC 2018 / ASCE 7-16 Lwall(ft) Lo2(ft) Lo1(ft) L2(ft) L3(ft) Lo3(ft) L4(ft) V(lbs) -h_{above}(ft) Line 6 Line 2 Line 3 Line 5 Line 7 Line 1 Line 4 Line 8 -h_{open}(ft) РЗ -h_{below}(ft) P1 P2 P4 H(lbs) 1 H(lbs) H(lbs) H(lbs) H(lbs) Segmented One Opening Two Openings

Three Openings

444

1000

363

871

2165

1032

1206

 Project: Powder Mountain Lot 80
 Project No.: 9085A

 By: Alex Hawkins, PE
 Checked By: DAJ

 Date: November 2019
 Date: November 2019

Grid 2	2											Wind	Force on \	Nall Line:		lbs		
1st FI	oor											Seismic	Force on \	Nall Line:	28,294	lbs		
٥	ш_г	SEG or		Wall	Segmen	t and Ope	ening Ler	ngths		1	Wall	Proporti	ons of Wa	ll Height	11.147	Aspect	Effective	O- DOW
Wall ID	# of Walls	PSW or FTAO	L1 (ft)	Lo1 (ft)	L2 (ft)	Lo2 (ft)	L3 (ft)	Lo3 (ft)	L4 (ft)	Length (ft)	Height (ft)	ha (ft)	ho (ft)	hb (ft)	H:W Ratio	Ratio Reduct.	Length (2b _s /h)*L	Co, PSW Reduct.
1	1	SEG	17.00							17.00	11.00			11.0	0.65	1.00	17.00	1.00

Grid 2	2.4											Wind	Force on \	Wall Line:		lbs		
Base	<u>ment</u>											Seismic	Force on \	Wall Line:	2,680	lbs		
Ω	# of	SEG or		Wall	Segmen	t and Ope	ening Ler	ngths		Longth	Wall	Proporti	ons of Wa	ıll Height	H:W	Aspect	Effective	Co, PSW
Wall I	# oi Walls	PSW or FTAO	L1 (ft)	Lo1 (ft)	L2 (ft)	Lo2 (ft)	L3 (ft)	Lo3 (ft)	L4 (ft)	Length (ft)	Height (ft)	ha (ft)	ho (ft)	hb (ft)	Ratio	Ratio Reduct.	Length (2b _s /h)*L	Reduct.
1	1	SEG	3.00							3.00	9.50			9.5	3.17	0.63	1.89	1.00
2	1	SEG	5.50							5.50	9.50			9.5	1.73	1.00	5.50	1.00

Grid E	3 (3 Do	wels)										Wind	Force on \	Wall Line:		lbs		
Baser	ment_											Seismic	Force on \	Nall Line:	8,119	lbs		
Ω	# ~ 4	SEG or		Wall	Segmen	t and Ope	ening Ler	ngths		Lanath	Wall	Proporti	ons of Wa	ll Height	11.147	Aspect	Effective	Co DOW
Wall ID	# of Walls	PSW or FTAO	L1 (ft)	Lo1 (ft)	L2 (ft)	Lo2 (ft)	L3 (ft)	Lo3 (ft)	L4 (ft)	Length (ft)	Height (ft)	ha (ft)	ho (ft)	hb (ft)	H:W Ratio	Ratio Reduct.	Length (2b _s /h)*L	Co, PSW Reduct.
1	1	SEG	5.00							5.00	9.50			9.5	1.90	1.00	5.00	1.00

Project: Powder Mountain Lot 80

By: Alex Hawkins, PE

Date: November 2019

Project No.: 9085A

Checked By: DAJ

Grid 2

1st Floor

Wall ID	Total Length (ft)	Uniform DL (plf)	Wind Uplift (lb)	Seismic Uplift (lb)	FTAO Strap Force	Req'd FTAO Strap	Wind Shear (plf)	Seismic Shear (plf)	Use Shear Wall	Holdown Type	Holdown Required	Allowable Story Drift Seismic (in)	Shear Wall Drift Seismic (in)	Wind Deflection Limit (in)	Shear Wall Deflection Wind (in)
1	17.00	1032	0	14109	NA	NA	0	1664	SW10	Concrete Rod	H-7	2.640	1.587	0.733	0.000

Anchor Bolt Size (inches):

Anchor Bolt Designation:

5/8 AB8

Grid 2.4

Basement

Wall ID	Total Length (ft)	Uniform DL (plf)	Wind Uplift (lb)	Seismic Uplift (lb)	FTAO Strap Force	Req'd FTAO Strap	Wind Shear (plf)	Seismic Shear (plf)	Use Shear Wall	Holdown Type	Holdown Required	Allowable Story Drift Seismic (in)	Shear Wall Drift Seismic (in)	Wind Deflection Limit (in)	Shear Wall Deflection Wind (in)
1	1.89	390	0	3605	NA	NA	0	362	SW3	STHD MID	H-13	2.280	2.654	0.633	0.000
2	5.50	390	0	3083	NA	NA	0	362	SW3	STHD MID	H-12	2.280	1.866	0.633	0.000

Anchor Bolt Size (inches): 5/8

AB32

Anchor Bolt Designation: Al

Grid B (3 Dowels)

Basement

Wall ID	Total Length (ft)	Uniform DL (plf)	Wind Uplift (lb)	Seismic Uplift (lb)	FTAO Strap Force	Req'd FTAO Strap	Wind Shear (plf)	Seismic Shear (plf)	Use Shear Wall	Holdown Type	Holdown Required	Allowable Story Drift Seismic (in)	Shear Wall Drift Seismic (in)	Wind Deflection Limit (in)	Shear Wall Deflection Wind (in)
1	5.00	743.9	0	15511	NA	NA	0	1624	SW10	Concrete Rod	H-9	2.280	2.509	0.633	0.000

Anchor Bolt Size (inches):

Anchor Bolt Designation:

5/8 **AB8**

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

HOLDOWN & VERTICAL STRAP SCHEDULE

IBC 2018 / ASCE 7-16

	HOLDOWN INTO CONCRETE								
		Wind or Seismic			Minimum Embed				
Mark	Anchor	Capacity (LBS)	Rod Diameter	Min. Post Size	Depth in Footing	Edge Distance	Post Grade		
H-1	HTT4 w/ (18) 10dx1½ nails	3610	5/8"	3" x 3 1/2"	6 1/2"	10"	DF #2		
H-2	HTT5 w/ (26) 10d nails	4670	5/8"	3" x 3 1/2"	6 1/2"	10"	DF #2		
H-3	HDU5 - SDS2.5 (14)	5645	5/8"	4 1/2" x 3 1/2"	6 1/2"	10"	DF #2		
H-4	HDU8 - SDS2.5 (20)	7870	7/8"	4 1/2" x 3 1/2"	9"	13 1/2"	DF #2		
H-5	HDU11 - SDS2.5 (30)	9335	1"	5 1/2" x 3 1/2"	11"	16 1/2"	DF #2		
H-6	HDU11 - SDS2.5 (30)	11175	1"	7 1/4" x 3 1/2"	11"	16 1/2"	DF #2		
H-7	HDU14 - SDS2.5 (36)	14390	1"	5.5"sq or 9.25"	11"	16 1/2"	DF #2		
H-8	HD12 (4) 1" Bolts	15435	1 1/8"	5.5"sq or 9.25"	12 1/2"	19"	DF #2		
H-9	HD19 (1 1/8") & (5) 1" Bolts	16735	1 1/8"	5 1/2" x 5 1/2"	12 1/2"	19"	DF #1		
H-10	HD19 (1 1/4") & (5) 1" Bolts	19070	1 1/4"	5 1/2" x 5 1/2"	14 1/2"	22"	DF #1		

	HOLDOWN INTO CONCRETE (Single Family Residential ONLY)									
I	Wind Capacity (LBS) - Cracked Seismic Capacity (LBS) - Cracked									
	Mark	Anchor	Midwall	Corner	Endwall	Midwall	Corner	Endwall	Min. Post Size	
ĺ	H-11	LSTHD8	2675	2320	1915	2250	1950	1610	3" x 3 1/2"	
	H-12	STHD10	4195	3500	2585	3400	2940	2175	3" x 3 1/2"	
	H-13	STHD14	5345	5345	4210	3815	3815	3500	3" x 3 1/2"	

	FLOOR TO FLOOR TIES (STRAPS OR RODS)							
Mark	Anchor	Wind or Seismic Capacity (LBS)	Rod Diameter	Min. Post Size	Post Grade			
	Strap Type							
T-1	CS16 - (20) - 11"	1705	NA	1 1/2" x 3 1/2"	DF #2			
T-2	CS14 - (26) - 15"	2490	NA	3" x 3 1/2"	DF #2			
T-3	CMSTC16 - (50) - 20"	4585	NA	3" x 3 1/2"	DF #2			
T-4	CMST14 - (66) - 30"	6490	NA	4 1/2" x 3 1/2"	DF #2			
T-5	CMST12 - (86) - 39"	9215	NA	5 1/2" x 3 1/2"	DF #2			
	Rod Type							
T-6	HDU2-SDS2.5 (6)	3075	5/8"	3" x 3 1/2"	DF #2			
T-7	HTT4 w/ (18) 10dx1½ nails	3610	5/8"	3" x 3 1/2"	DF #2			
T-8	HTT5 w/ (26) 10d nails	4670	5/8"	3" x 3 1/2"	DF #2			
T-9	HDU5 - SDS2.5 (14)	5645	5/8"	4 1/2" x 3 1/2"	DF #2			
T-10	HDU8 - SDS2.5 (20)	7870	7/8"	4 1/2" x 3 1/2"	DF #2			
T-11	HDU11 - SDS2.5 (30)	9335	1"	5 1/2" x 3 1/2"	DF #2			
T-12	HDU11 - SDS2.5 (30)	11175	1"	7 1/4" x 3 1/2"	DF #2			
T-13	HDU14 - SDS2.5 (36)	14390	1"	5.5"sq or 9.25"	DF #2			
T-14	HD12 (4) 1" Bolts	15435	1 1/8"	5.5"sq or 9.25"	DF #2			
T-15	HD19 (1 1/8") & (5) 1" Bolts	16735	1 1/8"	5 1/2" x 5 1/2"	DF #1			
T-16	HD19 (1 1/4") & (5) 1" Bolts	19070	1 1/4"	5 1/2" x 5 1/2"	DF #1			
T-17	(2) HDU4-SDS2.5 (20)	9130	5/8"	5 1/2" x 3 1/2"	DF #2			

Notes:

All anchors are Simpson Strong-Tie. Install per manufacturer's specifications.

All capacities shown are ASD. All min. post sizes are based on 9 ft max nominal top plate heights. For 8ft use 7.25" for H-7&8, T-13&14 and 4x10 for H-9&10, T-15&16. Use 4" end distance at foundation blockouts.

CS and CMST straps are specified with: strap type - total # of of 10d nails required - end length required onto the studs. CMSTC16 Strap uses 16d Sinker Nails.

Provide 1/2" X 1 3/4" X 1 3/4" plate washer for 5/8" dia. anchors, 1/2" X 2 1/2" ylate washer for 7/8" dia. anchors, 5/8" X 3" X 2 3/4" plate washer for 1" dia. anchors, 5/8" X 3 1/2" ylate washer for 1 1/4" dia. anchors. Provide nut top & bot.

For stem wall applications use simspon SB 5/8" x 24" embed 18" min. in wall for HTT4, HTT5, HDU5 holdowns. HDU8 may use SB 7/8" x 24" at midwall.

Ensure that the Min. Edge distances are met for all anchors in concrete.

Min. anchor bolt strength is ASTM F-1554 GRADE 36 U.N.O.

LSTHD's and STHD's assume 8" stemwalls minimum.

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

ANCHOR BOLTS

1/2" Diameter Anchor Bolts					
Mark	Bolt Spacing	Capacifty (plf)			
AB32	32"	384			
AB24	24"	512			
AB16	16"	768			
AB12	12"	1024			
AB8	8"	1536			

2018	NDS	Table	12F

5/8" Diameter Anchor Bolts					
Mark	Bolt Spacing	Capacifty (plf)			
AB32	32"	552			
AB24	24"	736			
AB16	16"	1104			
AB12	12"	1472			
AB8	8"	2208			

Notes: 7" minimum embedment depth on all anchor bolts.

 $3" \times 3" \times 0.229"$ plate washers on all anchor bolts. 1/2" away from sheathing.

(2) anchor bolts min. per shear wall.

Anchors are located a minimum of 1 3/4" away from the edge of concrete

Anchor bolts are to be located 15 anchor diameters away from a concrete edge that is perpendicular to the sill plate.

Sill plate is 2x or 3x minimum. (Capacities shown here are based on a 2x sill plate)

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

ROOF FRAMING

NDS 2018 EDITION IBC 2018 / ASCE 7-16

Roof Trusses:

Use pre-engineered trusses @ 24" o.c.

Provide truss blocking as shown on plans and per manufacturer's specifications.

All truss connection hardware to be designed by the truss manufacturer.

Provide full depth blocking at all bearing locations with (1) A35 clip to top plate per block U.N.O.

Nail through sheathing with 8d common @ 4" o.c. into blocking U.N.O.

Provide "H1" clips at both ends of every truss U.N.O.

Roof Stick Frame:

Use roof joists per span chart.

Provide full depth blocking at all bearing locations with (1) A35 clip to top plate per block UNO.

Nail through sheathing with 8d common @ 4" o.c. into blocking U.N.O.

Provide "H1" clips at both ends of every joist UNO.

Roof Overbuild:

Frame roof overbuild areas with 2x6 DF#2 @ 24" o.c.

Brace joists at 6' 0" o.c.

Use 2x8 DF#2 ridge board braced at 4' 0" o.c.

Use 2x8 DF#2 valley members laid flat and nailed to trusses with (2) 16d per truss.

Brace ridge and joists such that load is distributed uniformly to trusses below.

Sheath under all overbuild areas.

Provide access and ventilation to overbuild areas as necessary.

Roof Beams:

See attached beam calculations.

Roof Sheathing:

Provide 5/8" or thicker 24/16 APA rated panel.

Nail with 8d common at 6" o.c. at panel edge and 12" o.c. in the field.

Provide 'H' clips at all unsupported edges.

Provide 1/8" gap between panels at time of installation.

Project: Powder Mountain Lot 80

By: Alex Hawkins, PE

Date: November 2019

__ Project No.: 9085A ____ Checked By: DAJ

STUD COLUMN DESIGN

NDS 2018 EDITION IBC 2018 / ASCE 7-16

Species =	DFLN Stud	
Height =	8.0	ft
Fc=	900	psi
E =	1400	ksi
Kce =	0.3	psi
C =	0.8	psi

Size =	2x4	2x6	
d =	3.50	5.25	in
Fce =	558.27	1256.10	psi
Cp =	0.51	0.79	ĺ
F'c =	461.27	712.89	psi
		-	

Height	(2) 2x4	(3) 2x4	(4) 2x4	(5) 2x4	(6) 2x4	(7) 2x4	
8 ft	4.8	7.3	9.7	12.1	14.5	17.0	kips
9 ft	4.0	6.0	8.1	10.1	12.1	14.1	kips
10 ft	3.4	5.1	6.8	8.4	10.1	11.8	kips
12 ft	2.4	3.7	4.9	6.1	7.3	8.5	kips
18 ft	1.1	1.7	2.3	2.8	3.4	3.9	kips

Height	(2) 2x6	(3) 2x6	(4) 2x6	(5) 2x6	(6) 2x6	(7) 2x6	
8 ft	11.2	16.8	22.5	28.1	33.7	39.3	kips
9 ft	10.3	15.4	20.5	25.6	30.8	35.9	kips
10 ft	9.2	13.8	18.4	23.1	27.7	32.3	kips
12 ft	7.3	10.9	14.5	18.2	21.8	25.4	kips
18 ft	3.7	5.5	7.3	9.1	11.0	12.8	kips

SOLID POSTS

DFLN #1	
8.0	ft
925	psi
1600	ksi
0.3	psi
0.8	psi
	925 1600 0.3

Size =	4x4	4X6	6x6	
d =	3.5	3.5	5.5	in
Fce =	638.02	638.02	1575.52	psi
Cp =	0.553	0.553	0.838	
F'c =	511.49	511.49	774.96	psi

Height	4x4	4X6	6x6	
8 ft	6.3	9.8	23.4	kips
9 ft	5.6	8.8	21.9	kips
10 ft	4.7	7.3	20.1	kips
12 ft	3.3	5.2	16.5	kips
18 ft	1.5	2.4	8.6	kips

Project: Powder Mountain Lot 80	Project No.: 9085A
By: Alex Hawkins, PE	Checked By: DAJ
Date: November 2019	

STANDARD FOUNDATION WALLS

ACI 318-14 IBC 2018 / ASCE 7-16

Foundation Schedule		Horizontal Reinforcement		Vertical Reinforcement		
Mark	Wall Height	Thickness	Size Spacing		Size	Spacing
Тур.	4'	8"	#4	18"	#4	24"
Тур.	8'	8"	#4	18"	#4	24"
Тур.	9'	8"	#4	18"	#4	16"
Тур.	10'	8"	#4	18"	#5	12"

Notes:

Wall height refers to final grade difference through the wall. Total height of wall may be higher due to footing drop for frost protection or native soil bearing as long as wall is backfilled such that the grade difference does not exceed the wall height at any time during construction.

ALL REBAR TO BE GRADE 60.

Place vertical bars in the center of wall.

Extend vertical bars from the footing to within 3" of the top of wall.

Provide #4 dowel with standard hook in the footing to match the vertical rebar.

Extend vertical leg of dowel 24" min. into wall.

Place (1) #4 horizontally within 4" of top and bottom of wall.

Provide corner reinforcing so as to lap 24" min.

Provide (2) #4 above, (1) #4 each side, and (1) #4 below all openings.

Place steel within 2" of openings & extend 24" min. beyond edge of opening.

Vertical bars around openings may terminate 3" from top of wall.

Current Date: 11/14/2019 12:42 PM

Units system: English

File name: P:\9085A Pow Mow Lot 80 Scandinavian\Structural Calcs\Concrete Wall.cwd\

Design Results

Concrete Wall

GENERAL INFORMATION:

Global status : Warnings in design

Design code : ACI 318-14

Geometry:

Total height : 28.00 [ft]
Total length : 2.33 [ft]
Base support type : Continuous
Wall bottom restraint : Fixed
Column bottom restraint : Fixed
Rigidity elements : None

Materials:

Material:C 4-60Steel tension strength (Fy):60 [Kip/in2]Concrete compressive strength (fc):4 [Kip/in2]Steel elasticity modulus (Es):29000 [Kip/in2]Concrete modulus of elasticity (E):3605 [Kip/in2]Concrete unit weight:0.149818 [Kip/ft3]

Number of stories: 2

Story	Story height [ft]	Wall thickness [in]	
1	10.50 14.50	8.00 8.00	

Load conditions:

ID	Comb.	Category Description	
DL	No	DL	Dead Load
SL	No	SNOW	Snow Load
LL	No	LL	Live Load
EQ	No	EQ	Earthquake Load
SC1	Yes		DL
DC1	Yes		1.4DL
D1	Yes		1.4DL
D2	Yes		1.2DL+1.6LL
D3	Yes		1.2DL+0.5SL
D4	Yes		1.2DL+1.6LL+0.5SL
D5	Yes		1.2DL+1.6SL
D6	Yes		1.2DL+1.6SL+LL
D7	Yes		1.2DL+0.2SL
D8	Yes		1.2DL+EQ
D9	Yes		1.2DL+LL+0.2SL
D10	Yes		1.2DL+EQ+0.2SL
D11	Yes		1.2DL+EQ+LL
D12	Yes		1.2DL+EQ+LL+0.2SL

D13 Yes 0.9DL+EQ

Concentrated loads:

Story	Condition	Direction	Magnitude [Kip]	Eccentricity [in]	Distance [ft]
2	DL	Vertical	2.00	0.00	1.17
1	DL	Vertical	2.67	0.00	1.17
2	SL	Vertical	35.85	0.00	1.17
1	LL	Vertical	5.33	0.00	1.17
2	EQ	Horizontal	7.10	0.00	0.00
1	EQ	Horizontal	1.20	0.00	0.00

Distributed loads:

Consider self weight : DL

BEARING WALL DESIGN:

Status : OK

(3)

(2)

- - -

(1)

Geometry:

Segment	X Coordinate [ft]	Y Coordinate [ft]	Width [ft]	Height [ft]
1	0.00	0.00	2.33	10.50
2	0.00	10.50	2.33	14.50
3	0.00	25.00	2.33	3.00

Vertical reinforcement:

Reinforcement layers : 2

Segment	Bars	Spacing [in]	Ld [in]
1	5-#6	6.00	28.46
2	5-#6	6.00	28.46
3	5-#6	6.00	28.46

Intermediate results for axial-bending

Segment	Condition	c [in]	d [in]
1	DC1 (Top)	1.81	6.25
2	DC1 (Top)	1.75	6.25
3	DC1 (Top)	1.73	6.25

Combined axial flexure

Segment	Condition	Pu [Kip]	Mu [Kip*ft]	φ*Mn [Kip*ft]	Mu/φ*Mn
1	DC1 (Top)	12.08	0.00	57.58	0.00
2	DC1 (Top)	3.67	0.00	55.90	0.00
3	DC1 (Top)	0.10	0.00	55.19	0.00

Interaction diagrams, P vs. M:

Axial compression

Segment	Condition	Pu [Kip]	φ*Pn [Kip]	Pu/φ*Pn
1	D6 (Bottom)	75.87	388.25	0.20
2	D6 (Bottom)	65.26	388.25	0.17
3	D5 (Bottom)	5.45	388.25	0.01

Axial tension

Segment	Condition	Pu [Kip]	ф*Рп [Кір]	Pu/ф*Pn
1	DC1 (Top)	0.00	237.60	0.00
2	DC1 (Top)	0.00	237.60	
3	D5 (Top)	0.30	237.60	

Shear

Segment	Condition	Vu [Kip]	φ*Vn [Kip]	Vu/ф*Vn
1	DC1 (Top)	0.000	16.602	0.00
3	DC1 (Top) DC1 (Top)	0.000 0.000	16.602 16.602	0.00

SHEAR WALL DESIGN:

Status : Warnings in design

- Hoops required, Section 11.7.4.1, 18.10.6.5 (Segment 1)

(2)

- - -

(1)

Geometry:

Segment	X Coordinate [ft]	Y Coordinate [ft]	Width [ft]	Height [ft]
1	0.00	0.00	2.33	10.50
2	0.00	10.50	2.33	14.50
3	0.00	25.00	2.33	3.00

Reinforcement:

Reinforcement layers : 2

	Vei	Vertical reinforcement			Horizontal reinforcement		
Segment	Bars	Spacing [in]	Ld [in]	Bars	Spacing [in]	Ld [in]	
1	5-#6	6.00	28.46	31-#5	4.00	30.83	
2	5-#6	6.00	28.46	22-#5	8.00	30.83	
3	5-#6	6.00	28.46	5-#5	8.00	30.83	

Intermediate results for axial-bending

Segment	Condition	c [in]	d [in]
1	D13 (Bottom)	7.54	22.40
2	D13 (Bottom)	7.39	22.40
3	D13 (Bottom)	7.21	22.40

Combined axial flexure

Segment	Condition	Pu [Kip]	Mu [Kip*ft]	φ*Mn [Kip*ft]	Mu/φ*Mn
1	D13 (Bottom)	9.98	-187.25	213.69	0.88
2	D13 (Bottom)	5.49	-100.90	210.92	0.48
3	D13 (Bottom)	0.14	-0.57	207.61	0.00

Interaction diagrams, P vs. M:

Axial compression

Segment	Condition	Pu [Kip]	ф*Рп [Кір]	Pu/φ*Pn	
1	D6 (Bottom)	75.87	388.25	0.20	•
2	D6 (Bottom)	65.26	388.25	0.17	
3	D6 (Bottom)	5.42	388.25	0.01	

Axial tension

Segment	Condition	Pu [Kip]	ф*Рп [Кір]	Pu/ф*Pn
1	DC1 (Top)	0.00	237.60	0.00
2	DC1 (Top)	0.00	237.60	
3	D6 (Top)	0.30	237.60	

Shear

Segment	Condition	Vu [Kip]	φ*Vn [Kip]	Vu/φ*Vn
1	D13 (Max)	10.072	85.001	0.12
2	D8 (Max)	7.869	85.001	0.09
3	D13 (Bottom)	0.285	85.001	0.00

Notes:

^{*} Pu = Axial load

^{*} Pn = Nominal axial load

^{*} Mu = Section moment

^{*} Mn = Maximum nominal moment

^{*} Vu = Design shear force

^{*} Vn = Nominal shear force

^{*} Id = Embedment length

^{*} As = Effective cross sectional area of reinforcement

Deflection due to unfactored load (Deflection limit L/360) 8,1 mm (84 %) 1,4 mm (17 %)

Beam Id: Lot#80 - MB Date 02-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY x - D x - D - - - d d 2 30% 2 30% 1 1200 l= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY .6 .5 4 3 .2 .3 .4 .5 .6 Licensed to: FINNLAMELLI OY 2 1.5 .5 -1 -1.5 -2 Load factor of dead load= 1 Load factor of imposed load= 1 Load width 1.5 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]

2,699 2,700

0,900 0,900 KER 38 x 300 B 2 Cf=1,00 Design method: Allowable stress design Increasing factor of the allowable stress 1,09 (1) LVL 1/2 × 11/8 Factored Moment/Moment capacity [kNm] 0,810 11,193 7 % Factored shear force/shear capacity [kN] 2,699 14,095 19 %

Deflection due to unfactored load (Deflection limit L/360) 0,1 mm (4 %)

Beam Id: Lot#80 - MB Date 02-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY 2100 1.8 30% .9 x.DxIDiidd 2 30% 2 30% 3800 i= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY 3 2.5 1.5 5 -1.5 -2 -2.5 Load factor of dead load= 1 Load factor of imposed load= 1 Load width .406 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]

3,522 3,806

1,174 1,269 KER 38 x 300 B 2 Cf=1,00 Design method: Allowable stress design (1) LVL 1/2× 11/8 Increasing factor of the allowable stress 1,09 Factored Moment/Moment capacity [kNm] 4,710 11,193 42 % Factored shear force/shear capacity [kN] 3,806 14,095 27 %

Deflection due to unfactored load (Deflection limit L/360) 7,1 mm (68 %)

Beam Id: Lot#80 - MB 4 Date 03-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY 3450 56.9 50% 4.3 x I D x I D i i d d 45.4 30% 54.7 30% 7.15 7.85 1555 5150 I= 1 I= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY 200 -150 -100 50 50 100 150 Licensed to: FINNLAMELLI OY 200 150 100 50 -50 -100 -200

Load factor of dead load= 1 Load factor of imposed load= 1 Load width 1 (m) (by which the loads has been multiplied during calculation) Max/Min reactions of beam [kN] 3,508 404,280 146,735 -155,518 46,307 15,817

L40 570 x 475 B 2 Cf=0,95 Design method: Allowable stress design Increasing factor of the allowable stress 1,03 Factored Moment/Moment capacity [kNm] 202,165 311,936 65 % Factored shear force/shear capacity [kN] 206,227 213,363 97 %

(3) GL 7/gx 183/4

Deflection due to unfactored load (Deflection limit L/360) 0,0 mm (1 %) 8,5 mm (59 %)

Deflection due to unfactored load (Deflection limit L/360) 0,0 mm (1 %) 3,1 mm (45 %) 0,0 mm (0 %)

Factored Moment/Moment capacity [kNm] 7,412 14,627 51 % Factored shear force/shear capacity [kN] 21,482 23,024 93 %

Beam Id: Lot#80 - MB // Date 05-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY x - D x - D - - - d d 11.4 30% VALL LOAD 8.5 30% 4.55 3.4 7,8, 21,1 1100 2450 1100 1= 1 1= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -6 -5 -4 -3 -2 2 3 4 5 Licensed to: FINNLAMELLI OY 15 10 5 -5 -10 -15 Load factor of dead load= 1 Load factor of imposed load= 1 Load width 1 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]
5,582 31,818 28,918 3,957
-1,587 8,713 7,800 -1,981

KER 76 x 240 B 2 Cf=1,00 Design method: Allowable stress design Increasing factor of the allowable stress 1,08 Factored Moment/Moment capacity [kNm] 6,148 14,142 43 % Factored shear force/shear capacity [kN] 17,808 22,260 80 % LUL (2) 1/2× 9/2

Deflection due to unfactored load (Deflection limit L/360) 0,1 mm (3 %) 2,6 mm (38 %) 0,1 mm (2 %)

Deflection due to unfactored load (Deflection limit L/360) 2,6 mm (34 %) 2,6 mm (34 %)

598,131 14,274 30,274 -181,333

HEB 340 (Class of section=1/1) G= 134 I(cm4)=36656 W(cm3)=2160 fy=235 Factored Moment/Moment capacity [kNm] 504,308 564,000 89 % Factored shear force/shear capacity [kN] 375,630 538,902 70 %

W/2×/06

Sum infl M+S 0,91 (must be<=1) x= 1399 M=504,31 S=375,63 Deflection due to unfactored load (Deflection limit L/360)/L/180)! 7,6 mm (98 %) 0,0 mm (0 %) Attention! Ultimate limit design! Remember the load factors!!

Beam Id: Lot#80 - MB Date 05-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY 0 247.9 30% 13.7 x I D x I D I I d d 18 30% 3 30% 4.75 2,06 455,5 2100 3400 |= 1 I= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -900 -800 700 -600 -500 400 -300 -200 -100 100 200 300 400 500 600 700 800 900 Licensed to: FINNLAMELLI OY 400 350 300 250 200 150 100 50 -50 -100 -150 -200 -250 -300 -350 **-40**0

Load factor of dead load= 1.2 Load factor of imposed load= 1.6 Load width 1 (m) (by which the loads has been multiplied during calculation) Max/Min reactions of beam [kN] 773,208 -6,097 44,297 -273,007

HEB 500 (Class of section=1/1) G= 187 I(cm4)=107176 W(cm3)=4290 fy=235 Factored Moment/Moment capacity [kNm] 943,386 1132,700 83 % Factored shear force/shear capacity [kN] 485,516 965,004 50 %

Sum infl M+S 0,85 (must be<=1) x= 2099 M=943,38 S=485,52 Deflection due to unfactored load (Deflection limit L/360)/L/180)! 10,1 mm (87 %) -0,1 mm (1 %) Attention! Ultimate limit design! Remember the load factors!!

W12 x 252 or WIYXZII

Beam Id: Lot#80 - MB Date 05-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY 2750 216.7 30% 16.4 xID xID i i dd 8.9 30% 19 30% 5.1 269,6/29,4 1850 3650 1300 **!=** 1 l= 1 1= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -100 -50 50 100 Licensed to: FINNLAMELLI OY 300 250 200 150 100 50 -100 -150 -200 -250 -300 Load factor of dead load= 1.2 Load factor of imposed load= 1.6 Load width 1 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]
7,203 419,395 204,910 10,587
-66,004 35,168 23,068 -57,769 W10 × 68 HEB 260 (Class of section=1/1) G= 93 I(cm4)=14919 W(cm3)=1150 fy=235 Factored Moment/Moment capacity [kNm] 146,610 301,270 49 % Factored shear force/shear capacity [kN] 325,839 341,925 95 %

Deflection due to unfactored load (Deflection limit L/360) 0,0 mm (0 %) 2,2 mm (22 %) 0,0 mm (0 %) Attention! Ultimate limit design! Remember the load factors!!

Load factor of dead load= 1.2 Load factor of imposed load= 1.6 Load width 1 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]

362,920 6,203

35,967 -92,772

HEB 400 (Class of section=1/1) G= 155 I(cm4)=57680 W(cm3)=2880 fy=235 Factored Moment/Moment capacity [kNm] 440,836 761,400 58 %Factored shear force/shear capacity [kN] 244,651 715,716 34 %

Deflection due to unfactored load (Deflection limit L/360)/L/180)! 8,5 mm (83 %) -0,1 mm (0 %)
Attention! Ultimate limit design! Remember the load factors!!

W 12 x 152 on W 14 x 132

Beam Id: Lot#80 - MB Date 09-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY x I D x I D i i d d 2 30% 2 30% 3250 1300 I= 1 I= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -8 -6 -5 -3 -2 2 3 4 6 Licensed to: FINNLAMELLI OY 10 -10

Load factor of dead load= 1 Load factor of imposed load= 1 Load width 2.725 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]
10,819 27,463 1,962
3,512 9,154 -3,323

KER 76 x 300 B 2 Cf=1,00 Design method: Allowable stress design Increasing factor of the allowable stress 1,09
Factored Moment/Moment capacity [kNm] 8,233 22,385 37 % Factored shear force/shear capacity [kN] 15,815 28,189 56 %

LUL (2) 1/2× 11/2

Deflection due to unfactored load (Deflection limit L/360) 2,7 mm (46 %)

Load factor of dead load= 1 Load factor of imposed load= 1 Load width 3.8 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]

7,693 7,695

2,564 2,565

T24 76 x 285 B 2 Cf=1,00 Design method: Allowable stress design Increasing factor of the allowable stress 1,09 Factored Moment/Moment capacity [kNm] 2,597 10,775 24 % Factored shear force/shear capacity [kN] 7,693 15,123 51 %

(a) 2×8

Deflection due to unfactored load (Deflection limit L/360) 0,5 mm (14 %)

Beam Id: Lot#80 - MB Date 09-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY x | D x | D i i d d 13.12 30% 13.12 30% 23,6 3600 I= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -20 -10 5 10 15 Licensed to: FINNLAMELLI OY 25 20 15 10 5 -5 -10 -15 -20 Load factor of dead load= 1 Load factor of imposed load= 1 Load width 1 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]

25,411 25,416

1,800 1,800 LUL (2) 13/4 x 14 KER 88 x 355 B 2 Cf=0,98 Design method: Allowable stress design Increasing factor of the allowable stress 1,02 Factored Moment/Moment capacity [kNm] 22,874 33,243 69 % Factored shear force/shear capacity [kN] 25,411 36,043 71 %

Deflection due to unfactored load (Deflection limit L/360) 9,1 mm (91 %)

Beam Id: Lot#80 - MB Date 09-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY 700 5.2 30% 2.5 XID XID i i dd 2550 1.9 30% 0 2 30% 2 30% 3.7 3.7 6,9 6 3500 I= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -10 5 Licensed to: FINNLAMELLI OY 10 -10 Load factor of dead load= 1 Load factor of imposed load= 1 Load width 1 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]
16,647 12,898
8,473 6,974 LVL (2) 1/2×11/8 KER 76 x 300 B 2 Cf=1,00 Design method: Allowable stress design Increasing factor of the allowable stress 1,15
Factored Moment/Moment capacity [kNm] 12,362 23,512 53 %

Deflection due to unfactored load (Deflection limit L/360) 9,2 mm (94 %)

Factored shear force/shear capacity [kN] 16,647 29,607 56 %

Beam Id: Lot#80 - MB Structural Engineer:

Licensed to: FINNLAMELLI OY

Date 09-09-2019

Load factor of dead load= 1.2 Load factor of imposed load= 1.6 Load width 1 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]
93,534 596,836 74,470
6,691 41,985 -84,388

HEB 280 (Class of section=1/1) G= 103 I(cm4)=19270 W(cm3)=1380 fy=235 Factored Moment/Moment capacity [kNm] 279,433 360,490 78 % Factored shear force/shear capacity [kN] 339,410 387,891 88 %

W10 x 88

Sum infl M+S 0,82 (must be<=1) x= 5699 M=279,29 S=339,41 Deflection due to unfactored load (Deflection limit L/360) 9,4 mm (60 %) 0,2 mm (3 %) Attention! Ultimate limit design! Remember the load factors!!

Deflection due to unfactored load (Deflection limit L/360) 3,3 mm (64 %)

Deflection due to unfactored load (Deflection limit L/360)/L/180)! 0,2 mm (3 %) 11,3 mm (97 %)

Deflection due to unfactored load (Deflection limit L/360)/L/180)! 0,9 mm (7 %) 8,6 mm (73 %)

Factored shear force/shear capacity [kN] 4,610 22,388 21 %

Project Title: Engineer: Project ID: Project Descr:

THE STANDARD IN ENGINEERING

Printed: 15 NOV 2019, 9:40AM

Steel Beam

File = P:\9SEXEV~N\S82GGD~6\Enercalc.ec6 Software copyright ENERCALC, INC. 1983-2018, Build:10.18.12.13

Licensee: ENSIGN ENGINEERING

Lic. #: KW-06004069 Description:

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: ASCE 7-10

Material Properties

Analysis Method: Allowable Strength Design Beam is Fully Braced against lateral-torsional buckling Beam Bracing:

Bending Axis: Major Axis Bending Fy: Steel Yield: 50.0 ksi E: Modulus: 29,000.0 ksi

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Load for Span Number 1

Uniform Load: D = 0.020, L = 0.040 ksf, Tributary Width = 5.250 ft, (Floor)

Uniform Load: D = 0.0150, S = 0.2690 ksf, Tributary Width = 16.50 ft, (Roof)

Uniform Load: D = 0.130, L = 0.040 ksf, Tributary Width = 1.0 ft, (Garage)

Point Load: E = 18.70 k @ 8.0 ft

Load for Span Number 2

Uniform Load : D = 0.020, L = 0.040 ksf, Tributary Width = 5.250 ft, (Floor)

Uniform Load: D = 0.0150, S = 0.2690 ksf, Tributary Width = 16.50 ft, (Roof)

Uniform Load: D = 0.130, L = 0.040 ksf, Tributary Width = 1.0 ft, (Garage)

Point Load : E = 18.70 k @ 6.0 ft, (Hold Down)

DESIGN SUMMARY Design OK 0.604:1 Maximum Shear Stress Ratio = Maximum Bending Stress Ratio = 0.426:1 Section used for this span Section used for this span W10x88 W10x88 Ma: Applied Va: Applied 170.390 k-ft 55.717 k Mn / Omega: Allowable 281.936 k-ft Vn/Omega: Allowable 130.680 k **Load Combination** +D+S**Load Combination** +D+S Location of maximum on span 19.000ft Location of maximum on span 19.000 ft Span # where maximum occurs Span # where maximum occurs Span #1 Span # 1 Maximum Deflection Max Downward Transient Deflection 0.463 in Ratio = 492 >= 480 Max Upward Transient Deflection -0.040 in Ratio = 2,125 >=480 0.514 in Ratio = Max Downward Total Deflection 444 >= 360 Max Upward Total Deflection -0.044 in Ratio = 1918 >= 360

Maximum Force	es & Stres	sses for L	oad Co	mbination	ons								
Load Combination		Max Stress Ratios				Summary of M	oment Values				Summ	Summary of Shear Values	
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
D Only													
Dsgn. L = 19.00 ft	1	0.059	0.042	14.22	-16.71	16.71	470.83	281.94	1.00	1.00	5.46	196.02	130.68

Ensign Engineering 45 West 10000 South, Suite 500 Sandy, Utah 84070 P: (801) 255-0529

Project Title: Engineer: Project ID: Project Descr:

THE STANDARD IN ENGINEERING

Printed: 15 NOV 2019, 9:40AM

Steel Beam

File = P:\9SEXEV~N\S82GGD~6\Enercalc.ec6 Software copyright ENERCALC, INC. 1983-2018, Build:10.18.12.13 .

Licensee: ENSIGN ENGINEERING

Lic. #: KW-06004069

Description : MB22													
Load Combination		Max Stress	Ratios		5	Summary of M	oment Valu	ies			Summ	ary of She	ear Values
Segment Length	Span #	M	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
Dsgn. L = 7.00 ft	2	0.059	0.031		-16.71	16.71	470.83	281.94	1.00	1.00	4.08	196.02	130.68
+D+L													
Dsgn. L = 19.00 ft	1	0.090	0.063	21.59	-25.36	25.36	470.83	281.94	1.00	1.00	8.29	196.02	130.68
Dsgn. L = 7.00 ft	2	0.090	0.047		-25.36	25.36	470.83	281.94	1.00	1.00	6.19	196.02	130.68
+D+S													
Dsgn. L = 19.00 ft	1	0.604	0.426	145.04	-170.39	170.39	470.83	281.94	1.00	1.00	55.72	196.02	130.68
Dsgn. L = 7.00 ft	2	0.604	0.318		-170.39	170.39	470.83	281.94	1.00	1.00	41.56	196.02	130.68
+D+0.750L													
Dsgn. L = 19.00 ft	1	0.082	0.058	19.75	-23.20	23.20	470.83	281.94	1.00	1.00	7.59	196.02	130.68
Dsgn. L = 7.00 ft	2	0.082	0.043		-23.20	23.20	470.83	281.94	1.00	1.00	5.66	196.02	130.68
+D+0.750L+0.750S													
Dsgn. $L = 19.00 \text{ ft}$	1	0.491	0.346	117.86	-138.46	138.46	470.83	281.94	1.00	1.00	45.28	196.02	130.68
Dsgn. L = 7.00 ft	2	0.491	0.258		-138.46	138.46	470.83	281.94	1.00	1.00	33.78	196.02	130.68
+D+0.70E													
Dsgn. $L = 19.00 \text{ ft}$	1	0.215	0.097	60.73	-49.91	60.73	470.83	281.94	1.00	1.00	12.72	196.02	130.68
Dsgn. L = 7.00 ft	2	0.177	0.082	5.47	-49.91	49.91	470.83	281.94	1.00	1.00	10.69	196.02	130.68
+D+0.750L+0.750S+0.5250I	E												
Dsgn. L = 19.00 ft	1	0.579	0.388	152.57	-163.37	163.37	470.83	281.94	1.00	1.00	50.72	196.02	130.68
Dsgn. L = 7.00 ft	2	0.579	0.296		-163.37	163.37	470.83	281.94	1.00	1.00	38.74	196.02	130.68
+0.60D													
Dsgn. $L = 19.00 \text{ ft}$	1	0.036	0.025	8.53	-10.02	10.02	470.83	281.94	1.00	1.00	3.28	196.02	130.68
Dsgn. L = 7.00 ft	2	0.036	0.019		-10.02	10.02	470.83	281.94	1.00	1.00	2.45	196.02	130.68
+0.60D+0.70E													
Dsqn. $L = 19.00 \text{ ft}$	1	0.195	0.081	55.05	-43.23	55.05	470.83	281.94	1.00	1.00	10.54	196.02	130.68
Dsgn. L = 7.00 ft	2	0.153	0.069	5.85	-43.23	43.23	470.83	281.94	1.00	1.00	9.06	196.02	130.68

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+D+S	1	0.5138	8.588		0.0000	0.000
	2	0.0000	8.588	+D+S	-0.0438	2.744

Vertical Reactions				Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	Support 3		
Overall MAXimum	37.782	97.282	9.252		
Overall MINimum	1.919	4.942	-0.362		
D Only	3.704	9.538	-0.698		
+D+L	5.624	14.481	-1.060		
+D+S	37.782	97.282	-7.118		
+D+0.750L	5.144	13.245	-0.969		
+D+0.750L+0.750S	30.702	79.053	-5.784		
+D+0.70E	9.535	23.411	5.778		
+D+0.750L+0.750S+0.5250E	35.075	89.458	-0.927		
+0.60D	2.223	5.723	-0.419		
+0.60D+0.70E	8.053	19.596	6.058		
L Only	1.919	4.942	-0.362		
S Only	34.077	87.744	-6.420		
E Only	8.330	19.818	9.252		

Project Title: Engineer: Project ID: Project Descr:

Printed: 15 NOV 2019, 9:45AM

Steel Column

File = P:\9SEXEV~N\S82GGD~6\Enercalc.ec6 Software copyright ENERCALC, INC. 1983-2018, Build:10.18.12.13

Licensee: ENSIGN ENGINEERING

Lic. #: KW-06004069 Description: TS Column

Code References

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-10

Load Combinations Used: ASCE 7-10

General Information

Steel Section Name: HSS5x5x3/8 Analysis Method: Allowable Strength

Steel Stress Grade

Fy: Steel Yield 46.0 ksi E: Elastic Bending Modulus 29,000.0 ksi Overall Column Height 9.5 ft Top & Bottom Fixity Top & Bottom Pinned

Brace condition for deflection (buckling) along columns:

X-X (width) axis:

Unbraced Length for X-X Axis buckling = 9.5 ft, K = 1.0

Y-Y (depth) axis:

Unbraced Length for Y-Y Axis buckling = 9.5 ft, K = 1.0

Applied Loads

Column self weight included: 211.865 lbs * Dead Load Factor AXIAL LOADS . . .

MB22: Axial Load at 9.50 ft, D = 9.540, L = 4.940, S = 87.740, H = 19.820 k

DESIGN SUMMARY

Bendin	g &	Shear	Check	Results	
DACC	May	Avial. I	Dandina C	troco Dotio	

PASS I	Viax. Axial+Bending Stress Ratio = Load Combination	+D+S+H
	Location of max.above base At maximum location values are	0.0 ft
	Pa : Axial	117.312 k
	Pn / Omega : Allowable	132.574 k
	Ma-x : Applied	0.0 k-ft
	Mn-x / Omega : Allowable	24.331 k-ft
	Ma-y : Applied	0.0 k-ft
	Mn-y / Omega : Allowable	24.331 k-ft
PASS	Maximum Shear Stress Ratio = Load Combination	0.0 : 1
	Location of max.above base	0.0 ft

0.0040 . 1

At maximum location values are . . . Va : Applied 0.0 kVn / Omega: Allowable 0.0 k

Axial Reaction

4.940

87.740

Maximum Load Reactions . .

Top along X-X 0.0 kBottom along X-X 0.0 k0.0 kTop along Y-Y Bottom along Y-Y 0.0 k

Service loads entered. Load Factors will be applied for calculations.

Maximum Load Deflections . . .

Along Y-Y 0.0 in at 0.0ft above base

for load combination:

Along X-X 0.0 in at 0.0ft above base

for load combination:

Load Combination Results

Maximum Axial + Bending Stress Ratios								<u>Maximum</u>	Shear Ra	atios
Load Combination	Stress Ratio	Status	Location	Cbx	Cby	KxLx/Rx	KyLy/Ry	Stress Ratio	Status	Location
+D+H	0.223	PASS	0.00 ft	1.00	1.00	60.96	60.96	0.000	PASS	0.00 ft
+D+L+H	0.260	PASS	0.00 ft	1.00	1.00	60.96	60.96	0.000	PASS	0.00 ft
+D+S+H	0.885	PASS	0.00 ft	1.00	1.00	60.96	60.96	0.000	PASS	0.00 ft
+D+0.750L+H	0.251	PASS	0.00 ft	1.00	1.00	60.96	60.96	0.000	PASS	0.00 ft
+D+0.750L+0.750S+H	0.747	PASS	0.00 ft	1.00	1.00	60.96	60.96	0.000	PASS	0.00 ft
+0.60D+0.60H	0.134	PASS	0.00 ft	1.00	1.00	60.96	60.96	0.000	PASS	0.00 ft

Y-Y Axis Reaction

Maximum Reactions

L Only

S Only

Note: Only non-zero reactions are listed.

My - End Moments

@ Base

@ Top

Mx - End Moments

Load Combination	@ Base	@ Base	@ Top	@ Base	@ Top	@ Base	@ Top
+D+H	29.572						
+D+L+H	34.512						
+D+S+H	117.312						
+D+0.750L+H	33.277						
+D+0.750L+0.750S+H	99.082						
+0.60D+0.60H	17.743						
D Only	9.752						

X-X Axis Reaction

0.000 in

Ycg

Project Title: Engineer: Project ID: Project Descr:

THE STANDARD IN ENGINEERING

Printed: 15 NOV 2019, 9:45AM

Steel Column

File = P:\9SEXEV-N\S82GGD-6\Enercalc.ec6 .
Software copyright ENERCALC, INC. 1983-2018, Build:10.18.12.13 .
Licensee : ENSIGN ENGINEERING

Lic. # : KW-06004069

Description : TS Column

	3	Axial Reaction	X-X Axis Read	ction	k Y-Y Axis F	Reaction	Mx - End N		reactions are list My - End Mome
Load Combination		@ Base		Top	@ Base	@ Top	@ Base	@ Top	@ Base @ T
H Only		19.820							
Extreme Reactions									
		Axial Reaction	X-X Axis Rea		k Y-Y Axis F		Mx - End M		My - End Mome
Item	Extreme Value	@ Base	@ Base @	Top	@ Base	@ Top	@ Base	@ Top	@ Base @ T
Axial @ Base	Maximum	117.312							
II	Minimum	4.940							
Reaction, X-X Axis Base	Maximum	29.572							
" " " " " " " " " " " " " " " " " " " "	Minimum	29.572							
Reaction, Y-Y Axis Base	Maximum	29.572							
Desetion V.V.Avis Ten	Minimum	29.572							
Reaction, X-X Axis Top	Maximum	29.572							
Reaction, Y-Y Axis Top	Minimum Maximum	29.572 29.572							
neaction, 1-1 Axis 10β	Minimum	29.572 29.572							
Moment, X-X Axis Base	Maximum	29.572							
" Nonent, A-A Axis Dase	Minimum	29.572							
Moment, Y-Y Axis Base	Maximum	29.572							
"	Minimum	29.572							
Moment, X-X Axis Top	Maximum	29.572							
"	Minimum	29.572							
Moment, Y-Y Axis Top	Maximum	29.572							
п	Minimum	29.572							
Maximum Deflection	ns for Load Com	binations							
Maximum Denection	IS IOI LOUG COIII					. fl l!	D: 1		
Load Combination	13 TOT LOUG COTT	Max. X-X Deflect	ion Distanc	e	Max. Y-Y Do	etiection	Distance		
Load Combination	13 TOT EOUG OOT								
Load Combination +D+H	13 101 2000 00111	0.0000 i	n 0.000	ft	Max. Y-Y D 0.000 0.000	in	0.000 ft		
Load Combination	13 101 2000 00111		n 0.000 n 0.000		0.000	in in			
Load Combination +D+H +D+L+H	15 101 2000 0011	0.0000 ii	n 0.000 n 0.000 n 0.000	ft ft	0.000 0.000	in in in	0.000 ft 0.000 ft		
Load Combination +D+H +D+L+H +D+S+H	15 TOT EOUG OOT	0.0000 ii 0.0000 ii 0.0000 ii	n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft	0.000 0.000 0.000	in in in in	0.000 ft 0.000 ft 0.000 ft		
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H	is for Educ dom	0.0000 ii 0.0000 ii 0.0000 ii 0.0000 ii	n 0.000 n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft ft	0.000 0.000 0.000 0.000	in in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft		
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H +D+0.750L+0.750S+H	is for Educ dom	0.0000 ii 0.0000 ii 0.0000 ii 0.0000 ii 0.0000 ii	n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000	in in in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft		
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H +D+0.750L+0.750S+H +0.60D+0.60H	STOLEGUE SON	0.0000 ii 0.0000 ii 0.0000 ii 0.0000 ii 0.0000 ii 0.0000 ii	n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000	in	0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft		
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H +D+0.750L+0.750S+H +0.60D+0.60H D Only	STOLEGUE GOIT	0.0000 ii	n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000	in i	0.000 ft		
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H +D+0.750L+0.750S+H +0.60D+0.60H D Only L Only	STOLEGUE GOIT	0.0000 ii 0.0000 ii 0.0000 ii 0.0000 ii 0.0000 ii 0.0000 ii 0.0000 ii	n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000	in i	0.000 ft		
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H +D+0.750L+0.750S+H +0.60D+0.60H D Only L Only S Only H Only Steel Section Propel	rties: H	0.0000 ii SS5x5x3/8	n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	in i	0.000 ft		
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H +D+0.750L+0.750S+H +0.60D+0.60H D Only L Only S Only H Only Steel Section Propel		0.0000 ii SS5x5x3/8	n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	in i	0.000 ft		36.100 in^4
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H +D+0.750L+0.750S+H +0.60D+0.60H D Only L Only S Only H Only Steel Section Propel	rties: H	0.0000 ii SS5x5x3/8	n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	in i	0.000 ft		36.100 in^4
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H +D+0.750L+0.750S+H +0.60D+0.60H D Only L Only S Only H Only Steel Section Proper Depth Design Thick	rties: H: = 5.000 ii	0.0000 ii 0.0000	n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	in i	0.000 ft		36.100 in^4
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H +D+0.750L+0.750S+H +0.60D+0.60H D Only L Only S Only H Only Steel Section Propel Depth Design Thick Width	rties: H: = 5.000 ii = 0.349 ii	0.0000 ii 0.x	n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000 n 0.000	ft ft ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	in i	0.000 ft		36.100 in^4
Load Combination +D+H +D+L+H +D+S+H +D+0.750L+H +D+0.750L+O.750S+H +0.60D+0.60H D Only L Only S Only H Only Steel Section Proper Depth Design Thick Width Wall Thick	rties: H: = 5.000 ii = 0.349 ii = 5.000 ii	0.0000 ii 0.x	n 0.000 =	ft ft ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 21.70 in^4 8.68 in^3 1.870 in	in i	0.000 ft		36.100 in^4
Load Combination +D+H +D+L+H +D+L+H +D+0.750L+H +D+0.750L+O.750S+H +0.60D+0.60H D Only L Only S Only H Only Steel Section Propel Depth Design Thick Width Wall Thick Area	rties : H: = 5.000 ii = 0.349 ii = 5.000 ii = 0.375 ii	0.0000 ii SS5x5x3/8 n	n 0.000 =	ft ft ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 21.70 in^4 8.68 in^3 1.870 in 10.600 in^3	in i	0.000 ft	=	

Project Title: Engineer: Project ID: Project Descr:

Printed: 15 NOV 2019, 9:45AM

Steel Column

File = P:\9SEXEV-N\S82GGD-6\Enercalc.ec6 .
Software copyright ENERCALC, INC. 1983-2018, Build:10.18.12.13 .
Licensee : ENSIGN ENGINEERING

Lic. #: KW-06004069 Description : TS Column

Beam Id: Lot#80 - RB Date 03-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY 13.12 50% 13.12 50% 56,9 3450 I= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -80 -70 -60 -50 -40 -30 -20 -10 10 20 30 40 50 60 70 Licensed to: FINNLAMELLI OY 90 70 60 50 40 30 20 10 -10 -20 -40 -50 -60 -80 Load factor of dead load= 1.2 Load factor of imposed load= 1.6 Load width 2.514 (m) (by which the loads has been multiplied during calculation) Max/Min reactions of beam [kN] 96,220 96,239 5,203 5,204 HEB 160 (Class of section=1/1) G= 42,6 I(cm4)=2492 W(cm3)=311 fy=235 Factored Moment/Moment capacity [kNm] 83,006 $\,$ 83,190 $\,$ 100 %W8x21 OC (W6x25) Factored shear force/shear capacity [kN] 96,220 165,816 58 % Sum infl M+S 0,99 (must be<=1) x= 1725 M=83,01 S=0 Deflection due to unfactored load (Deflection limit L/240) 12,6 mm (87 %)

Attention! Ultimate limit design! Remember the load factors!!

Beam Id: Lot#80 - RB Date 03-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY X I D x I D i 13.12 50% 13.12 50% 2900 3450 I= 1 I= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -90 -80 -70 -60 -50 -40 -30 -20 -10 10 20 30 40 50 60 70 80 Licensed to: FINNLAMELLI OY 150 100 50 -50 -100 Load factor of dead load= 1.2 Load factor of imposed load= 1.6 Load ractor of dead load= 1.2 Load fact Load width 3.3 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]
103,686 292,587 83,218
0,506 15,821 -5,716

HEB 180 (Class of section=1/1) G= 51,2 I(cm4)=3831 W(cm3)=426 fy=235 Factored Moment/Moment capacity [kNm] 94,680 113,270 84 % Factored shear force/shear capacity [kN] 153,758 198,951 77 %

Sum infl M+S 0,87 (must be<=1) x= 3449 M=94,67 S=153,76 Deflection due to unfactored load (Deflection limit L/240) 6,1 mm (43 %) 2,6 mm (21 %) Attention! Ultimate limit design! Remember the load factors!!

W8×28

Beam Id: Lot#80 - RB Date 30-08-2019 Structural Engineer: Licensed to: FINNLAMELLI OY x-Dx-D--- dd 13.12 50% 13.12 50% 2900 1000 I= 1 **I**= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -6 -5 -3 2 3 4 5 6 Licensed to: FINNLAMELLI OY 70 -10 Load factor of dead load= 1 Load factor of imposed load= 1 Load width .6 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]
9,939 25,824 1,651
0,657 1,829 -4,526 T24 164 x 260 B 2 Cf=1,00 Design method: Allowable stress design Increasing factor of the allowable stress 1,02 Factored Moment/Moment capacity [kNm] 6,920 18,058 38 % Factored shear force/shear capacity [kN] 14,668 27,781 53 %

Deflection due to unfactored load (Deflection limit L/240) 2,7 mm (23 %) 0,0 mm (0 %)

Beam Id: Lot#80 - RB Date 30-08-2019 Structural Engineer: Licensed to: FINNLAMELLI OY x I D x I D i i d d 13.12 50% 1300 I= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -6 -5 -3 -2 3 4 5 6 Licensed to: FINNLAMELLI OY 20 10 5 -5 -10 -15 -20 Load factor of dead load= 1 Load factor of imposed load= 1 Load width 2.6 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]

23,858 23,863 1,690 1,690 T24 164 x 260 B 2 Cf=1,00 Design method: Allowable stress design (1) PROPILE Increasing factor of the allowable stress 1,02
Factored Moment/Moment capacity [kNm] 7,755 18,058 43 %

Deflection due to unfactored load (Deflection limit L/240) 0,9 mm (16 %)

Factored shear force/shear capacity [kN] 23,858 27,781 86 %

Beam Id: Lot#80 - RB /(/) Structural Engineer:	Date 02-09-2019
Licensed to: FINNLAMELLI OY	
13.12 50%	
1	
181,5/ 9/2 = 12,3/	12.9/
1 168,7 6950	168,7
%-number=permanent part of imposed load =relative fle Licensed to: FINNLAMELLI OY	exural rigidity
, many the second secon	
-450 -400 -350	
-300 -300 -250	
-200 -200 -150	
-100 -50	
58	
100	
200 250	
300 350	
400 450	
Licensed to: FINNLAMELLI OY	
250	
200	
150	
100 50	
-50	
-100	
-150	
-200 -250	
-250	
Load factor of dead load 1.2 Load factor of imposed load 1.6 Load width 3.7 (m) (by which the loads has been multiplied during calculation) Max/Min reactions of beam [kN] 285,277 285,334 15,426 15,429	
HEB 320 (Class of section=1/1) G= 127 I(cm4)=30823 W(cm3)=1930 fy Factored Moment/Moment capacity [kNm] 495,767 502,900 99 % Factored shear force/shear capacity [kN] 285,277 485,604 59 %	=235 HEB \$20 = W 12 ×

24,6 mm (85 %)
Attention! Ultimate limit design! Remember the load factors!!

Beam Id: Lot#80 - RB	Date 02-09-2019
Structural Engineer:	Date 02-09-2019
Licensed to: FINNLAMELLI OY	
13.12 50% 1	
13.12 50%	
1	
1000 to	
The state of the s	
13,3/	
175,6	6050
	6950
%-number=permanent part of imposed load	l= 1 l=relative flexural rigidity
Licensed to: FINNLAMELLI OY	. Total To Horizon Inglish
-500	The state of the s
-400	
-300	
-200	<u> </u>
-100	
100	
200	
300	
400	
500 Licensed to: FINNLAMELLI OY	
250	
200	
150	
100	
50	
-50	
-100	
-150	
-200	
-250	

Load factor of dead load= 1.2 Load factor of imposed load= 1.6 Load width 3.85 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]

296,842 296,901

16,051 16,055

HEB 340 (Class of section=1/1) G= 134 I(cm4)=36656 W(cm3)=2160 fy=235 //CD 340 = W /2× /06 Factored Moment/Moment capacity [kNm] 515,866 564,000 91 % Factored shear force/shear capacity [kN] 296,842 538,902 55 %

Sum infl M+S 0,90 (must be<=1) x= 3475 M=515,87 S=0 Deflection due to unfactored load (Deflection limit L/240) 21,5 mm (74 %)
Attention! Ultimate limit design! Remember the load factors!!

HEB 140 (Class of section=1/1) G= 33,7 I(cm4)=1509 W(cm3)=216 fy=235 Factored Moment/Moment capacity [kNm] 42,569 57,810 74 % Factored shear force/shear capacity [kN] 107,871 126,336 85 %

HER/40 = W6x20

Deflection due to unfactored load (Deflection limit L/240) 4,2 mm (42 %) 0,9 mm (11 %) 4,2 mm (42 %)
Attention! Ultimate limit design! Remember the load factors!!

Beam Id: Lot#80 - RB Date 03-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY X D xID.i.dd 13.12 50% 13.12 50% 2250 2400 2250 l= 1 **I=** 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -20 -15 -10 -5 5 10 15 20 Licensed to: FINNLAMELLI OY 50 40 30 20 10 -10 -20 -30 -40 -50 Load factor of dead load= 1 Load factor of imposed load= 1 Load width 2.63 (m) (by which the load has been multiplied during calculation)

Max/Min reactions of beam [kN]
35,119 98,874 98,882 35,124
0,052 3,115 3,118 0,053

L40 305 x 215 B 2 Cf=1,00 Design method: Allowable stress design (190 + 1/5) × 245
Increasing factor of the allowable stress 1,02
Factored Moment/Moment capacity [kNm] 21,540 35,643 60 %
Factored shear force/shear capacity [kN] 51,348 51,180 100 %

Deflection due to unfactored load (Deflection limit L/240)
3,6 mm (38 %) 2,2 mm (22 %) 3,6 mm (38 %) Load width 2.63 (m) (by which the loads has been multiplied during calculation)

Beam Id: Lot#80 - RB Date 03-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY x I D x I D i i d d 13.12 50% 13.12 50% 2250 2400 2250 I= 1 **l=** 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -30 -25 -20 15 10 5 10 15 20 25 30 Licensed to: FINNLAMELLI OY 80 70 60 50 40 30 20 10 -10 -20 -30 -40 -50 -60 -70 -80 Load factor of dead load= 1.2 Load factor of imposed load= 1.6 Load width 2.63 (m) (by which the loads has been multiplied during calculation) Max/Min reactions of beam [kN] 55,260 155,501 155,512 55,268 -0,847 2,285 2,290 -0,846

HEA 140 (Class of section=1/1) G= 24,7 I(cm4)=1033 W(cm3)=155 fy=235 Factored Moment/Moment capacity [kNm] 33,896 40,749 83 % Factored shear force/shear capacity [kN] 80,720 96,585 84 %

Sum infl M+S 0,87 (must be<=1) x=4650 M=33,9 S=80,72 Deflection due to unfactored load (Deflection limit L/240) 3,5 mm (38 %) 2,2 mm (22 %) 3,5 mm (38 %) Attention! Ultimate limit design! Remember the load factors!!

Deflection due to unfactored load (Deflection limit L/240) 0,2 mm (3 %)

Increasing factor of the allowable stress 1,02
Factored Moment/Moment capacity [kNm] 16,605 22,204 75 %
Factored shear force/shear capacity [kN] 26,510 31,883 83 %

=> GL (1) 7/2× 10/4

Deflection due to unfactored load (Deflection limit L/240) 0,7 mm (8 %) 15,5 mm (94 %)

	1,	Page 70 of
	Beam Id: Lot#80 - RB (Date 03-09-201	9
	Structural Engineer:	
	Licensed to: FINNLAMELLI OY	
X D		
Ϋ́		
X I D i i		
i.	13.12 50%	13.12 50%
d		1
		-
	·	_
,		
_	\(\lambda_{1,2}\\ \lambda_{1,2}\\ \lambda_{1,2	
	3450	
	l≈ 1	1
	%-number=permanent part of imposed load	
	Licensed to: FINNLAMELLI OY	
	-15	.]
	-10	
	-5	
,		20
_		
	5	
	10	
	15 Licensed to: FINNLAMELLI OY	
	LICENSED ID. FINNEAWIELLI OY	٦
	15	
	10	
	5	
-		
	-5	
	-10	
	-15	1
L		
ļ	Load factor of dead load= 1 Load factor of imposed load= 1	
ŀ	Load width .8 (m) (by which the loads has been multiplied during calculation)	
1	Max/Min reactions of beam [kN] 19,482 19,486	
	1,380 1,380	
L	_40 190 x 260 B 2 Cf=1,00 Design method: Allowable stress design	
ı	L40 190 x 260 B 2 Cf=1,00 Design method: Allowable stress design increasing factor of the allowable stress 1,02 Factored Moment/Moment capacity [kNm] 16,806 32,471 52 %	
F	Factored shear force/shear capacity [kN] 19,482 38,556 51 %	

Deflection due to unfactored load (Deflection limit L/240) 8,8 mm (61 %)

Load factor of dead load= 1 Load factor of imposed load= 1 Load width .8 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]
16,023 44,253 11,975
0,449 3,134 -0,850

L40 190 x 215 B 2 Cf=1,00 Design method: Allowable stress design increasing factor of the allowable stress 1,02 Factored Moment/Moment capacity [kNm] 14,137 22,204 64 % Factored shear force/shear capacity [kN] 23,581 31,883 74 %

GL (1) 7/2×10/4

Deflection due to unfactored load (Deflection limit L/240) 9,0 mm (63 %) 2,9 mm (25 %)

Deflection due to unfactored load (Deflection limit L/240) 22,5 mm (98 %)

Beam Id: Lot#80 - RB Date 03-09-2019 Structural Engineer: Licensed to: FINNLAMELLI OY X I D x I Di i dd 13.12 50% 13.12 50% 106,2 2300 2900 2300 J= 1 **l**= 1 I= 1 %-number=permanent part of imposed load I=relative flexural rigidity Licensed to: FINNLAMELLI OY -20 -15 -10 10 15 20 Licensed to: FINNLAMELLI OY 50 40 30 20 10 -10 -20 -30 -40 -50

Load factor of dead load= 1 Load factor of imposed load= 1 Load width 2.63 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]

35,013 110,758 110,758 35,021

-1,217 4,537 4,538 -1,216

L40 190 x 390 B 2 Cf=0,97 Design method: Allowable stress design Increasing factor of the allowable stress 1,02 Factored Moment/Moment capacity [kNm] 27,135 70,960 38 % Factored shear force/shear capacity [kN] 56,258 57,834 97 %

(1) 6L 7/2 × 15/8

Load factor of dead load= 1 Load factor of imposed load= 1 Load width .8 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]
18,635 18,638
1,320 1,320

T24 164 x 260 B 2 Cf=1,00 Design method: Allowable stress design Increasing factor of the allowable stress 1,02 Factored Moment/Moment capacity [kNm] 10,291 18,058 57 % Factored shear force/shear capacity [kN] 18,635 27,781 67 %

Deflection due to unfactored load (Deflection limit L/240) 2,2 mm (16 %)

Load factor of dead load= 1 Load factor of imposed load= 1 Load width 1 (m) (by which the loads has been multiplied during calculation)

Max/Min reactions of beam [kN]
72,129 183,569 157,527 53,649
1,369 6,467 2,843 0,113

L40 305 x 430 B 2 Cf=0,96 Design method: Allowable stress design Increasing factor of the allowable stress 1,02 Factored Moment/Moment capacity [kNm] 42,822 136,980 31 % Factored shear force/shear capacity [kN] 99,519 102,361 97 %

6L (190 + 115) x /7

Deflection due to unfactored load (Deflection limit L/240) 1,2 mm (12 %) 0,4 mm (4 %) 0,9 mm (9 %)

Beam Id: Lot#80 - RB Structural Engineer:

Date 03-09-2019

HEA 200 (Class of section=1/1) G= 42,3 I(cm4)=3692 W(cm3)=389 fy=235 Factored Moment/Moment capacity [kNm] 67,373 101,050 67 % Factored shear force/shear capacity [kN] 156,439 164,970 95 %

Deflection due to unfactored load (Deflection limit L/240) 2,6 mm (26 %) 1,0 mm (9 %) 2,0 mm (20 %) Attention! Ultimate limit design! Remember the load factors!!

Lot 80 => 2500 PSF Lot 86R => 3400 PSF

SOIL PRESSURE REDROCK "?

1000 8	12400	The second secon
	BYRN	
MAX LOAD	MOLE	135,5 VV/m
WF 1-8	Sing Sides	69/2 KN/m
WF2	=	83,1
WF 215	>	103,9
WF 3	7	124,5
WF 3,5	Δ	145,5
WF4	7.	166,3
WF 4,5	-	187,7
WF 5	eligiber ^a	207,9
WF6	State .	249,6

MAK LOAD	MELE	2800 BGD. 136,5 Kes/m2
F3 :		M4,2 KW
F3,5	=	155,5
FY		203, t
F45	=	257,0
F5	¥	317,4
F 5,5		384,0
F6	c	487,11
F 6,5	tiget tiget	536,3
F 8	Proced Wager	812,6