Plan Review Comments Response

MacKay-Lyons Sweetapple Architects Limited

> 2188 Gottingen Street Halifax, Nova Scotia Canada B3K 3B4 t 902.429.1867 f 902.429.6276

> www.mlsarchitects.ca

Date: 2017.08.14

Project Name: Summit Horizon Neighborhood Unit 4

Total pages: 1 of 2

The following is a formal response to the Plan Review Comments completed by Jason vonWeller (Code), Joe Bingham (Structural), and checked by DeAnn Wilde. August 2, 2017. (Received August 2, 2017)

CODE REVIEW COMMENTS:

- A1. See Geotechnical Report prepared by IGES Geotechnical Engineers.
- A2.
- A. See revised Keynote 1 on Sheet 2.0. See 'Rockery Construction Guidelines' prepared by IGES Geotechnical Engineers.
- A3. See revised cover sheet.
- A4. See sheets A200 and A201 with exterior wall assemblies noted.
- A5. See sheet A100 for revised note with drawing sheet location.
- A6. See sheet A101 for removal of reference to International Building Code.
- A7.
- A. See A900 for window schedule, callouts indicating emergency escape operators and locations of tempered glazing.
- B. See A900 for window/door schedule.
- C. Windows #6,8 and 10 are covered with 'operable wood screens'. See keynote 13 on A301 and plan details 3 and 4 on A500 for further information.
- D. Ramp is connected to building with a bolted connection to knife plate which is attached to steel columns. See detail 12/S4.1 for more information.
- A8. See attached venting and makeup air specifications/cut sheets for use with the Verona Model VCLFSGE365SS range:
 - Cattura D49M Downdraft Vent.
 - Best Model PF6 Flex Blower (600CFM).
 - Broane MD8T 8" Makeup Air Kit.

PLUMBING REVIEW COMMENTS:

- P1.
- A. A single water heater serves both the radiant floor heat and domestic hot water systems.

ELECTRICAL REVIEW COMMENTS:

E1. See Electrical Response.

ENERGY REVIEW COMMENTS:

- N1.
- A. See sheets A001, A500, A510 and A511 for revised assemblies list.
- B. See sheets A001, A500, A510 and A511 for revised assemblies list.
- C. See revised square footage on Rescheck submittal.
- N2. See sheet A900 Notes 1-7 for U-factors and Note 21 for testing and labelling.
- N3. See Sheet A001 for note of postage of permanent certificate.
- N4. See sheets A001, A500, A510 and A511 for revised assemblies list with clarification on air and vapor barrier.

STRUCTURAL REVIEW COMMENTS:

S1. See Structural Response.

END OF RESPONSE

VERTEX™ Complete Capture Design technology ventilates as well as an island hood.

Up to 35% quieter operation than any other downdraft.

Long-lasting LED lighting technology means lamps may never need replacement.

10-minute time-delay shut-off feature and reminder light for filter maintenance.

Works with optional Automatic Make-Up Air Dampers.

Our VERTEX™ Complete Capture Design technology performs as well as an island hood.

An LED light bar evenly illuminates the entire cooking surface.

A touch of a button raises or lowers the 18" downdraft.

Sleek, easy-to-clean touch-control panel.

An optional remote control button raises or lowers the downdraft as needed.

Hood Sizes

Widths	30", 36", 48"
Depth	2-1/4"
Finish	
Stocked	Brushed Stainless Steel
Special Order	Not Available
Features	
Lighting Type	LED, 7W (30"); 14W (36"); 18W (48")
Lighting Levels	2
Lighting Lamps Included	Yes
Control Type	4-speed Capacitive Glass
Control Features	Heat Sentry™, Delay Off, Filter Timer
Remote Control	Optional ACRD
Filter Type	Mesh Grease Filter
Non-ducted Capability	Yes

Hood Blower Options (Must choose one blower sold separately)

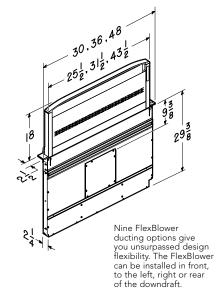
Internal	PF6					
FlexBlower CFM	600					
Sones	8.8					
External In-Line	ILB3	ILB6	ILB9	ILB11		
Max CFM	280	600	800	1100		
Sone levels are typically half of comparable CFM internal blowers.						
External Exterior	EB6	EB9	EB12	EB15		
Max CFM	600	900	1200	1500		
Sone levels are typically half of co	omparab	le CFM int	ernal blov	wers.		

Accessories*

Non-ducted Recirculating Kit	ANKD
Transition to 8" Round	AVDKD8
Transition to 10" Round	AVDKD10
Charcoal Filter	AFCD

ATKD30SB, ATKD36SB, ATKD48SB Range Trim Kit

Automatic MUA Damper MD6T, MD8T, MD10T (Requires Fresh Air Inlet) Fresh Air Inlet 641FA, 643FA, 610FA

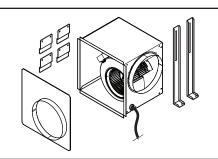

*Visit BESTRangeHoods.com to access the Cattura Downdraft Installation Parts Guide for information on parts and accessories.

Installation Requirements

Amps @ 120V: Internal Blower	6.0 Max
Electrical	Plug In
Duct Size: Internal Blower	8"
Duct Size: External Blower	10" at hood

Front, Left, Right, Rear or Down **Duct Direction**

Backdraft Damper Not Included



SPECIFICATION SHEET

MODEL PF6 FLEX BLOWER for D49 Series Downdraft

400

Flex Blower System enables multiple positioning option when used with D49 Series Downdraft. Opens up a whole new way to look at kitchen design.

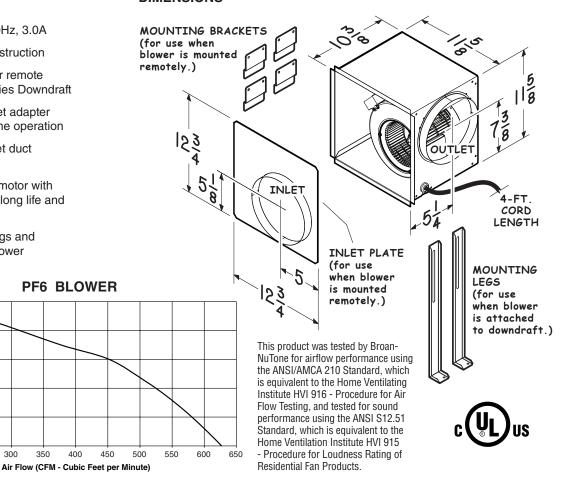
FEATURES

- 600 cfm, 120VAC, 60Hz, 3.0A
- Galvanized steel construction
- Designed for direct or remote mounting to D49 Series Downdraft
- Includes 8" round inlet adapter plate for remote, in-line operation
- Built-in 8" round outlet duct connection
- Thermally-protected motor with ball bearing shaft for long life and quiet operation
- Includes mounting legs and brackets to secure blower

2.5

2.0

1.0

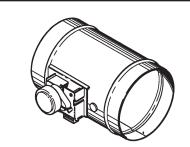

0.0

Static Pressure Inches of Water Gauge)

H20 0.5

Ë

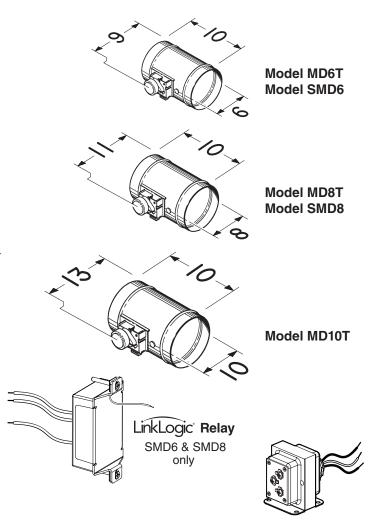
DIMENSIONS


BEST Hartford, Wisconsin www.BestRangeHoods.com 800-558-1711 BEST Drummondville, QC, Canada www.BestRangeHoods.com 866-737-7770

QTY.	REMARKS	Project	
		Location	
		Architect	
		Engineer	
		Contractor	
		Submitted by	Date
	QTY.	QTY. REMARKS	Location Architect Engineer Contractor

61B 99045650A

AUTOMATIC MAKE-UP AIR DAMPER


Broan's Automatic Make-up Air Damper provides interlocked damper operation so outside air is only allowed to enter the house when a connected fan or hood is operating.

Model MD6T (for 6" round duct) Model MD8T (for 8" round duct) Model MD10T (for 10" round duct)

- 24 Volt, 60 Hz AC motor
- Normally closed damper
- Automatically opens when exhaust fans are activated
- Foam seals minimize air leakage
- 24 gauge galvanized steel construction
- Damper adjustment screw for balancing adjustments
- Compatible with select Broan and BEST range hoods
- Use with Fresh Air Inlet Model 641FA for 6" dampers, Fresh Air Inlet Model 643FA for 8" dampers or Fresh Air Inlet Model 610FA for 10" dampers (sold separately)
- Includes 24 Volt 20VA transformer

Model SMD6 (for 6" round duct) Model SMD8 (for 8" round duct)

- Same features as Model MD6T and Model MD8T except includes LinkLogic relay
- Compatible with Broan fans and BEST range hoods equipped with LinkLogic devices
- Requires no special wiring to range hoods or fan enabled with LinkLogic. Communicates over existing power lines
- LinkLogic relay fits single-gang box

Broan-NuTone LLC Hartford, Wisconsin www.broan.com 800-558-1711

REFERENCE	QTY.	REMARKS	Project	
			Location	
			Architect	
			Engineer	
			Contractor	
			Submitted by	Date

Transformer
Included with all
models

1887 North 1120 West, Provo, Utah 84604 - (ph) 801.356.1140. (fax) 801.356.0001

August 14, 2017

Mike Molyneux Plan Reviewer

Re:

Summit Horizon (Powder Mountain)

2500 sq. ft. plan (Unit 4)

The following responses are to plan review comments from the structural portions of the plan review dated August 2, 2017.

S1 The detail callout has been revised from 7/S4.3 to 7/S4.2. S2, A, B Straps and blocking have been added to details 7 and 8/S4.1. S3 An additional A34 has been added to the back side of each block. S4A In detail 2/S5.1, the label for the 2-ply truss has been revised to read "header truss". The floor framing shown in details 7 and 8/S5.2 is for a very small loft S4-B, C generating minimal forces. To avoid cross grain bending in the ledgers, however, positive tension attachments have been added. S5 See attached sheets showing that the main floor diaphragm where the offset occurs has capacity with the required 25% increase included. Also see attached sheet showing 1FB1 is still adequate with the holdown force applied multiplied by an omega factor of 3. **S**6 See attached calculation for 1FB7 showing the same results for AISC 360-

10 analysis.

See attached wind analysis. We have visited the site and there is enough S7 forest and up and down hills around the site to qualify for an Exposure B. The attached calculations, however, show that seismic governs for both Exposure B and C wind.

> As clarification to architectural comment A7-D, detail 12/S4.1, referenced on S2.2, shows how the bridge structure connects to the building structure.

Respectfully,

Jay D. Adams, SE

Dynamic Structures, Inc.

MAIN LEVEL DIAPHRAGM WHERE LATERAL SYSTEMS ARE

AT GOLD LINES I'TO I AND 5' TO 5

$$\begin{aligned} F_{psl_X} \coloneqq & \begin{bmatrix} F_{pslmin_X} & \text{if} & F_{psl_X} < F_{pslmin_X} \\ F_{pslmax_X} & \text{if} & F_{psl_X} > F_{pslmax_X} \\ F_{psl_X} & \text{otherwise} \end{bmatrix} \end{aligned}$$

$$\mathsf{F}_{\mathsf{psl}_{4}} = \mathbf{1} \cdot \mathsf{plf}$$

$$F_{DS|_2} = 308.5 \cdot plf$$
 (Story 3)

$$F_{psl_1} = 198.1 \cdot plf$$


UNBLOUGED FLOOR DIAPHRAGE W/ 6" NAILING INCLUSING ATTACHMENT INTO PERIMEDE NAILING 4.F. 785PLF Calculate the Diaphragm Design Force (perpendicular to D) per Section 12.10.1.1:

$$F_{psd_{x}} := \frac{\sum_{i=x}^{N} F_{s_{i}}}{\sum_{i=x}^{N} w_{i}} \cdot \left(\frac{wd_{x}}{d_{x}} + 2 \cdot ww_{x}\right)$$
 (Equation 12.10-1)

$$F_{psdmin_{x}} := 0.2 \cdot S_{ds} \cdot I_{e} \cdot \left(\frac{wd_{x}}{d_{x}} + 2 \cdot ww_{x} \right)$$

$$\textbf{F}_{psdmax_{X}} \coloneqq \textbf{0.4} \cdot \textbf{S}_{ds} \cdot \textbf{I}_{e} \cdot \left(\frac{\textbf{wd}_{x}}{\textbf{d}_{x}} + \textbf{2} \cdot \textbf{ww}_{x} \right)$$

$$\begin{aligned} \textbf{F}_{psd_X} \coloneqq & \begin{bmatrix} \textbf{F}_{psdmin_X} & \textbf{if} & \textbf{F}_{psd_X} < \textbf{F}_{psdmin_X} \\ \textbf{F}_{psdmax_X} & \textbf{if} & \textbf{F}_{psd_X} > \textbf{F}_{psdmax_X} \\ \textbf{F}_{psd_X} & \textbf{otherwise} \end{bmatrix} \end{aligned}$$

(Story 3)

(Story 2)

$$F_{psd_1} = 450.8 \cdot plf$$

(Story 1)

Engineer: Descript: 1FB1 WITH OMEGA Page # ____ 8/14/2017

ASDIP Steel 4.1.2

STEEL BEAM DESIGN

www.asdipsoft.com

GEOMETR	RY					PRO	PERTIES		
Beam Designation	W12X3	0		Area	8.8	in²	Sx	38.6	in³
Steel Yield Strength Fy	50.0	ksi	OK	Depth	12.3	in	Zx	43.1	in³
Modulus of Elasticity Es	29000	ksi		bf	6.5	in	rx	5.21	in
Member Length L	26.00	ft		tw	0.26	in	ly	20.3	in⁴
Left Cantilever	0.00	ft		tf	0.44	in	Sy	6.2	in³
Right Cantilever	0.00	ft		k des .	0.74	in	Zy	9.6	in³
Unbraced Length Lb top	16.00	ft		lx	238.0	in⁴	ry	1.52	in
Unbraced Length Lb bot	26.00	ft		Cw	720.0	in⁵	J	0.46	in⁴

UNFACTORED LOADS (Selfweight calculated internally)

	Unifor	n (k/ft)		(Concent	rated (ki	0)		Mome	nts (k-ft)
SPAN 1	w1	w2	P1	P2	P3	P4	P5	P6	ML	MR
Const. Dead Load .	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Const. Live Load	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dead Load	0.35	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Live Load	0.35	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Roof Live Load	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Snow Load	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind Load	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Seismic Load	0.00	0.00	(5.3)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Start Distance (ft)	0.00	0.00	13.00	0.00	0.00	0.00	0.00	0.00		
End Distance (ft)	26.00	0.00	/							

From 1257 US ASD HOLDOWN

UPLIFT FORCE 1.4 (1257-LAS) (3) = 5300 LBS,

Engineer:

Page # ____ 8/14/2017

Descrip: 1FB1 WITH OMEGA

ASDIP	Steel	4	1	2

STEEL BEAM DESIGN

www.asdipsoft.com

FLEXURE DESIGN (S	STEEL)	
L. T. Buckling Cb-factor	1.24	
Max. Bending Moment M	99.5	k-ft
Limit States	Nomin	al Mn
Yielding	179.6	k-ft
Lateral Torsional Buckling	134.4	k-ft 🛚
Flange Local Buckling	N.A.	k-ft
Web Local Buckling	N.A.	k-ft
Nominal Strength Mn	120.9	k-ft
Resistance Factor φ	0.90	
Design Strength φMn	120.9	k-ft
M / φMn Design Ratio	0.8	2(OK)

FLEXURE DESIG	N (COMPOSITE)
---------------	---------------

Overall Slab Thickness	N.A			
Interior Beam. Spacing = 5.0	ft			
Effective Slab Width	N.A			
Concrete Strength f'c	N.A			
Concrete Density	N.A			
Metal Deck Type	None None			
Deck Ribs Height hr	N.A			
Deck Ribs Avg. Width wr	N.A			
No Metal Deck specified for this Beam				
Max. Bending Moment M	N.A			
Limit States	Nominal Mn			
Plastic Yielding	N.A			
Elastic Yielding	N.A.			
Nominal Strength Mn	N.A			
Resistance Factor φ	0.90			
Design Strength φMn	N.A			
M / φMn Design Ratio	N.A			

DEFLECTIONS

Stiffness fa	ctor		1.0		
Required Camber			0.00	in	
Long-term Deflection			N.A.		
Loading	δ (in)	L/δ	L/δ Min	<u>Ratio</u>	
CL	0.00	9999	360	0.04 / OK	
CD+CL .	0.04	6981	240	0.03/ OK	
L	0.52	598	360	0.60 OK	
D+I	1 09	287	240	0.84 OK	

DESIGN FOR SHEAR						
1.00						
13.2	kip					
Nomina	l Vn					
95.9	kip	0				
95.9	kip					
95.9	kip					
1.00						
95.9	kip					
0.1	4 (OK - 3				
	1.00 13.2 Nomina 95.9 95.9 95.9 1.00 95.9	1.00 13.2 kip Nominal Vn 95.9 kip 95.9 kip 95.9 kip 1.00				

LOCAL BUCKLING

Flanges in Flexure	Compact
Flanges in Compression	Non-compact
Web in Flexure	Compact
Web in Compression	Non-compact

SHEAR CONNECTORS

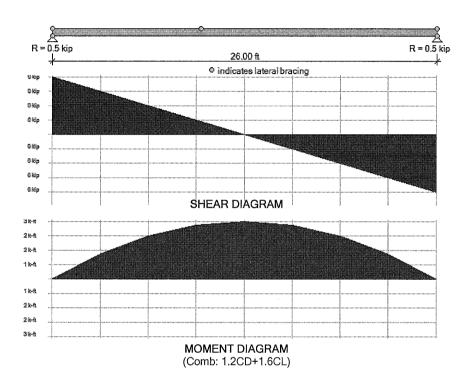
Shear Stud Diameter	N.A
Shear Stud Length	N.A
Tensile Strength Fu	N.A
Nominal Strength Qn	N.A
Horizontal Shear Force	N.A
# of Studs for Full Composite	N.A
# of Studs for Partial Composite	N.A
Partial Composite Action %	N.A
Minimum Spacing Allowed	N.A
# of Studs at Any Section	N.A
Max. Spacing Required	N.A

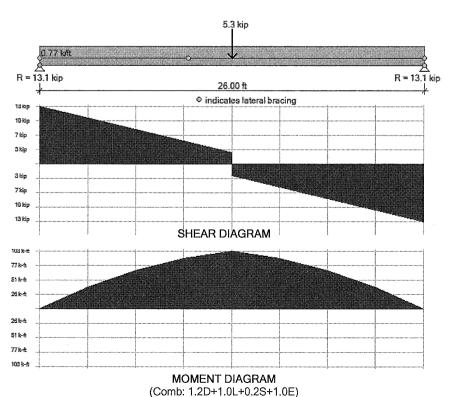
DESIGN CODES

Steel Design	AISC 360-10 (14th Ed.)
Load Combinations	ASCE 7-10

AU STILL O.K,

Project: Engineer:


Descrip: 1FB1 WITH OMEGA


Page # ____

ASDIP Steel 4.1.2

STEEL BEAM DESIGN

www.asdipsoft.com

Engineer. Descrip: 1FB7 Page # ____ 8/14/2017

ASDIP Steel 4.1.2

STEEL BEAM-DESIGN

www.asdipsoft.com

GEOMETR		PROPERTIES						
Beam Designation	W12X26		Area	7.7	in²	Sx	33.4	in³
Steel Yield Strength Fy	50.0 ks	si OK	Depth	12.2	in	Zx	37.2	in³
Modulus of Elasticity Es	29000 ks	si	bf	6.5	in	rx	5.17	in
Member Length L	14.00 ft		tw	0.23	in	ly	17.3	in⁴
Left Cantilever	0.00 ft		tf	0.38	in	Sy	5.3	in³
Right Cantilever	4.00 ft		k des .	0.68	in	Zy	8.2	in³
Unbraced Length Lb top	0.00 ft		lx	204.0	in⁴	ry	1.51	in
Unbraced Length Lb bot	14.00 ft		Cw	607.0	in ⁶	J	0.30	in ⁴

	UNFACTORED LOADS (Selfweight calculated internally)										
	Uniforr	n (k/ft)		(Concen	trated (ki	0)		Mome	Moments (k-ft)	
SPAN 1	w1	w2	P1	P2	P3	P4	P5	P6	ML	MR	
Const. Dead Load .	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Const. Live Load	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Dead Load	0.70	0.00	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Live Load	2.60	0.00	11.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Roof Live Load	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Snow Load	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Wind Load	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Seismic Load	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Start Distance (ft)	0.00	0.00	13.00	0.00	0.00	0.00	0.00	0.00			
End Distance (ft)	14.00	0.00									
R CANT	w1	V	v2 P	1	P2		⊃3	P4		P5	
Const. Dead Load .	0.00	0.00	0.0	(0.0	0.0	0.0	0	.0	0.0	
Const. Live Load	0.00	0.00	0.0	(0.0	0.0	0.0	0	.0	0.0	
Dead Load	0.70	0.00	1.8	(0.0	0.0	0.0	0	.0	0.0	
Live Load	2.60	0.00	11.9	(0.0	0.0	0.0	0	.0	0.0	
Roof Live Load	0.00	0.00	0.0	(0.0	0.0	0.0	0	.0	0.0	
Snow Load	0.00	0.00	0.0	(0.0	0.0	0.0	0	.0	0.0	
Wind Load	0.00	0.00	0.0	(0.0	0.0	0.0	0	.0	0.0	
Seismic Load	0.00	0.00	0.0	(0.0	0.0	0.0	. 0	.0	0.0	
Start Distance (ft)	0.00	0.00	4.00	0.	00	0.00	0.00	0.0	00	0.00	
End Distance (ft)	4.00	0.00									

P6

Engineer:

Page # ____ 8/14/2017

Descrip: 1FB7

Δ	SD	IP	Steel	14	1	2
~	C 31. J		OLCO	~~·	• • •	

STEEL BEAM DESIGN

www.asdipsoft.com

FLEXURE DESIGN (STEEL)						
L. T. Buckling Cb-factor	1.87					
Max. Bending Moment M	-125.1	k-ft				
Limit States	Nomin	al Mn				
Yielding	155.0	k-ft 🛚				
Lateral Torsional Buckling	155.0	k-ft				
Flange Local Buckling	N.A.	k-ft				
Web Local Buckling	N.A.	k-ft				
Nominal Strength Mn	139.5	k-ft				
Resistance Factor φ	0.90					
Design Strength φMn	139.5	k-ft				
M / φMn Design Ratio	0.9	0 OK				

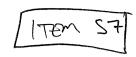
Overall Slab Thickness	N.A				
Interior Beam. Spacing = 5.0 i	ft				
Effective Slab Width	N.A				
Concrete Strength f'c	N.A				
Concrete Density	N.A				
Metal Deck Type	None None				
Deck Ribs Height hr	N.A				
Deck Ribs Avg. Width wr	N.A				
No Metal Deck specified for this Beam					
Max. Bending Moment M	N.A				
Limit States	Nominal Mn				
Plastic Yielding	N.A				
Elastic Yielding	N.A.				
Nominal Strength Mn	N.A				
Resistance Factor	0.90				
Design Strength φMn	N.A				
M / φMn Design Ratio	N.A				

DEFLECTIONS

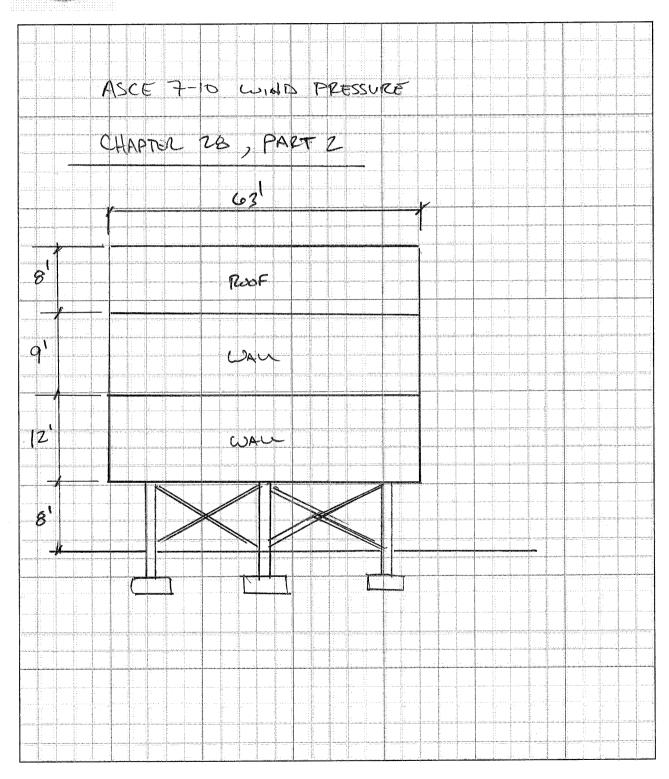
Stiffness fa	ctor	1.0		_	
Required C	amber .	0.00	0.00 in		
Long-term Deflection			N.A.		
Loading	δ (in)	L/δ	L/δ Min	Ratio	
CL	0.00	4800	180	0.04	OK
CD+CL .	0.00	4800	120	0.02	OK
L	0.17	985	360	0.37	OK
D+L	0.23	720	240	0.33	OK

DESIGN FOR SH	<u>EAR</u>		
Shear Coefficient Cv	1.00		
Maximum Shear Force V	62.6	kip	
Limit States	Nominal	Vn	
Shear Yielding	84.2	kip	
Shear Buckling	84.2	kip	
Nominal Strength Vn	84.2	kip	
Resistance Factor φ	1.00		
Design Strength φVn	84.2	kip	
V / φVn Design Ratio	0.74	ļ	OK

LOCAL BUCKLING


Flanges in Flexure	Compact
Flanges in Compression	Non-compact
Web in Flexure	Compact
Web in Compression	Non-compact

SHEAR CONNECTORS


Shear Stud Diameter	N.A
Shear Stud Length	N.A
Tensile Strength Fu	N.A
Nominal Strength Qn	N.A
Horizontal Shear Force	N.A
# of Studs for Full Composite	N.A
# of Studs for Partial Composite	N.A
Partial Composite Action %	N.A
Minimum Spacing Allowed	N.A
# of Studs at Any Section	N.A
Max. Spacing Required	N.A

DESIGN CODES

Steel Design	AISC 360-10 (14th Ed.)
Load Combinations	ASCE 7-10

JOB	
SHEET NO	OF
CALCULATED BY	DATE

JOB	100 mm and	
SHEET NO	OF	
CALCULATED BY	DATE	

1/5	MPA, EXP	5 E		
Vz+		NOT ON AU ESCARPMENT SME.		HILL OR HILLS AROUND
		7:17 = 3 72 - EXP B	0	
	FIGURE ZB	- 6-1 = 18.8 PSF	(ILPSE	Miss
Roof !	Passuas =	: 12,9 PSF	(&P8F)	MIN)

JOB	
SHEET NO	OF
CALCULATED BY	DATE

Upper	U5167 64262	SHEAR (AUS)	
4 01	F Roof Ant 7.	s of wav	
		SF) + 4.5 (18.8PSP)	
	5148 WS ((12,500 US\$ \$615MIC	
	LOVAL BASE SE		
	0.6 [10,5] (19		
	= 7462 105 (=	sza ur sermic)	
	= 5148+7462	i Lever Stepr w	+48(3
SEISMIC	= 12,500 + 53	00 = 17, 800 485	

JOB	
SHEET NO	OF
CALCIII ATED RY	DATE

, bobso,	BASE S	Henry to	BRACE	> FR/	tm es ((ALA)	\
ADDITION	394 C) cr u	OAL				
V - =	0.6	(6)/(18	8PSF\(6	3/3=	9264	AS,	
_ 7578 C	2-ASE	Shar	00 EG	ACO'S	Flames) [6	₩, C , CH:
(3) (3)	12,610	+ 421	,4 = 16	8740	ß	ø	
			(.	20UL₽B	£ ×1,%'	7 2	
SESMIC -	= (25) 10	20 US,		22,778 STUC	1 UNS FY	17000 1463 7	د, سر /
30%,0				, li			
	Fibol	TSR WES	. SEISM	IIC D>	CONT	٥٧	
phar	しとて						

Memorandum

To: Dave Grandstaff

Salmon Electric

CC:

From: Calvin De St. Jeor Date: August 15, 2017

Re: Powder Mountain 2500 Cabin - County Review Response

E1. Sheet E303:

- A. Have added dimension to all floor box next to the walls, to show that they will be installed within 18" of the walls.
- B. Ensured that devices in laundry area are being shown as GFCI devices.
- C. Have added combo smoke/carbon monoxide as needed.
- D. Have added combo smoke/carbon monoxide as needed.
- E. Added a General Sheet note addressing the required tamper-resistant devices.