SUMMIT AT POWDER MOUNTAIN SUBDIVISION PHASE 1C AND D1 SUPPLIMENT TO MAY 2013 DRAINAGE SUMMARY

POWDER MOUNTAIN RESORT EDEN, UTAH

DECEMBER 2013

NV5
5217 SOUTH STATE STREET, SUITE 300
MURRAY, UT 84107
801.743.1300 TEL 801.743.0300 FAX
WWW.NV5.COM

Site Description

The proposed development at Powder Mountain Resort east of Eden Utah is an extension of the planned communities that branch off of Summit Pass. These developments include Summit Pass, Copper Crest Road, Spring Park Road, Merdian Avenue, Rolling Drive, and Daybreak Ridge. Phase IC Subdivision includes 17 single family lots along the south and west side of Summit Pass, 19 single family lots along the south and west side of Copper Crest Road, and 24 single family lots on Spring Park. Phase 1D subdivision includes 20 single family lots along Rolling Drive and 1 nest cabin parcel on Daybreak Ridge. The nest parcel will contain approximately 20 small cabins, approximately 400 square feet each. The majority of storm drainage for the site has historically been conveyed overland in the southwesterly directing into Lefty's Canyon. With the usage of curb and gutter, roadside ditches, catch basins, and culverts drainage will be conveyed through the site.

Drainage Analysis

Analysis of the proposed developments has been carried out with the same method as was used for the Summit Pass and Spring Park Study dated May 2013. This analysis is intended as a supplement and update to that study, and in this report the hydrology will not be repeated. In summary of the May 2013 report, the hydrology for the proposed development was calculated using the SCS Method. This methodology was input into Haestad Method's PondPack to calculate storm discharge rates. Landuse consists of pavement, grass, meadows, forestry and gravel roads. Time of Concentration was calculated using the Technical Release 55 Method. Rainfall depths were determined using the National Oceanic and Atmospheric Administration (NOAA) website. Weber County requires drainage infrastructure to convey 10-year 2 hour storm events and discharge stormwater at a release rate such that post development discharge is less than pre development discharge. Soil maps for SCS Methodology have been provided by the *United States Department of Agriculture (USDA) Natural Resources Conservation Service (NCRC) Web Soil Survey*.

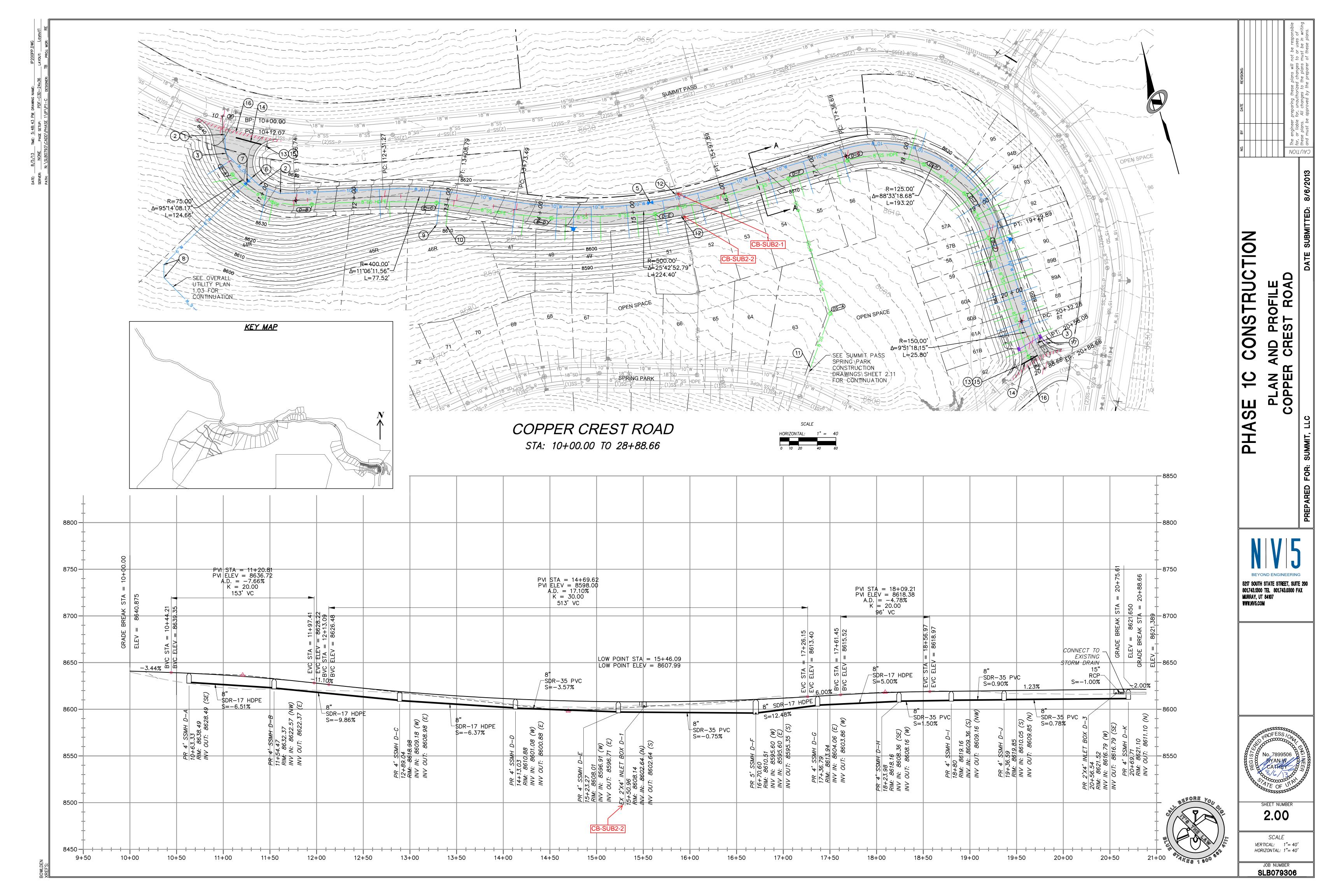
All hydrology for Phase 1C and 1D has been considered in the Summit Pass and Spring Park Drainage Study. The storm drain line from Summit Pass, which passes through Copper Crest Road, in Phase 1C, and connects to the middle of Spring Park from the initial study is intended to be utilized for Copper Crest Road. Copper Crest Road traverses the hill side between the two roads and although some of the runoff flows overland through the development it is either captured on Copper Crest Road or Spring Park. Two catch basins will be installed in the sag and approximate middle of Copper Crest Road and will tie into the existing connection which was already size to carry the existing flow of Copper Crest Road. The new nodes are noted in exhibits and tables as CB-Sub2-1 and CB-Sub2-2. The inlets were analyzed and it was determined that CB-Sub2-2 should be a double inlet. There is no other stormwater management infrastructure needed for Copper Crest Road.

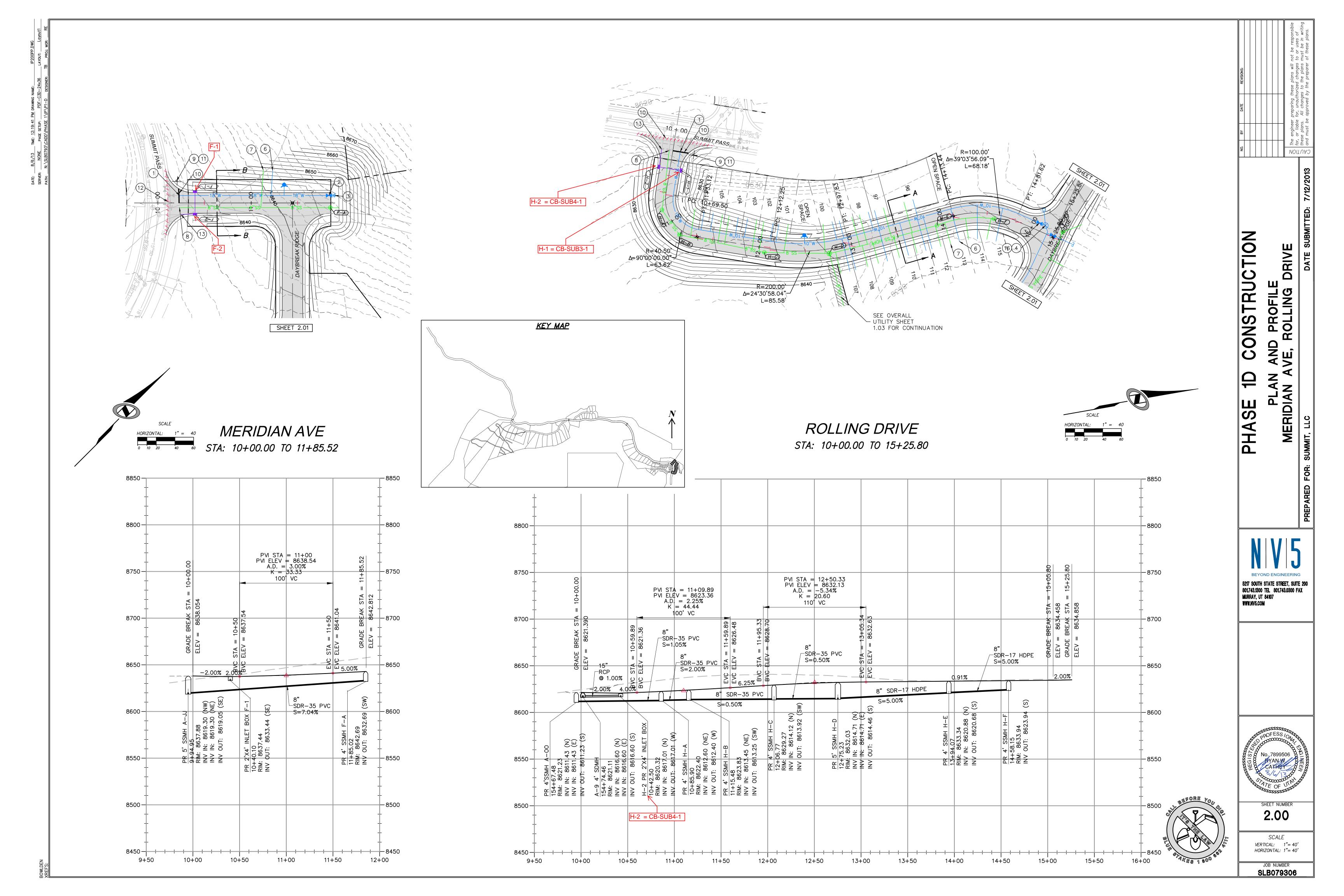
Phase 1D has three locations of catchments the first being the south end of Rolling Drive as it intersects Summit Pass. There is an existing connection for the two catch basins, CB-Sub3-1 and CB- Sub4-1, for which the hydrology was previously analyzed in the May 2013 Study. In this analysis the size of the grates were analyzed for adequate capacity and to minimize spread. The inlets were analyzed and it

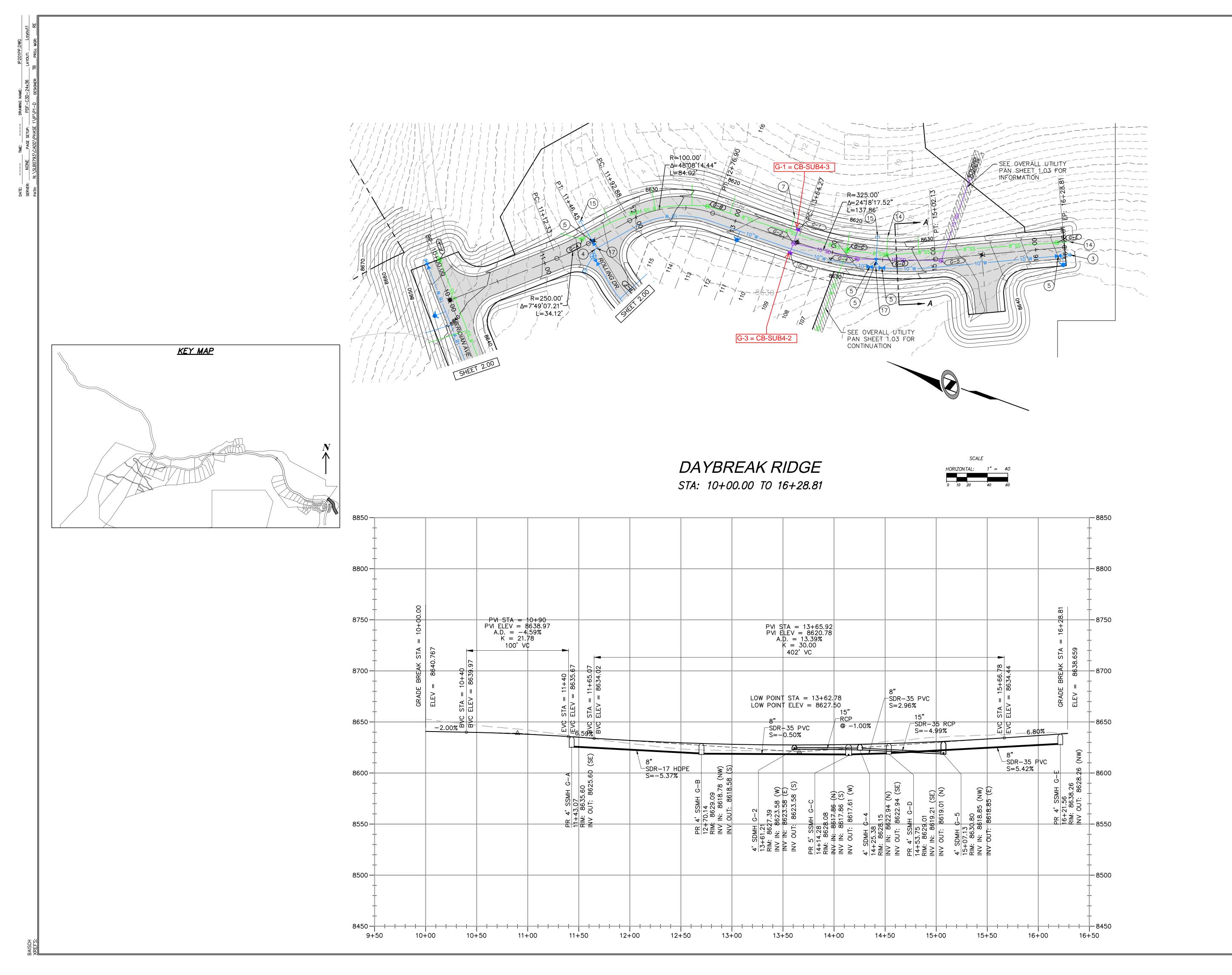
was determined that CB-Sub4-1 should be a double inlet. There is no other stormwater management infrastructure needed for Rolling Drive.

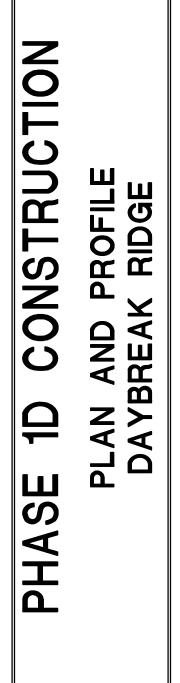
Daybreak Ridge has a sag in the roadway roughly the middle of this phase of the road. There is an existing connection for the two catch basins, CB-Sub4-2and CB- Sub4-3, for which the hydrology was previously analyzed in the May 2013 Study. The inlets were analyzed and it was determined that a single inlet is adequate for both catch basins. There is no other stormwater management infrastructure needed for Daybreak Ridge.

Meridian Ave is a short road leading off to the northeast from Summit Pass. There is an existing connection for the two catch basins however it is not part of this model since they were analyzed in the May 2013 report. These two inlets are shown on Sheet 2.00 of the Phase 1D Construction Plans in the appendix. The inlets were analyzed and it was determined that inlet F-1 should be a double inlet and F-2 could remain a single. There is no other stormwater management infrastructure needed for Rolling Drive.

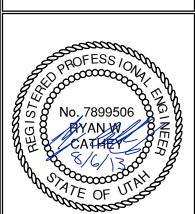

Pipe networks and culverts were sized using Haestad Method's StormCAD and FlowMaster. In the May 2013 report detention ponds 1 and 2 were sized and designed to accommodate all area tributary to Phase 1C and Phase 1D. The results of this analysis identified the Detention Pond 2 required a small volume and orifice to meet discharge requirements. The development team and Weber County Engineering agreed that this condition is problematic to due the remoteness of the site and high probability of problems with the small orifice. Therefore, it was agreed that Pond 2 will have no volume and Pond 1 will over detain to compensate for the free release of the area tributary to Pond 2. See the May 2013 report for all design calculations associated with Pond 1 and Pond 2(no volume). Since the initial study shows that runoff volumes for all of this phase, there will be no need for any increased stormwater detention for the improvements of Summit Pass, Copper Crest Road, Spring Park Road, Merdian Avenue, Rolling Drive, and Daybreak Ridge.


APPENDICES


1. Network Calculations


- a. Village Subareas (From May Report)
- b. Sheet 2.00 of the Phase 1C Construction Plans
- c. Sheet 2.00 through 2.01 of the Phase 1D Construction Plans
- d. Haestad Method's StormCAD Summary Report
- e. Haestad Method's StormCAD Network Layout (3 pages)
- f. Haestad Method's StormCAD Catch Basin Table
- g. Haestad Method's StormCAD Conduit Table
- h. Haestad Method's StormCAD Manhole Table
- i. Haestad Method's FlowMaster calculations for each inlet

FILENAME: N:\SLB0153\G\S\WXD\StormDrain\MOB\D3MOBIntCBAreas.m



BEYOND ENGINEERING

5217 SOUTH STATE STREET, SUITE 200
801.743.1300 TEL 801.743.0300 FAX
MURRAY, UT 84107
WWW.NV5.COM

SHEET NUMBER
2.01

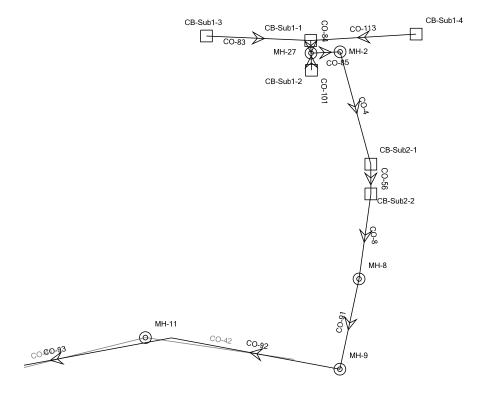
SCALE
VERTICAL: 1"= 40'
HORIZONTAL: 1"= 40'

JOB NUMBER
SLB079306

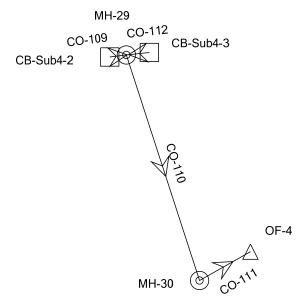
Scenario Summary Report Scenario: Base

Scenario Summary			
ID	1		
Label	Base		
Notes			
Active Topology	Base Active To		
User Data Extensions	Base User Dat	a Extensions	
Physical	Base Physical		
Boundary Condition	Base Boundary	y Condition	
Initial Settings	Base Initial Se	ttings	
Hydrology	Base Hydrolog	ic	
Output	Base Output		
Infiltration and Inflow	Base Infiltration	on and Inflow	
Rainfall Runoff	Base Rainfall F	Runoff	
Water Quality	Base Water Qu	uality	
Sanitary Loading	Base Sanitary	Loading	
Headloss	Base Headloss		
Operational	Base Operatio	nal	
Design	Base Design		
System Flows	Base System F		
Solver Calculation Options	Base Calculation	on Options	
Calculation Options			
Calculation Type	Analysis	Minimum Time of	
odiculation Type	Allarysis	Concentration	5.000 min
0 % 11 1 1			
Gravity Hydraulics			
Maximum Network Traversals	5	Governing Upstream Pipe	Pipe with
		Governing Upstream Pipe Selection Method	Maximum QV
Maximum Network Traversals Flow Convergence Test	5 0.001		Maximum QV Hydraulic
	0.001 Backwater	Selection Method	Maximum QV
Flow Convergence Test Flow Profile Method	0.001 Backwater Analysis	Selection Method Structure Loss Mode Save Detailed Headloss Data?	Maximum QV Hydraulic Grade False
Flow Convergence Test Flow Profile Method Number of Flow Profile Steps	0.001 Backwater	Selection Method Structure Loss Mode Save Detailed Headloss Data? Gravity Friction Method	Maximum QV Hydraulic Grade
Flow Convergence Test Flow Profile Method	0.001 Backwater Analysis	Selection Method Structure Loss Mode Save Detailed Headloss Data?	Maximum QV Hydraulic Grade False
Flow Convergence Test Flow Profile Method Number of Flow Profile Steps Hydraulic Grade Convergence	0.001 Backwater Analysis 5	Selection Method Structure Loss Mode Save Detailed Headloss Data? Gravity Friction Method Use Explicit Depth and Slope	Maximum QV Hydraulic Grade False Manning's False
Flow Convergence Test Flow Profile Method Number of Flow Profile Steps Hydraulic Grade Convergence	0.001 Backwater Analysis 5 0.00 ft	Selection Method Structure Loss Mode Save Detailed Headloss Data? Gravity Friction Method Use Explicit Depth and Slope Equations?	Maximum QV Hydraulic Grade False Manning's
Flow Convergence Test Flow Profile Method Number of Flow Profile Steps Hydraulic Grade Convergence Test Average Velocity Method	0.001 Backwater Analysis 5 0.00 ft Actual	Selection Method Structure Loss Mode Save Detailed Headloss Data? Gravity Friction Method Use Explicit Depth and Slope Equations? Ignore Travel Time in Carrier	Maximum QV Hydraulic Grade False Manning's False
Flow Convergence Test Flow Profile Method Number of Flow Profile Steps Hydraulic Grade Convergence Test	0.001 Backwater Analysis 5 0.00 ft Actual Uniform Flow	Selection Method Structure Loss Mode Save Detailed Headloss Data? Gravity Friction Method Use Explicit Depth and Slope Equations? Ignore Travel Time in Carrier	Maximum QV Hydraulic Grade False Manning's False
Flow Convergence Test Flow Profile Method Number of Flow Profile Steps Hydraulic Grade Convergence Test Average Velocity Method	0.001 Backwater Analysis 5 0.00 ft Actual Uniform Flow Velocity	Selection Method Structure Loss Mode Save Detailed Headloss Data? Gravity Friction Method Use Explicit Depth and Slope Equations? Ignore Travel Time in Carrier Pipes? Correct for Partial Area	Maximum QV Hydraulic Grade False Manning's False False
Flow Convergence Test Flow Profile Method Number of Flow Profile Steps Hydraulic Grade Convergence Test Average Velocity Method Minimum Structure Headloss Inlets	0.001 Backwater Analysis 5 0.00 ft Actual Uniform Flow Velocity	Selection Method Structure Loss Mode Save Detailed Headloss Data? Gravity Friction Method Use Explicit Depth and Slope Equations? Ignore Travel Time in Carrier Pipes? Correct for Partial Area Effects?	Maximum QV Hydraulic Grade False Manning's False False False
Flow Convergence Test Flow Profile Method Number of Flow Profile Steps Hydraulic Grade Convergence Test Average Velocity Method Minimum Structure Headloss	0.001 Backwater Analysis 5 0.00 ft Actual Uniform Flow Velocity 0.00 ft	Selection Method Structure Loss Mode Save Detailed Headloss Data? Gravity Friction Method Use Explicit Depth and Slope Equations? Ignore Travel Time in Carrier Pipes? Correct for Partial Area	Maximum QV Hydraulic Grade False Manning's False False

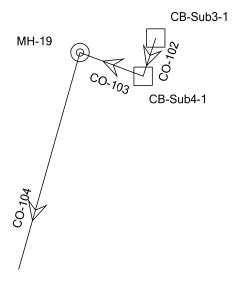
Scenario Summary Report Scenario: Base


Pressure Hydraulics			
Liquid Label	Water at 20C (68F)	Pressure Friction Method	Hazen- Williams
Headloss (AASHTO)			
Expansion, Ke	0.350	Shaping Adjustment, Cs	0.500
Contraction, Kc	0.250	Non-Piped Flow Adjustment, Cn	1.300

Bend Angle vs. Bend Loss Curve


Bend Angle	Bend Loss Coefficient, Kb
(degrees)	

HEC-22 Energy Losses			
Elevations Considered Equal Within	0.50 ft	Consider Non-Piped Plunging Flow?	False
HEC-22 Energy Losses (Second	d Edition)		
Flat Unsubmerged Factor	1.000	Half Bench Submerged Factor	0.950
Flat Submerged Factor	1.000	Full Bench Unsubmerged Factor	0.070
Depressed Unsubmerged Factor	1.000	Full Bench Submerged Factor	0.750
Depressed Submerged Factor	1.000	Improved Bench Unsubmerged Factor	0.035
Half Bench Unsubmerged Factor	0.150	Improved Bench Submerged Factor	0.375
HEC-22 Energy Losses (Third E	dition)		
Flat Submerged Coefficient	-0.050	Half Bench Unsubmerged Coefficient	-0.850
Flat Unsubmerged Coefficient	-0.050	Full Bench Submerged Coefficient	-0.250
Depressed Submerged Coefficient	0.000	Full Bench Unsubmerged Coefficient	-0.930
Depressed Unsubmerged Coefficient	0.000	Improved Submerged Coefficient	-0.600
Half Bench Submerged Coefficient	-0.050	Improved Unsubmerged Coefficient	-0.980


Scenario: Base

Scenario: Base

Scenario: Base

FlexTable: Catch Basin Table

ID	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Capture Efficiency (%)	Flow (Additional Subsurface) (ft ³ /s)	Flow (Total Out) (ft³/s)	Hydraulic Grade Line (In) (ft)
18	CB-Sub1-2	8,631.61	8,631.61	8,628.36	100.0	0.37	0.37	8,629.31
30	CB-Sub2-2	8,607.80	8,607.80	8,604.35	100.0	2.42	10.36	8,605.54
48	CB-Sub6-1	8,548.62	8,548.62	8,545.54	100.0	0.24	0.24	8,545.73
50	CB-Sub6-2	8,545.69	8,545.69	8,542.44	100.0	0.96	0.96	8,542.83
75	CB-Sub5-1	8,608.00	8,608.00	8,604.20	100.0	0.91	0.91	8,604.82
79	CB-Sub5-2	8,608.00	8,608.00	8,604.20	100.0	0.10	0.10	8,604.83
81	CB-Sub4-1	8,620.76	8,620.76	8,616.88	100.0	1.86	3.14	8,617.59
83	CB-Sub3-1	8,620.32	8,620.32	8,617.07	100.0	1.28	1.28	8,617.56
87	CB-Sub2-1	8,608.02	8,608.02	8,604.77	100.0	0.61	7.94	8,605.88
88	CB-Sub1-1	8,631.62	8,631.62	8,628.53	100.0	3.31	6.96	8,629.59
136	CB-Sub6-4	8,543.75	8,543.75	8,540.50	100.0	2.25	2.25	8,543.75
137	CB-Sub6-3	8,544.19	8,544.19	8,540.31	100.0	0.56	2.81	8,544.19
140	CB-Sub1-3	8,632.53	8,632.53	8,629.28	100.0	1.84	1.84	8,629.82
142	CB-Sub1-4	8,632.74	8,632.74	8,629.49	100.0	1.81	1.81	8,630.02
144	CB-Sub4-2	8,626.62	8,626.62	8,623.37	100.0	0.23	0.23	8,623.56
152	CB-Sub4-3	8,627.06	8,627.06	8,623.81	100.0	0.23	0.23	8,624.00

FlexTable: Conduit Table

ID	Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (Scaled) (ft)	Slope (Calculat ed) (ft/ft)	Diam eter (in)	Flow (ft³/s)	Velocity (ft/s)	Depth (Out) (ft)	Capacity (Full Flow) (ft³/s)	Flow / Capacity (Design) (%)	Depth (Normal) / Rise (%)
23	CO-4	MH-2	8,627.50	CB-Sub2-1	8,604.77	111.5	0.203	15.0	7.33	19.75	1.11	29.10	25.2	34.2
32	CO-8	CB-Sub2-2	8,604.35	MH-8	8,571.60	82.2	0.399	15.0	10.36	27.77	0.43	40.82	25.4	34.3
90	CO-35	CB-Sub6-1	8,545.54	MH-23	8,538.30	11.9	0.603	15.0	(N/A)	(N/A)	(N/A)	50.17	(N/A)	(N/A)
91	CO-36	MH-23	8,538.30	CB-Sub6-2	8,542.44	12.3	-0.345	15.0	(N/A)	(N/A)	(N/A)	37.94	(N/A)	(N/A)
93	CO-37	MH-23	8,538.30	OF-1	8,537.80	40.1	0.013	15.0	(N/A)	(N/A)	(N/A)	7.22	(N/A)	(N/A)
98	CO-41	MH-13	8,539.71	MH-11	8,556.79	199.3	-0.086	15.0	(N/A)	(N/A)	(N/A)	18.92	(N/A)	(N/A)
99	CO-42	MH-11	8,556.79	MH-9	8,565.83	143.6	-0.063	15.0	(N/A)	(N/A)	(N/A)	16.18	(N/A)	(N/A)
10 0	CO-43	MH-23	8,538.30	MH-13	8,539.71	141.6	-0.010	15.0	(N/A)	(N/A)	(N/A)	6.44	(N/A)	(N/A)
11 5	CO-56	CB-Sub2-1	8,604.77	CB-Sub2-2	8,604.35	28.5	0.014	15.0	7.94	7.21	1.19	7.77	102.1	84.0
15 4	CO-83	CB-Sub1-3	8,629.28	CB-Sub1-1	8,628.53	99.8	0.008	15.0	1.84	4.09	1.06	5.59	32.9	39.5
15 5	CO-84	CB-Sub1-1	8,628.53	MH-27	8,628.23	12.1	0.025	15.0	6.96	8.95	1.08	10.21	68.1	60.6
15 6	CO-85	MH-27	8,628.23	MH-2	8,627.50	27.8	0.026	15.0	7.33	9.20	0.82	10.43	70.3	61.8
16 2	CO-91	MH-8	8,571.60	MH-9	8,565.83	88.4	0.066	15.0	10.36	14.23	0.72	16.54	62.6	57.4
16 3	CO-92	MH-9	8,565.83	MH-11	8,556.79	163.7	0.055	15.0	10.36	13.30	0.76	15.17	68.3	60.7
16 4	CO-93	MH-11	8,556.79	MH-13	8,539.71	224.2	0.076	15.0	10.36	15.08	4.41	17.84	58.1	54.7
16 5	CO-94	MH-13	8,539.71	MH-23	8,538.30	113.0	0.012	18.0	13.17	7.45	4.04	11.73	112.2	(N/A)
16 6	CO-95	MH-23	8,538.30	OF-1	8,537.80	164.8	0.003	18.0	14.37	8.13	1.39	5.78	248.5	(N/A)
16 7	CO-96	CB-Sub6-1	8,545.54	MH-23	8,538.30	26.0	0.278	15.0	0.24	8.05	4.04	34.09	0.7	6.0
16 8	CO-97	CB-Sub6-2	8,542.44	MH-23	8,538.30	42.1	0.099	15.0	0.96	8.47	4.04	20.28	4.7	14.8
16 9	CO-98	CB-Sub6-4	8,540.50	CB-Sub6-3	8,540.31	24.2	0.008	15.0	2.25	1.83	3.88	5.75	39.1	43.5

Ph1C and 1D Storm Drain.stsw 8/13/2013

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley StormCAD V8i (SELECTseries 3) [08.11.03.77] Page 1 of 2

FlexTable: Conduit Table

ID	Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (Scaled) (ft)	Slope (Calculat ed) (ft/ft)	Diam eter (in)	Flow (ft ³ /s)	Velocity (ft/s)	Depth (Out) (ft)	Capacity (Full Flow) (ft ³ /s)	Flow / Capacity (Design) (%)	Depth (Normal) / Rise (%)
17 0	CO-99	CB-Sub6-3	8,540.31	MH-13	8,539.71	80.2	0.008	15.0	2.81	2.29	4.41	5.59	50.2	50.1
17 2	CO-101	CB-Sub1-2	8,628.36	MH-27	8,628.23	16.4	0.008	15.0	0.37	2.66	1.08	5.82	6.4	17.1
17 3	CO-102	CB-Sub3-1	8,617.07	CB-Sub4-1	8,616.88	24.7	0.008	15.0	1.28	3.71	0.71	5.63	22.7	32.4
17 4	CO-103	CB-Sub4-1	8,616.88	MH-19	8,616.58	41.3	0.007	15.0	3.14	4.65	0.67	5.53	56.8	54.0
17 5	CO-104	MH-19	8,616.58	MH-22	8,615.06	203.0	0.007	15.0	3.14	4.69	0.67	5.59	56.2	53.6
17 6	CO-105	MH-22	8,615.06	MH-25	8,604.00	308.0	0.036	15.0	3.14	8.35	0.82	12.24	25.7	34.5
17 7	CO-106	MH-25	8,604.00	OF-2	8,602.50	38.1	0.039	15.0	4.15	9.33	0.51	12.83	32.3	39.1
17 8	CO-107	CB-Sub5-1	8,604.20	MH-25	8,604.00	16.9	0.012	15.0	0.91	3.94	0.82	7.01	13.0	24.3
17 9	CO-108	CB-Sub5-2	8,604.20	MH-25	8,604.00	9.7	0.020	15.0	0.10	2.46	0.82	9.14	1.1	7.4
18 0	CO-109	CB-Sub4-2	8,623.37	MH-29	8,623.29	10.2	0.008	15.0	0.23	2.29	0.26	5.78	4.0	13.6
18 1	CO-110	MH-29	8,623.29	MH-30	8,621.80	145.3	0.010	15.0	0.46	3.08	0.22	6.55	7.0	17.9
18 2	CO-111	MH-30	8,621.80	OF-4	8,618.00	35.8	0.106	15.0	0.46	6.96	0.13	20.99	2.2	10.2
18 3	CO-112	CB-Sub4-3	8,623.81	MH-29	8,623.29	14.2	0.037	15.0	0.23	3.93	0.26	12.45	1.8	9.4
18 4	CO-113	CB-Sub1-4	8,629.49	CB-Sub1-1	8,628.53	100.9	0.010	15.0	1.81	4.43	1.06	6.30	28.7	36.7

FlexTable: Manhole Table

ID	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (ft ³ /s)	Depth (Out) (ft)	Hydraulic Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)
20	MH-2	8,632.01	8,632.01	8,627.50	7.33	1.08	8,628.58	8,628.58
34	MH-8	8,575.76	8,575.76	8,571.60	10.36	1.19	8,572.79	8,572.79
38	MH-9	8,575.68	8,575.68	8,565.83	10.36	1.19	8,567.02	8,567.02
42	MH-11	8,561.78	8,561.78	8,556.79	10.36	1.19	8,557.98	8,557.98
46	MH-13	8,548.30	8,548.30	8,539.71	13.17	4.41	8,544.12	8,544.12
67	MH-19	8,621.21	8,621.21	8,616.58	3.14	0.71	8,617.29	8,617.29
73	MH-22	8,618.86	8,618.86	8,615.06	3.14	0.71	8,615.77	8,615.77
89	MH-23	8,546.07	8,546.07	8,538.30	14.37	4.04	8,542.34	8,542.34
105	MH-25	8,608.00	8,608.00	8,604.00	4.15	0.82	8,604.83	8,604.83
120	MH-27	8,631.95	8,631.95	8,628.23	7.33	1.08	8,629.31	8,629.31
145	MH-29	8,626.92	8,626.92	8,623.29	0.46	0.26	8,623.55	8,623.55
147	MH-30	8,630.72	8,630.72	8,621.80	0.46	0.26	8,622.06	8,622.06

Worksheet for CB-Sub2-1 (Sag)

			<u> </u>
Project Description			
Solve For	Spread		
Input Data			
Discharge		0.61	ft³/s
Gutter Width		3.50	ft
Gutter Cross Slope		0.06	ft/ft
Road Cross Slope		0.02	ft/ft
Grate Width		1.29	ft
Grate Length		5.50	ft
Local Depression		3.00	in
Local Depression Width		1.38	ft
Grate Type	P-50 mm (P-1-7/8")		
Clogging		0.00	%
Results			
Spread		1.37	ft
Depth		0.08	ft
Gutter Depression		0.14	ft
Total Depression		0.39	ft
Open Grate Area		6.39	ft²
Active Grate Weir Length		8.08	ft

Page 1 of 1

Worksheet for CB-Sub2-2 (Sag)

	TTOTKOHOOT TOT CE	<u> </u>	(049)
Project Description			
Solve For	Spread		
Input Data			
Discharge		2.42	ft³/s
Gutter Width		3.50	ft
Gutter Cross Slope		0.06	ft/ft
Road Cross Slope		0.02	ft/ft
Grate Width		1.29	ft
Grate Length		5.50	ft
Local Depression		3.00	in
Local Depression Width		1.38	ft
Grate Type	P-50 mm (P-1-7/8")		
Clogging		0.00	%
Results			
Spread		4.06	ft
Depth		0.22	ft
Gutter Depression		0.14	ft
Total Depression		0.39	ft
Open Grate Area		6.39	ft²
Active Grate Weir Length		8.08	ft

Worksheet for CB-Sub3-1 (Sag)

			J 1 (Udg)
Project Description			
Solve For	Spread		
Input Data			
Discharge		1.28	ft³/s
Gutter Width		1.75	ft
Gutter Cross Slope		0.06	ft/ft
Road Cross Slope		0.02	ft/ft
Grate Width		1.29	ft
Grate Length		5.50	ft
Local Depression		3.00	in
Local Depression Width		1.38	ft
Grate Type	P-50 mm (P-1-7/8")		
Clogging		50.00	%
Results			
Spread		5.74	ft
Depth		0.18	ft
Gutter Depression		0.07	ft
Total Depression		0.32	ft
Open Grate Area		3.19	ft²
Active Grate Weir Length		6.79	ft

Worksheet for CB-Sub4-1 (Sag)

	Worksheet for C	,D-3ub-	T-1 (Jay)
Project Description			
Solve For	Spread		
Input Data			
Discharge		1.86	ft³/s
Gutter Width		3.50	ft
Gutter Cross Slope		0.06	ft/ft
Road Cross Slope		0.02	ft/ft
Grate Width		1.29	ft
Grate Length		5.50	ft
Local Depression		3.00	in
Local Depression Width		1.38	ft
Grate Type	P-50 mm (P-1-7/8")		
Clogging		50.00	%
Results			
Spread		4.53	ft
Depth		0.23	ft
Gutter Depression		0.14	ft
Total Depression		0.39	ft
Open Grate Area		3.19	ft²
Active Grate Weir Length		6.79	ft

Worksheet for CB-Sub4-2 (Sag)

			· = (eag)
Project Description			
Solve For	Spread		
Input Data			
Discharge	0).23	ft³/s
Gutter Width	1	1.75	ft
Gutter Cross Slope	0	0.06	ft/ft
Road Cross Slope	0	0.02	ft/ft
Grate Width	1	1.29	ft
Grate Length	2	2.75	ft
Local Depression	3	3.00	in
Local Depression Width	1	1.38	ft
Grate Type	P-50 mm (P-1-7/8")		
Clogging	50	0.00	%
Results			
Spread	1	1.26	ft
Depth	0	0.05	ft
Gutter Depression	0	0.07	ft
Total Depression	0).32	ft
Open Grate Area	1	1.60	ft²
Active Grate Weir Length	4	1.04	ft

Worksheet for CB-Sub4-3 (Sag)

			TO (Odg)
Project Description			
Solve For	Spread		
Input Data			
Discharge	0).23	ft³/s
Gutter Width	1	.75	ft
Gutter Cross Slope	0	0.06	ft/ft
Road Cross Slope	0	0.02	ft/ft
Grate Width	1	.29	ft
Grate Length	2	2.75	ft
Local Depression	3	3.00	in
Local Depression Width	1	.38	ft
Grate Type	P-50 mm (P-1-7/8")		
Clogging	50	0.00	%
Results			
Spread	1	.26	ft
Depth	0	0.05	ft
Gutter Depression	0	0.07	ft
Total Depression	0).32	ft
Open Grate Area	1	.60	ft²
Active Grate Weir Length	4	1.04	ft

Worksheet for CB-Sub F-1 (Sag)

			(
Project Description			
Solve For	Spread		
Input Data			
Discharge		2.50	ft³/s
Gutter Width		3.00	ft
Gutter Cross Slope		0.06	ft/ft
Road Cross Slope		0.02	ft/ft
Grate Width		1.29	ft
Grate Length		5.50	ft
Local Depression		3.00	in
Local Depression Width		1.38	ft
Grate Type	P-50 mm (P-1-7/8")		
Clogging		0.00	%
Results			
Spread		5.31	ft
Depth		0.23	ft
Gutter Depression		0.12	ft
Total Depression		0.37	ft
Open Grate Area		6.39	ft²
Active Grate Weir Length		8.08	ft

Worksheet for CB-Sub F-2 (Sag)

			<u> </u>
Project Description			
Solve For	Spread		
Input Data			
Discharge		1.12	ft³/s
Gutter Width		1.75	ft
Gutter Cross Slope		0.06	ft/ft
Road Cross Slope		0.02	ft/ft
Grate Width		1.29	ft
Grate Length		5.50	ft
Local Depression		3.00	in
Local Depression Width		1.38	ft
Grate Type	P-50 mm (P-1-7/8")		
Clogging		0.00	%
Results			
Spread		3.03	ft
Depth		0.13	ft
Gutter Depression		0.07	ft
Total Depression		0.32	ft
Open Grate Area		6.39	ft ²
Active Grate Weir Length		8.08	ft