STORM DRAINAGE ANALYSIS - 100 YEAR EVENT

Kent Subdivision #2

Weber County, Utah

January 19, 2021

1. Drainage Areas:

Drainage Area #1 -

0.6000 acres

Paving & Impervious Areas

Drainage Area #2 -

5.9600 acres

Landscaping Areas

Total Area =

6.560 acres

Drainage Area - Site Detention Area

Drainage Area Slope = 0.5 % (Per the Developer's Contour Map)

Study Area Overview:

The Study Area is to be developed as a Residential Subdivision

2. Coefficient of Run-off:

The composite coefficient of runoff "C" was developed using design by "Seelye 18-01" and Mark J. Hammer "Water and Waste Water Technology" is as follows:

Drainage Area #1 - Paving & Impervious Areas

C = 0.85

Drainage Area #2 - Landscaping Areas

C = 0.15

Composite "C" =

C = 0.21

3. Time of Concentration:

Using Storm Water Run-Off - "Overland Flow Time", design by "Seelye 18-01"

Tc from Area (total) =

45.00 minutes

(from attached "Seelye" chart)

4. Rainfall Intensities:

Rainfall Intensities are calculated using the rainfall frequency duration curves for Davis County, Utah. Using the National Weather Bureau "technical paper No. 28" for a 2, 10 and 100 year "Return Period".

Time of	Rainfall
Concentration	Intensity*
(minutes)	(in/hour)
Tc	I
5	6.50
10	4.95
15	4.10
30	2.60
45	1.95
60	1.65
90	1.35
120	0.93

*Rainfall intensity for a 100 year return period

Tc=time of concentration I=rainfall intensity

Drainage Area (total)

6.560 acres

Paving, Impervious and Landscaping Area

Tc = Rainfall Intensity

45.00 minutes 1.95 (I in/hr)

(Technical Paper)

Calculation Parameters:

Maximum flow paths used for routing and calculating time of concentration.

Maximum Intensity on technical paper chart used for time of concentration under 5 minutes.

5. Peak Run-off:

Using the "Rational Formula" to calculate the Peak run-off (Q=CIA) - maximum pipe flow

Q= Quantity of run-off, in cubic feet per second (cfs)

C= Coefficient of run-off (based upon surface materials)

I= Intensity of the average storm, in inches per hour (in/hr)

A= Area of drainage area, in acres

Total Drainage Area		Coeff. of	Time of	Rainfall	Rate of		
				Run-off	Concentration	Intensity	Run-off
				"C"	"Tc"	"I"	"Q" (cfs)
Total Drainage Are	ea 6.560 acres		Impervious & Landscaping Area	0.21	45.00	1.95	2.74
	All Areas	Q =	2.74	cfs		Total Flow	2.74

Pipe sizing - Use 15" diameter at a Slope of 0.5% which will handle the 100-year storm volume.

6. Allowable Discharge:

Allowable discharge of storm water volume (pre-development) is 0.1 cfs per acre.

Allowable discharge = 0.10 cfs/acre

6.560 acres

=

1.31 cfs

Allowable discharge

1.31 cfs

This flow rate is to be used as the allowable discharge from the detention basins.

7. Volume of Run-off: 100 year storm period

Time	Intensity	Allowable Discharge	Volume Generated	Detention Volume Required
		Undeveloped		•
Tc	I	not detained	Inflow	Detention
minutes	in/hour	c.f.	c.f.	c.f.
5	6.50	196.80	2,737.80	2,541.00
10	4.95	393.60	4,169.88	3,776.28
15	4.10	590.40	5,180.76	4,590.36
30	2.60	1,180.80	6,570.72	5,389.92
45	1.95	1,771.20	7,392.06	5,620.86
60	1.65	2,361.60	8,339.76	5,978.16
90	1.35	3,542.40	10,235.16	6,692.76
120	0.93	4,723.20	9,401.18	4,677.98

Total Detention Required:

6,692.76 0.15 Cubic feet of Detention / or Acre feet of Detention 8. Orifice Sizing:

100 year storm period

Given:

Q= 1.31 cubic feet/second

2g= 64.4 ft/sec² (acceleration due to gravity)

H= (2.0 feet in basin from overflow to flowline outlet pipe)

Cd= 0.62 for square-edged openings

Ao= Area of orifice opening

Formula:

 $Q = Cd \times Ao (2gH)^{1/2}$ Solving for Ao

 $A_0 = Q/Cd \times (2gH)^{1/2}$

Ao = 0.19

square feet (orifice size)

Ao = 26.85

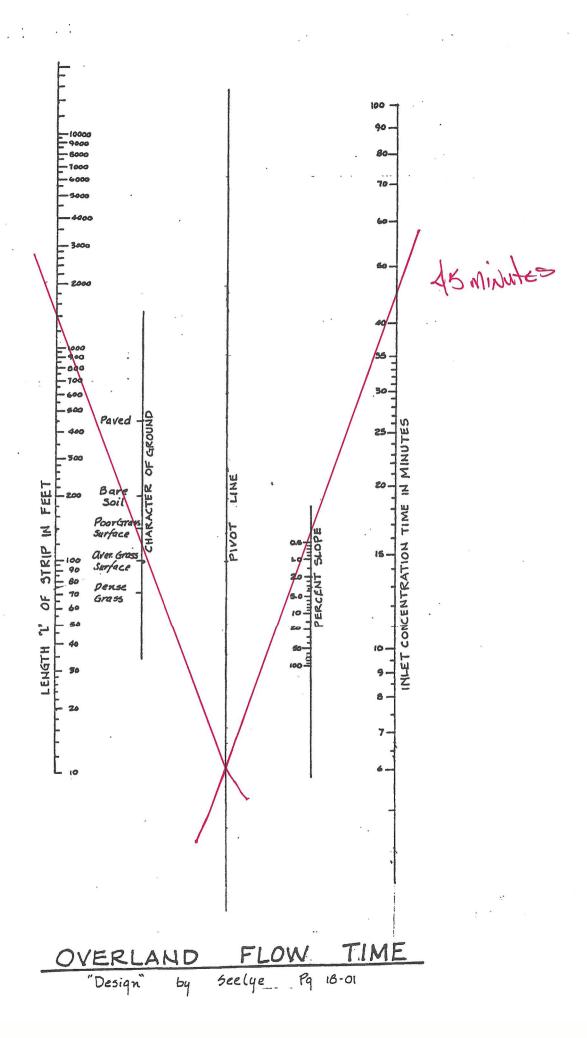
square inches (orifice size)

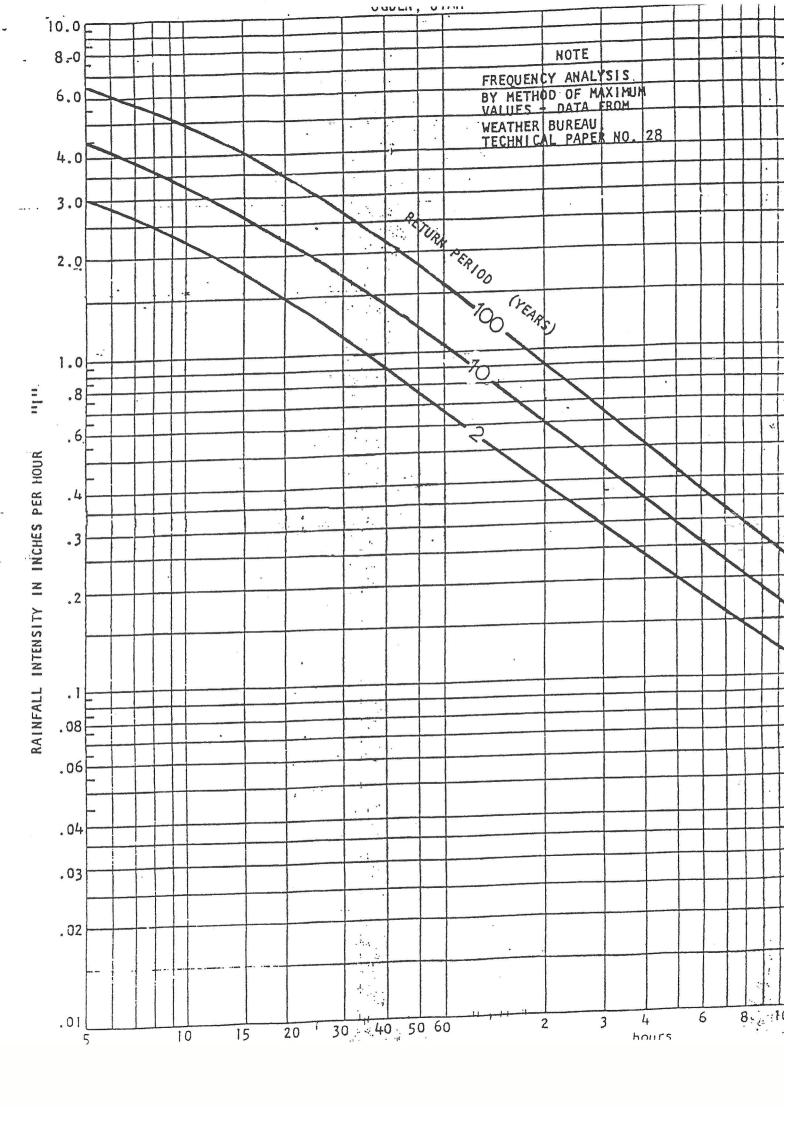
 $A_{O}=$

4.13

inches in diameter (orifice size)

Summary:


100 year storm period


Use a 4.13" diameter orifice and the outlet control rate is =

1.31 cubic feet per second

APPENDIX DOCUMENTS

Summers Engineering Collective

