STORM DRAINAGE ANALYSIS - 100 YEAR EVENT

Stagecoach Subdivision

Detention Area #1

Weber County, Utah

15 February 2022

1. Drainage Areas:

Drainage Area #1 -

1.5000 acres

Paving & Impervious Areas

Drainage Area #2 -

0.0000 acres

Building - Roof Areas

Drainage Area #3 -

10.5700 acres

Landscaping Areas

Total Area =

12.070 acres

Drainage Area - Site Detention Area

Drainage Area Slope = 0.5 % (Per the Developer's Contour Map)

Study Area Overview:

The Study Area is to be developed as a Residential Subdivision

2. Coefficient of Run-off:

The composite coefficient of runoff "C" was developed using design by "Seelye 18-01" and Mark J. Hammer "Water and Waste Water Technology" is as follows:

Drainage Area #1 - Paving & Impervious Areas

C = 0.90

Drainage Area #2 - Building - Roof Areas

C = 0.95

Drainage Area #3 - Landscaping Areas

C = 0.15

Composite "C" =

C = 0.24

3. Time of Concentration:

Using Storm Water Run-Off - "Overland Flow Time", design by "Seelye 18-01"

Tc from Area (total) =

45.00 minutes

(from attached "Seelye" chart)

4. Rainfall Intensities:

Rainfall Intensities are calculated using the rainfall frequency duration curves for Weber County, Utah. Using the National Weather Bureau "technical paper No. 28" for a 2, 10 and 100 year "Return Period".

Time of	Rainfall		
Concentration	Intensity*		
(minutes)	(in/hour)		
Tc	I		
5	6.50		
10	4.95		
15	4.10		
30	2.60		
45	1.95		
60	1.65		
90	1.35		
120	0.93		

*Rainfall intensity for a 100 year return period

Tc=time of concentration I=rainfall intensity

Drainage Area (total)

12.070 acres

Paving, Impervious and Landscaping Area

Tc =

Rainfall Intensity

45.00 1.95 minutes (I in/hr)

(Technical Paper)

Calculation Parameters:

Maximum flow paths used for routing and calculating time of concentration.

Maximum Intensity on technical paper charts used for time of concentration.

5. Peak Run-off:

Using the "Rational Formula" to calculate the Peak run-off (Q=CIA) - maximum pipe flow.

Q= Quantity of run-off, in cubic feet per second (cfs)

C= Coefficient of run-off (based upon surface materials)

I= Intensity of the average storm, in inches per hour (in/hr)

A= Area of drainage area, in acres

Total Draina	nge Area		Coeff. of	Time of	Rainfall	Rate of
			Run-off	Concentration	Intensity	Run-off
			"C"	"Tc"	"1"	"Q" (cfs)
Total Drainage Area						
	12.070 acres	Paving,	0.24	45.00	1.95	5.72
		Impervious &				
		Landscaping Area				
					Total Flow	5.72

All Areas Q = 5.72 cfs

Pipe sizing - Use 15" diameter at a Slope of 0.5% which will handle the 100-year storm volume.

6. Allowable Discharge:

Allowable discharge of storm water volume (pre-development) is 0.1 cfs per acre.

Allowable discharge = 0.10 cfs/acre

12.070 acres

1.21 cfs

Allowable discharge

=

1.21 cfs

This flow rate is to be used as the allowable discharge from the detention basins.

7. Volume of Run-off: 100 year storm period

Time	Intensity	Allowable	Volume	Detention	
		Discharge	Generated	Volume	
				Required	
		Undeveloped			
Tc	I	not detained	Inflow	Detention	
minutes	in/hour	c.f.	c.f.	c.f.	
5	6.50	362.10	5,724.23	5,362.13	
10	4.95	724.20	8,718.44	7,994.24	
. 15	4.10	1,086.30	10,832.00	9,745.70	
30	2.60	2,172.60	13,738.14	11,565.54	
45	1.95	3,258.90	15,455.41	12,196.51	
60	1.65	4,345.20	17,436.87	13,091.67	
90	1.35	6,517.80	21,399.80	14,882.00	
120	0.93	8,690.40	19,656.11	10,965.71	

Total Detention Required:

14,882.00 0.34 Cubic feet of Detention / or Acre feet of Detention

8. Orifice Sizing:

100 year storm period

Given:

Q= cubic feet/second 1.21

2g= 64.4 ft/sec² (acceleration due to gravity)

H= (4.0 feet in basin from overflow to flowline outlet pipe)

Cd= 0.62 for square-edged openings

Ao= Area of orifice opening

Formula:

 $Q = Cd \times Ao (2gH)^{1/2}$ Solving for Ao

 $A_0 = Q/Cd \times (2gH)^{1/2}$

Ao= 0.12

square feet (orifice size) square inches (orifice size) 17.47

Ao=

Ao= 4.72 inches in diameter (orifice size)

Summary:

100 year storm period

Use a 4.72" diameter orifice and the outlet control rate is =

cubic feet per second

APPENDIX DOCUMENTS