STORM DRAINAGE ANALYSIS - 100 YEAR EVENT

Stagecoach Subdivision

Detention Area #2

Weber County, Utah

29 December 2021

1. Drainage Areas:

Drainage Area #1 -	0.8200 acres	Paving & Impervious Areas
Drainage Area #2 -	0.0000 acres	Building - Roof Areas
Drainage Area #3 -	8.5400 acres	Landscaping Areas

Total Area = 9.360 acres Drainage Area - Site Detention Area

Drainage Area Slope = 0.5 % (Per the Developer's Contour Map)

Study Area Overview:

The Study Area is to be developed as a Residential Subdivision.

2. Coefficient of Run-off:

The composite coefficient of runoff "C" was developed using design by "Seelye 18-01" and Mark J. Hammer "Water and Waste Water Technology" is as follows:

Drainage Area #1 - Paving & Impervious Areas	C = 0	90
Drainage Area #2 - Building - Roof Areas	C = 0	95
Drainage Area #3 - Landscaping Areas	C = 0.	15

Composite "C" =
$$C = 0.22$$

3. Time of Concentration:

Using Storm Water Run-Off - "Overland Flow Time", design by "Seelye 18-01"

Tc from Area (total) = 30.00 minutes (from attached "Seelye" chart)

4. Rainfall Intensities:

Rainfall Intensities are calculated using the rainfall frequency duration curves for Davis County, Utah. Using the National Weather Bureau "technical paper No. 28" for a 2, 10 and 100 year "Return Period".

Time of	Rainfall		
Concentration	Intensity*		
(minutes)	(in/hour)		
Тс	I		
5	6.50		
10	4.95		
15	4.10		
30	2.60		
45	1.95		
60	1.65		
90	1.35		
120	0.93		

*Rainfall intensity for a 100 year return period

Tc=time of concentration I=rainfall intensity

Drainage Area (total)	9.360 acres	9.360 acres Paving, Impervious and L		
	Tc =	30.00	minutes	
	Rainfall Intensity	2.60	(I in/hr)	(Technical Paper)

Calculation Parameters:

Maximum flow paths used for routing and calculating time of concentration.

Maximum Intensity on technical paper chart used for time of concentration under 5 minutes.

5. Peak Run-off:

Using the "Rational Formula" to calculate the Peak run-off (Q=CIA) - maximum pipe flow

Q= Quantity of run-off, in cubic feet per second (cfs)

C= Coefficient of run-off (based upon surface materials)

I= Intensity of the average storm, in inches per hour (in/hr)

A= Area of drainage area, in acres

Total Drai	inage Area			Coeff. of	Time of	Rainfall	Rate of
				Run-off	Concentration	Intensity	Run-off
				"C"	"Tc"	"I"	"Q" (cfs)
Total Drainage Are	9.360 acres		Impervious & Landscaping Area	0.22	30.00	2.60	5.25
	All Areas	Q =	5.25	cfs		Total Flow	5.25

Pipe sizing - Use 15" diameter at a Slope of 0.5% which will handle the 100-year storm volume.

6. Allowable Discharge:

Allowable discharge of storm water volume (pre-development) is 0.1 cfs per acre.

Allowable discharge = 0.10 cfs/acre 9.360 acres = 0.94 cfs

Allowable discharge = 0.94 cfs

This flow rate is to be used as the allowable discharge from the detention basins.

7. Volume of Run-off: 100 year storm period

Time	Intensity	Allowable	Volume	Detention
		Discharge	Generated	Volume
				Required
		Undeveloped		
Tc	I	not detained	Inflow	Detention
minutes	in/hour	c.f.	c.f.	c.f.
5	6.50	280.80	3,937.05	3,656.25
10	4.95	561.60	5,996.43	5,434.83
15	4.10	842.40	7,450.11	6,607.71
30	2.60	1,684.80	9,448.92	7,764.12
45	1.95	2,527.20	10,630.04	8,102.84
60	1.65	3,369.60	11,992.86	8,623.26
90	1.35	5,054.40	14,718.51	9,664.11
120	0.93	6,739.20	13,519.22	6,780.02

Total Detention Required:

9,664.11 0.22 Cubic feet of Detention / or Acre feet of Detention

8. Orifice Sizing: 100 year storm period

Given:

Q= 0.94 cubic feet/second

2g= 64.4 ft/sec² (acceleration due to gravity)

H= (4.0 feet in basin from overflow to flowline outlet pipe)

Cd= 0.62 for square-edged openings

Ao= Area of orifice opening

Formula:

 $Q = Cd \times Ao (2gH)^{1/2}$ Solving for Ao

 $A_0 = Q/Cd \times (2gH)^{1/2}$

Ao= 0.09 square feet (orifice size) Ao= 13.54 square inches (orifice size)

Ao= 4.15 inches in diameter (orifice size)

Summary: 100 year storm period

Use a 4.15" diameter orifice and the outlet control rate is =

0.94 cubic feet per second

APPENDIX DOCUMENTS