STORM DRAINAGE ANALYSIS - 100 YEAR EVENT

Stagecoach Subdivision

Detention Area #2

Weber County, Utah

11 October 2021

1. Drainage Areas:

Drainage Area #1 - 0.8200 acres Paving & Impervious Areas
Drainage Area #2 - 0.0000 acres Building - Roof Areas
Drainage Area #3 - 8.5400 acres Landscaping Areas

Total Area = 9.360 acres Drainage Area - Site Detention Area

Drainage Area Slope = 0.5 % (Per the Developer's Contour Map)

Study Area Overview:

The Study Area is to be developed as a Residential Subdivision

2. Coefficient of Run-off:

The composite coefficient of runoff "C" was developed using design by "Seelye 18-01" and Mark J. Hammer "Water and Waste Water Technology" is as follows:

Drainage Area #1 - Paving & Impervious Areas

C = 0.90

Drainage Area #2 - Building - Roof Areas

C = 0.95

Drainage Area #3 - Landscaping Areas

C = 0.15

Composite "C" = C = 0.22

3. Time of Concentration:

Using Storm Water Run-Off - "Overland Flow Time", design by "Seelye 18-01"

Tc from Area (total) =

30.00 minutes

(from attached "Seelye" chart)

4. Rainfall Intensities:

Rainfall Intensities are calculated using the rainfall frequency duration curves for Davis County, Utah. Using the National Weather Bureau "technical paper No. 28" for a 2, 10 and 100 year "Return Period".

Time of	Rainfall		
Concentration	Intensity*		
(minutes)	(in/hour)		
Tc	I		
5	6.50		
10	4.95		
15	4.10		
30	2.60		
45	1.95		
60	1.65		
90	1.35		
120	0.93		

*Rainfall intensity for a 100 year return period

Tc=time of concentration I=rainfall intensity

Drainage Area (total)

9.360 acres

Paving, Impervious and Landscaping Area

Tc = 3

30.00 2.60 minutes (I in/hr)

(Technical Paper)

Calculation Parameters:

Maximum flow paths used for routing and calculating time of concentration.

Maximum Intensity on technical paper chart used for time of concentration under 5 minutes.

Rainfall Intensity

5. Peak Run-off:

Using the "Rational Formula" to calculate the Peak run-off (Q=CIA) - maximum pipe flow

Q= Quantity of run-off, in cubic feet per second (cfs)

C= Coefficient of run-off (based upon surface materials)

I= Intensity of the average storm, in inches per hour (in/hr)

A= Area of drainage area, in acres

Total Draina	ge Area		Coeff. of	Time of	Rainfall	Rate of
			Run-off	Concentration	Intensity	Run-off
			"C"	"Tc"	"I"	"Q" (cfs)
Total Drainage Area		'				
	9.360 acres	Paving,	0.22	30.00	2.60	5.25
		Impervious &				
		Landscaping Area				-
	9.360 acres	1		30.00	2 . 60	5.25

Total Flow 5.25

All Areas

Q =

5.25

cfs

Pipe sizing - Use 15" diameter at a Slope of 0.5% which will handle the 100-year storm volume.

6. Allowable Discharge:

Allowable discharge of storm water volume (pre-development) is 0.2 cfs per acre.

Allowable discharge = 0.20 cfs/acre

9.360 acres

1.87 cfs

Allowable discharge

1.87 cfs

This flow rate is to be used as the allowable discharge from the detention basins.

7. Volume of Run-off: 100 year storm period

Time	Intensity	Allowable	Volume	Detention
		Discharge	Generated	Volume
				Required
		Undeveloped		
Tc	I	not detained	Inflow	Detention
minutes	in/hour	c.f.	c.f.	c.f.
5	6.50	561.60	3,937.05	3,375.45
10	4.95	1,123.20	5,996.43	4,873.23
15	4.10	1,684.80	7,450.11	5,765.31
30	2.60	3,369.60	9,448.92	6,079.32
45	1.95	5,054.40	10,630.04	5,575.64
60	1.65	6,739.20	11,992.86	5,253.66
90	1.35	10,108.80	14,718.51	4,609.71
120	0.93	13,478.40	13,519.22	40.82

Total Detention Required:

6,079.32 0.14 Cubic feet of Detention / or Acre feet of Detention

8. Orifice Sizing:

100 year storm period

Given:

Q= 1.87 cubic feet/second

2g= 64.4 ft/sec² (acceleration due to gravity)

H= (4.0 feet in basin from overflow to flowline outlet pipe)

Cd= 0.62 for square-edged openings

Ao= Area of orifice opening

Formula:

 $Q = Cd \times Ao (2gH)^{1/2}$ Solving for Ao

 $A_0 = Q/Cd \times (2gH)^{1/2}$

Ao= 0.19 square feet (orifice size)

Ao= 27.09 square inches (orifice size)

Ao= 5.87 inches in diameter (orifice size)

Summary:

100 year storm period

Use a 5.87" diameter orifice and the outlet control rate is =

1.87 cubic feet per second

APPENDIX DOCUMENTS