

nc

S

0) at

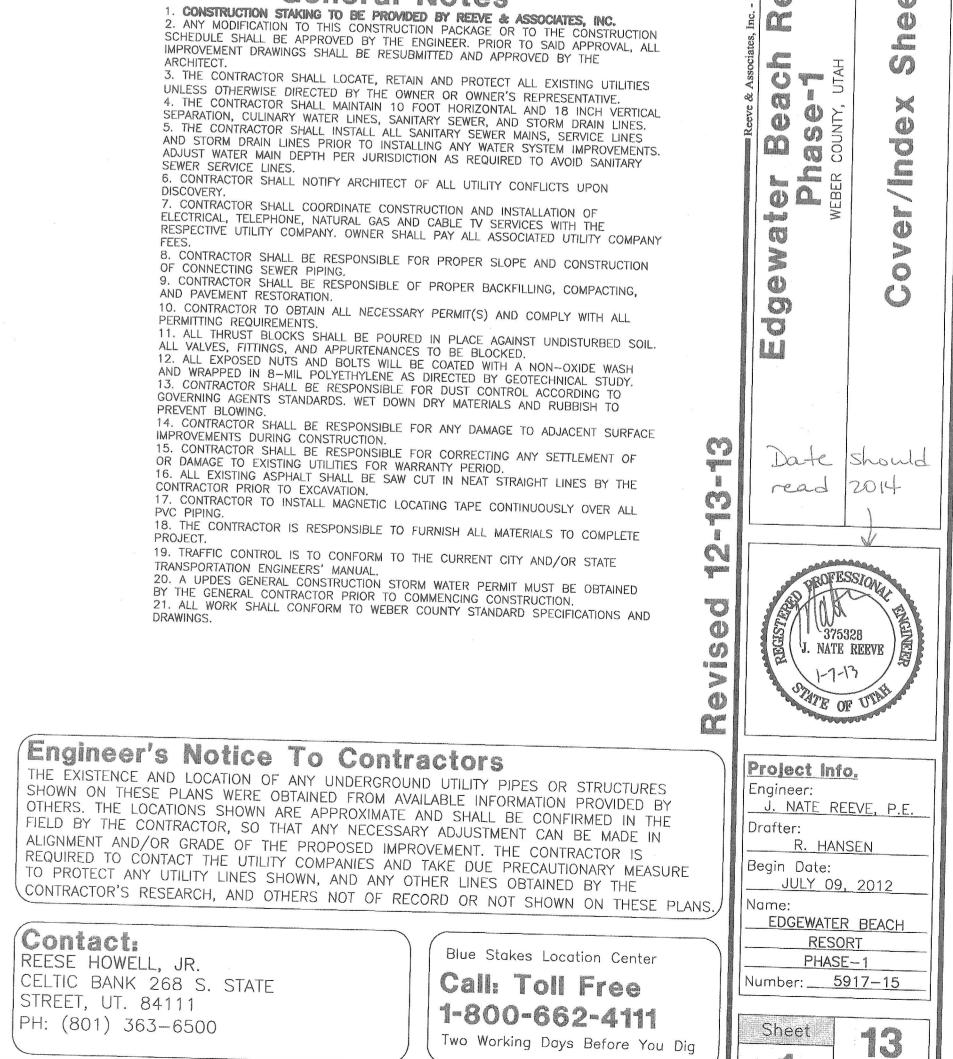
21200110

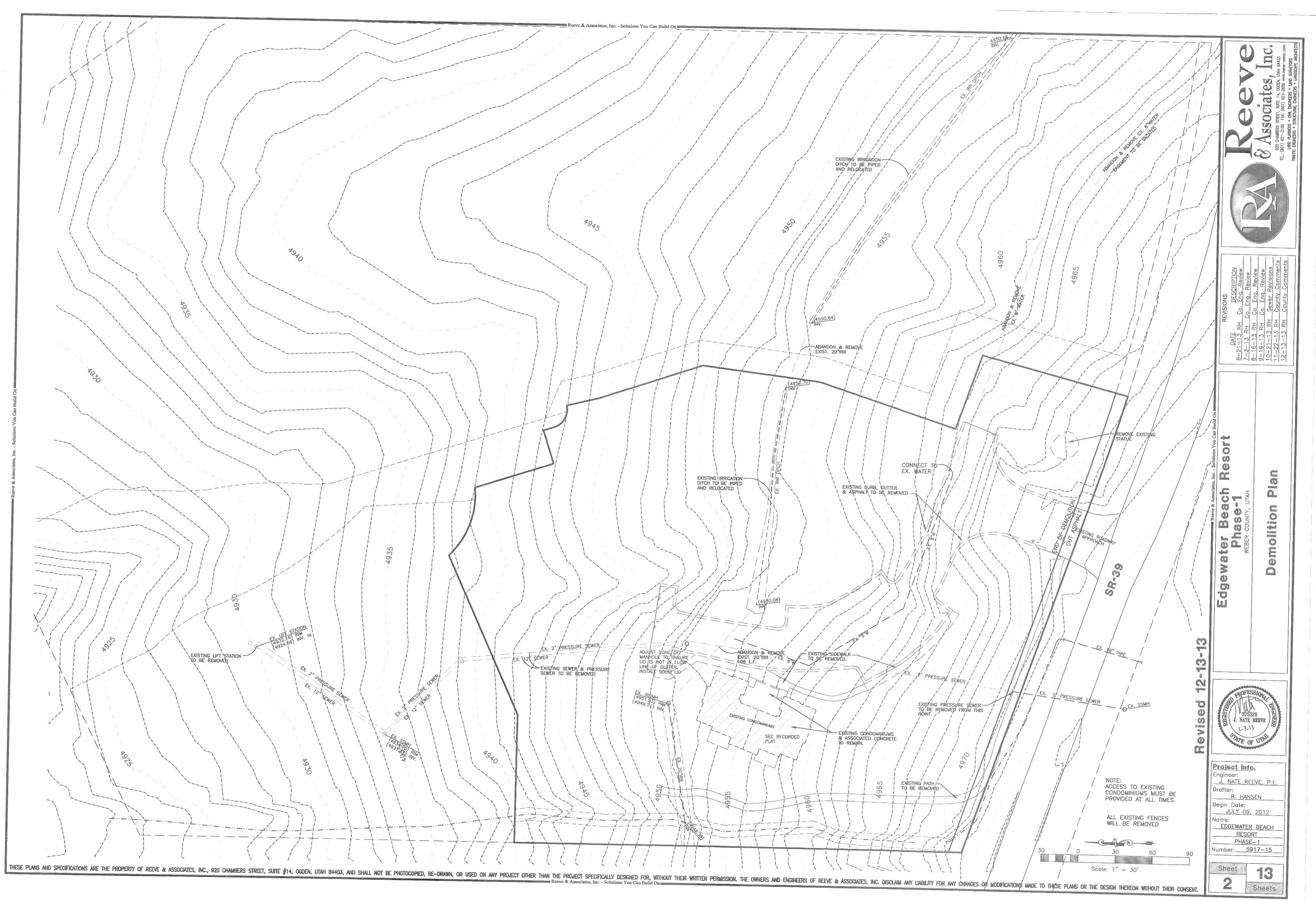
(B)

Sheets

mhund Massa 0 (D)

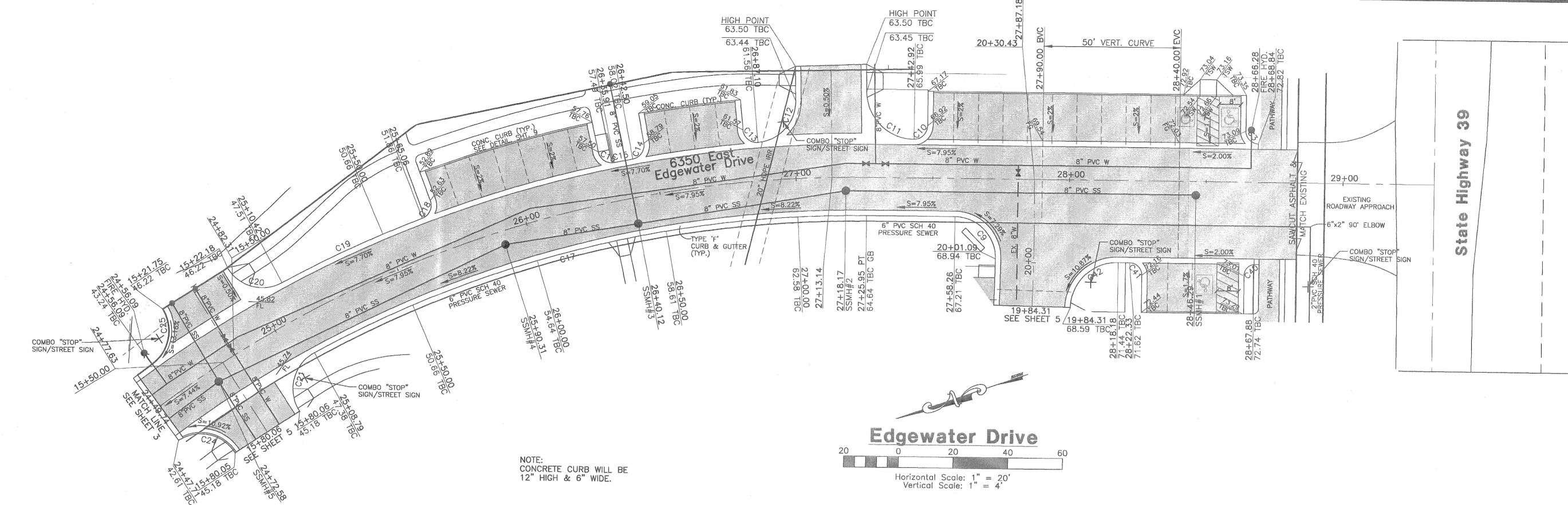
CD


Vicinity Map

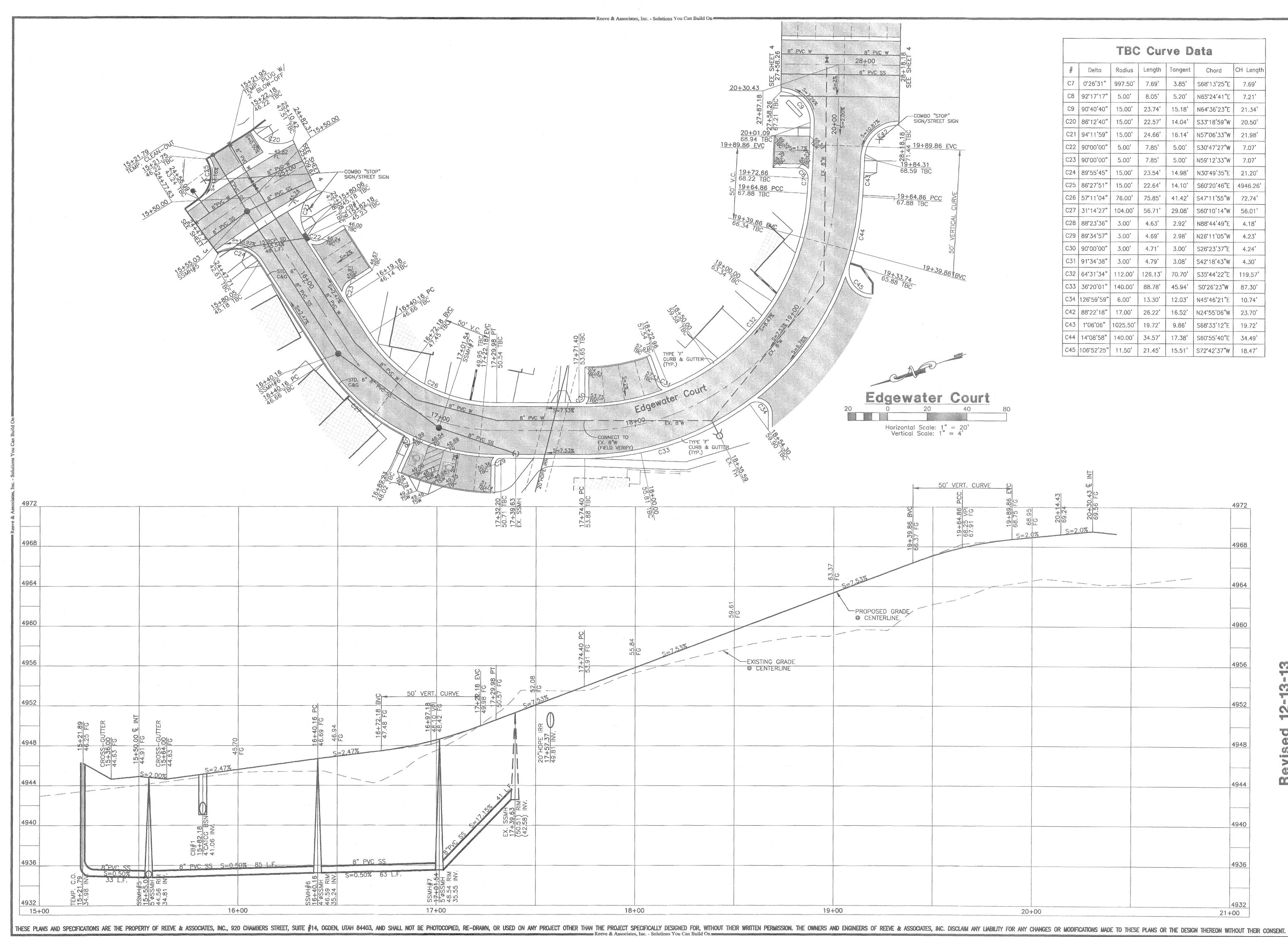

Sheet Index

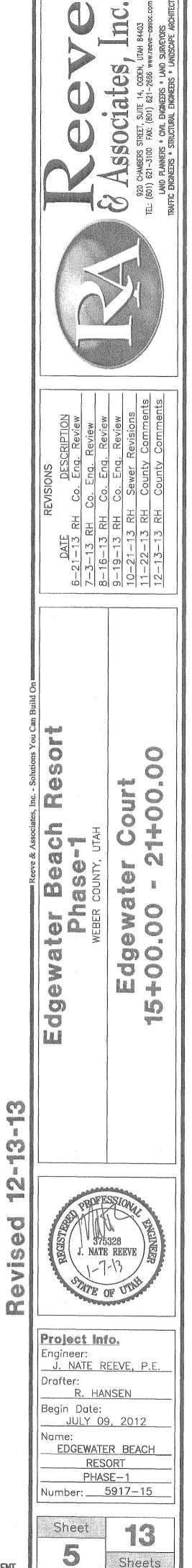
Sheet		\$10m	Cover/Index Sheet		
Sheet	2	80,00	Demolition Plan		
Sheet	3	icher	Edgewater Drive 20+00.00	1 125	24+49.74
Sheet	dij.	19094	Edgewater Drive 24+4974	NISA	20150 00
Sheet	5	liniti	Edgewater Court 15+00 00	8989	21400.00
Sheet	6	3556	Drainage & Grading Plan		
Sheet		2012	Utility Plan		
Sheet	8	胡椒	SD Calculations		
Sheet	9		months.		
Sheet	10	888	Sewer Lift Station		
Sheet	11	2552	Wiring/Electrical Diagram		
Sheet	12	adh	SWPPP		
Sheet	13	RNA	SWPPP Details		

Sheet 13 - SWPPP Details

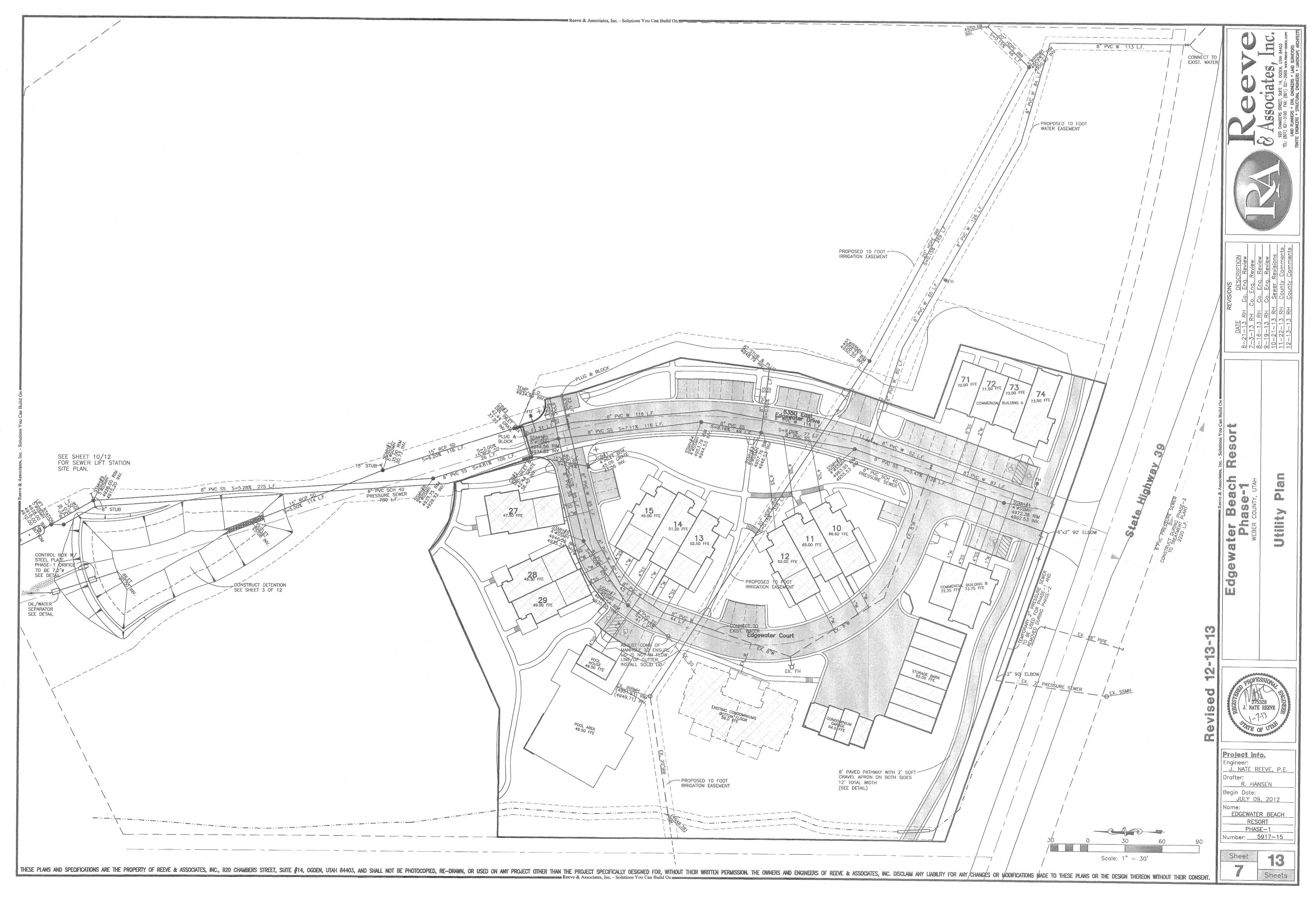

General Notes

0 0 27.5 FG 1.5' DEERX4' WIDE THE GONCRETE OVERFLOW 4' WIDE CONGRETE WATERWAY-24 L.F .5' TO 2' DIAMETER ROCK W/ GEOTEXTILE FABRIC UNDER ROCK 20 L.F. 20+00 DETENTION BASIN CALCULATIONS HIGH WATER AREA = 6,322 S.F. BOTTOM AREA = 1,761 S.F. MAX. DEPTH = 5.10° [6,322 + 1,761]/2 = 4,042 S.F. AVG. 4,042 S.F. x 5.7 DEEP = 20,612 C.F. 20,612 C.F. > 20,288 C.F. (REQ.D) = <u>QK</u> NOTE: CONSTRUCTION OF DETENTION BASIN & BERM WILL COMPLY WITH 2007 EDITION APWA DIVISION 31 SPECIFICATIONS SECTION 23.




Reeve & Associates, Inc. - Solutions You Can Build On

			TBC	C Cui	rve D	ata							
	#	Delta	Radius	Length	Tangent	Chord	CH Length						
978	C3	90°00'00"	4.50'	7.07'	4.50'	S64°16'03"W	6.36'						
	C9	90°40'40"	15.00'	23.74'	15.18'	N64°36'23"E	21.34'						
	C10	89"39'35"	5.00'	7.82'	4.97'	S25°54'10"E	7.05'			6 A			
1974	C11	88°29'45"	17.50'	27.03'	17.05'	S63°41'50"W	24.42'				- N/ -		
	C12	86°05'05"	15.00'	22.54'	14.01'	S29°00'45"E	20.48'						
	C13	89°21'17"	5.00'	7.80'	4.94'	S58°42'18"W	7.03'						
1970	C14	89°21'17"	5.00'	7.80'	4.94'	S36"39'37"E	7.03'						
	C15	0°53'21"	439.00'	6.81'	3.41'	N7°34'21"E	6.81'						
*******	C16	89°21'17"	5.00'	7.80'	4.94'	S51°48'20"W	7.03'						
966	C17	29°16'37"	411.00'	210.01'	107.35'	N4°37'45"E	207.73'						
	C18	89°21'17"	5.00'	7.80'	4.94'	S47°05'59"E	7.03'						
	C19	7°22'01"	439.00'	56.44'	28.26'	N6°06'21"W	56.41'						
1962	C20	86°12'40"	15.00'	22.57'	14.04'	S33°18'59"W	20.50'						
	C21	94"11'59"	15.00'	24.66'	16.14'	N57°06'33"W	21.98'						
	C24	89°55'45"	15.00'	23.54'	14.98'	N30°49'35"E	21.20'						
958	C25	86°27'51"	15.00'	22.64'	14.10'	S60°20'46"E	4946.26'						
000	C40	90°37 ' 47"	4.00'	6.33'	4.04'	N25°25'04"W	5.69'					~	
	C41	90°00'00"	4.50'	7.07'	4.50'	N64°16'03"E	6.36'					54.67 FG	(
954	C42	88°22'18"	17.00'	26.22'	16.52'	N24°55'06"W	23.70'					(I) (L	Contraction of the local division of the loc
950										50.69 FG			
946		- 	12	MATCH LINE 24+49.74 PC 42.83 FG	к э. к к	24+77.63 (24+91 FG (24+82.31 45.31 FG	46.72 FG					8"PVC SS	S=8.16
942				MA1 24- 42.	S=7.44					E	SMH#4 5+90.31	4 055MH 53.79 RIM 44.53 INV.	
938							a	PVC SS S=8	38% 119		() N	4 Ω 4	
)34						5 @SSMH 5 @SSMH 34.81 INV.	0						
3341					4)	·	1			1		1	



		TBC	Cur	ve D	ata	
#	Delta	Radius	Length	Tangent	Chord	CH Lengt
C7	0°26'31"	997.50'	7.69'	3.85'	S68°13'25"E	7.69'
C8	92°17'17"	5.00'	8.05'	5.20'	N65°24'41"E	7.21'
C9	90°40′40″	15.00'	23.74'	15.18'	N64°36'23"E	21.34'
C20	86°12'40"	15.00'	22.57 '	14.04'	S33°18'59"W	20.50'
C21	94°11'59"	15.00'	24.66'	16.14'	N57°06'33"W	21.98'
C22	90°00'00"	5.00'	7.85'	5.00'	S30°47'27"W	7.07'
C23	90°00'00"	5.00'	7.85'	5.00'	N59°12'33"W	7.07'
C24	89°55'45"	15.00'	23.54'	14.98'	N30°49'35"E	21.20'
C25	86°27'51"	15.00'	22.64'	14.10'	S60°20'46"E	4946.26
C26	57°11'04"	76.00'	75.85'	41.42'	S47°11'55"W	72.74'
C27	31°14'27"	104.00'	56.71 '	29.08'	S60°10'14"W	56.01'
C28	88°23'36"	3.00'	4.63'	2.92'	N88°44'49"E	4.18'
C29	89°34'57"	3.00'	4.69'	2.98'	N26°11'05"W	4.23'
C30	90°00'00"	3.00'	4.71'	3.00'	S26°23'37"E	4.24'
C31	91°34'38"	3.00'	4.79'	3.08'	S42°18'43"W	4.30'
C32	64°31'34"	112.00'	126.13'	70.70 '	S35°44'22"E	119.57'
C33	36°20'01"	140.00'	88.78'	45.94'	S0°26'23"W	87.30'
C34	126°59'59"	6.00'	13.30'	12.03'	N45°46'21"E	10.74'
C42	88°22'18"	17.00'	26.22'	16.52'	N24°55'06"W	23.70'
C43	1°06'06"	1025.50'	19.72'	9.86'	S68°33`12"E	19.72'
C44	14°08'58"	140.00'	34.57 '	17.38'	S60°55'40"E	34.49'
C45	106°52'25"	11.50'	21.45'	15.51'	S72"42'37"W	18.47'

Sheets

Storm Runoff Calculations Edgewater Estates-Phase 1 7/31/2012 экт

NOAA Atlas14, using a 100 year storm.

Runoff storm water has been calculated for two different sets of conditions, one being the existing undeveloped land and the other with land fully improved. The difference between the two quantities will be detained in a holding pond. All water that runs off and over the property at present will be diverted into the holding pond and released at a reduced rate into the existing drainage system.

The calculations are as fo 1. Runoff from the undev Runoff Coeffic Rainfall Intens Runoff Quantil

Acreage

2. Runoff from developed Runoff Coeffic

> Weighted Run Rainfall Intensi Runoff Quantity

3. Detention Basin Volume in Volume out

Use

Project Description	: 21 22 24 20 PC -					h di s		da.	
Friction Method	Manning Formula								
Solve For	Normal Depth								
Input Data			<u>д</u> . ч.		earl.		151		
Channel Slope	0.	.05000	ft/ft	ć	9=0	100			
Discharge		5.72	ft³/s	R	= /	0.47Y	3.20)	3.80	1
Section Definitions					- 6	2 22	cfs		J
Station (ft)	Elevatión (fi	1 1 1 1 1 1 1							
	0+00		0.00	D					
	0+01		0.50	D					
	0+01		0.00	D					
	0+13		0.24	4					
Roughness Segment Definitions Start Station	Ending Statio	Gio I matadada			Ē	loughne	ss Coeffi	cient	
Start Station	'Ending Statio , 0.00)	Gio I matadada	13, 0.24))	Ē	loughne	ss Coeffi	cient	0.016
Start Station (0+00	a - a comune construction to color the cold. 14	Gio I matadada	13, 0.24)	Ē	loughne	ss Coeffi	cient	0.016
Start Station (0+00 Options Jurrent Kougnness vveignted	a - a comune construction to color the cold. 14	Gio I matadada	13, 0.24))	Ē	loùghne	ss Coeffi	cient	0.016
Start Station (0+00 Options Jurrent Kougnness vveignted Jethod	, 0.00)	Gio I matadada	13, 0.24))	Ē	Quỳn hệ	ss Coeffi	cient	0.016
Start Station (0+00 Dotions Jurrent Rougnness vveignted Jethod Dpen Channel Weighting Method	, 0.00) Pavlovskii's Method	Gio I matadada	13, 0.24)		loughne	ss Coeffi	cient	0.016
Start Station (0+00 Dptions Jurrent Rougnness vveignted Jethod Open Channel Weighting Method Slosed Channel Weighting Method	, 0.00) Pavlovskii's Method Pavlovskii's Method	Gio I matadada	13, 0.24))		Cughne	ss Coeffi	cient	0.016
Start Station (0+00 Options Current Rougnness vveignted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method	, 0.00) Pavlovskii's Method Pavlovskii's Method	Gio I matadada	13, 0.24) ft)		Guighne	ss:Coeffi	cient	0.016
Start Station (0+00 Options Jurrent Rougnness veighted Aethod Open Channel Weighting Method Closed Channel Weighting Method Results	, 0.00) Pavlovskii's Method Pavlovskii's Method	(0+)		loùghne	ss Coeffi	clent	0.016
Start Station (0+00 Dptions Jurrent Kougnness vveighted Aethod Dpen Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Results Iormal Depth Elevation Range	, 0.00) Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method	(0+			i i i i i i i i i i i i i i i i i i i	öughne	ss Coeffi	cient	0.016
Start Station (0+00 Dotions Aurent Rougnness vveighted Aethod Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Results Journal Depth Jevation Range Iow Area Vetted Perimeter	, 0.00) Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method 0.00 to 0.50 ft	(0+ 0.22 1.23 11.73	ft ft)		Gughne	ss Coeffi	cient	0.016
Start Station (0+00 Dotions Jurrent Rougnness vveignted Anthod Open Channel Weighting Method Closed Channel Weighting Method	, 0.00) Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method 0.00 to 0.50 ft	(0+ 0.22 1.23 11.73 0.11	ft ft ft			loughne	ss Coeffi	Clent	0.016
Start Station (0+00 Diptions Jurrent Rougnness Weighted Jethod Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Results Iormal Depth Levation Range Iow Area Vetted Perimeter Iodraulic Radius op Width	, 0.00) Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method 0.00 to 0.50 ft	(0+ 0.22 1.23 11.73 0.11 11.33	ft ft ft ft)		Sughne	ss Coeffi	cient	0.016
Start Station (0+00 Dptions Aurent Rougnness vveignted Nethod Deen Channel Weighting Method Closed Channel Weighting Method Cl	, 0.00) Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method 0.00 to 0.50 ft	(0+ 0.22 1.23 11.73 0.11 11.33 0.22	ft ft ft ft ft ft ft ft			Cughne	ss Coeffi	cient	0.016
Start Station	, 0.00) Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method 0.00 to 0.50 ft	(0+ 0.22 1.23 11.73 0.11 11.33 0.22 0.31	ft ft ft ft			oughne	ss Coeffi	cient	0.016

Reeve & Associates, Inc. - Solutions You Can Build On

The following runoff calculations are based on the Rainfall - Intensity - Duration Frequency Curve for the Huntsville, UT area taken from data compiled by

follows: veloped existing land. icient isity tity	C = i = Q = A =	0.2 3.20 IN./HI CIA 3.80 ACRE	
Q(out) = C*i*A ≍		2.43 CFS	
d land icients Paved Area Landscaped Area Roof	97	9,774 7,776 3,173	C = 0.9 C = 0.2 C = 0.8
noff Coefficient			C = 0.47
sîty iity	i = varie Q = CiA	s with time	

Q*t 2.43 *t

The capacity of the detention basin is calculated as the maximum difference

between the volume flowing in and the volume flowing out.

The outflow from the detention basin is limited to outflow if undeveloped. 2.43 cfs for Q outflow

The required volume of the detention basin is 5,917 cubic feet

USE A 7.2 INCH DIAMETER ORIFICE AT OUTLET

DETENTION BASIN Cumulative Volume For Detention Pond

lait	12-1-9	1996	1	

ì	Q	Vol. in	Vol. out	Difference
(in./hr.)	(cfs)	(cf)	(cf)	(cf)
0.00	0.00	0.00	0.00	0.00
7.55	13.50	4050.08	730.46	3319.62
5.75	10.28	6168.99	1460.92	4708.07
4.75	8.49	7644.18	2191.38	5452.80
3.20	5.72	10299.53	4382.76	5916.77
1.98	3.54	12745.67	8765.51	3980.16
1.14	2.04	14676.83	17531.03	-2854.20
0.79	1.41	15198.24	26296.54	-11098.30
0.44	0.79	17110.10	52593.08	-35482.99
0.16	0.29	24718.87	210372.34	-185653.46

Huntsville, UT NOAA Atlas 14 Storm Runoff Calculations Edgewater Estates-Full 7/31/2012 экт The following runoff calculations are based on the Rainfall - Intensity - Duration Frequency Curve for the Huntsville, UT area taken from data compiled by

NOAA Atlas14, using a 100 year storm.

Runoff storm water has been calculated for two different sets of conditions, one being the existing undeveloped land and the other with land fully improved. The difference between the two quantities will be detained in a holding pond. All water that runs off and over the property at present will be diverted into the holding pond and released at a reduced rate into the existing drainage system.

The calculations are as follows: 1. Runoff from the undeveloped existing land, Runoff Coefficient Rainfall Intensity	C = 0.2 i = 3.20 IN	(UD)			
-	0.200 111	./HR.			
Runoff Quantity	Q = CiA				
Acreage	A = 13.02 AC	CRES			
Q(out) = C*i*A =	8.34 CI	-s			
2. Runoff from developed land					
Runoff Coefficients					
Paved Area	105 007	0-00			
Landscaped Area	135,807	C = 0.9			
	334,282				
Roof	97,276	C = 0.8			
Weighted Runoff Coefficient		C = 0.47			
Rainfall Intensity	i = varies with tin	ne			
Runoff Quantity	Q = CIA				
3. Detention Basin					
Volume in	Q *t				
Volume out	8.34 *t				
The capacity of the detention basin is calculated as the maximum difference between the volume flowing in and the volume flowing out.					
The outflow from the detention basin is limited to outflo Use 8.34 cfs for Q outflow	ow if undeveloped.				

The required volume of the detention basin is 20,288 cubic feet

DETENTION BASIN

USE A 13.3 INCH DIAMETER ORIFICE AT OUTLET

Cumulative Volume For Detention Pond

Edgewater Estates-Full

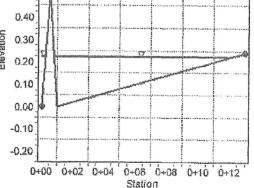
0.47

13.02

8.34

C ==

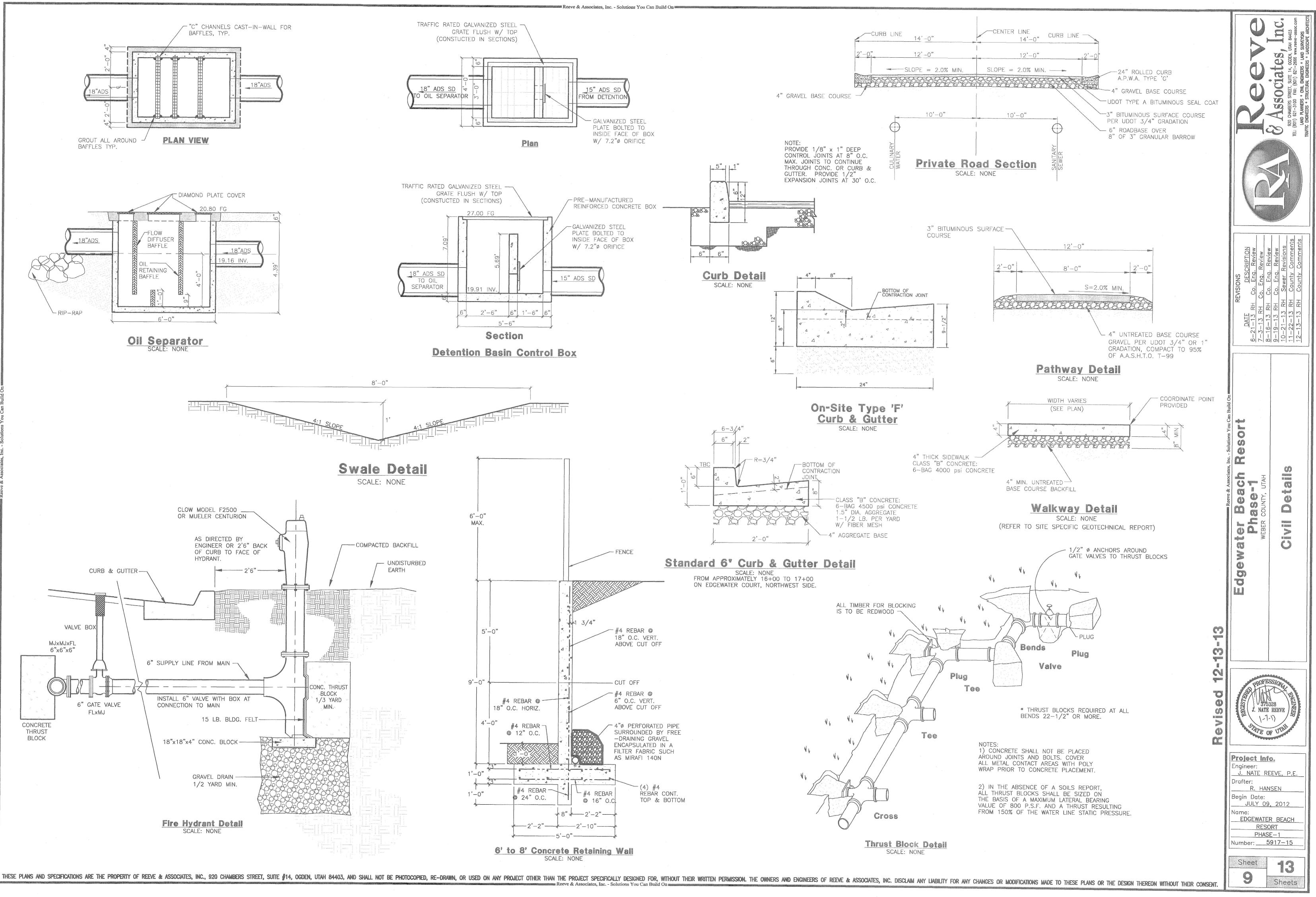
A =

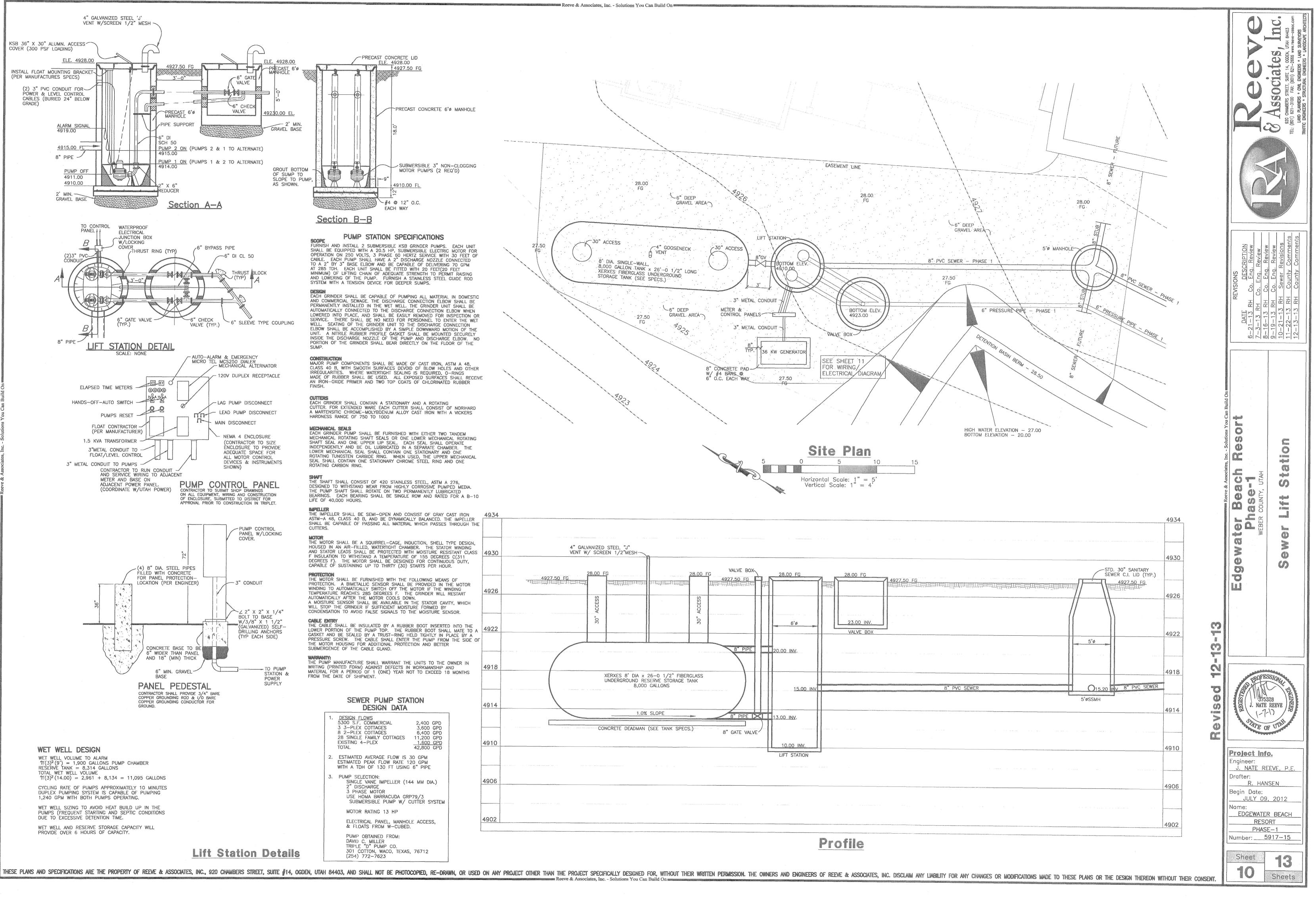

Q(out) =

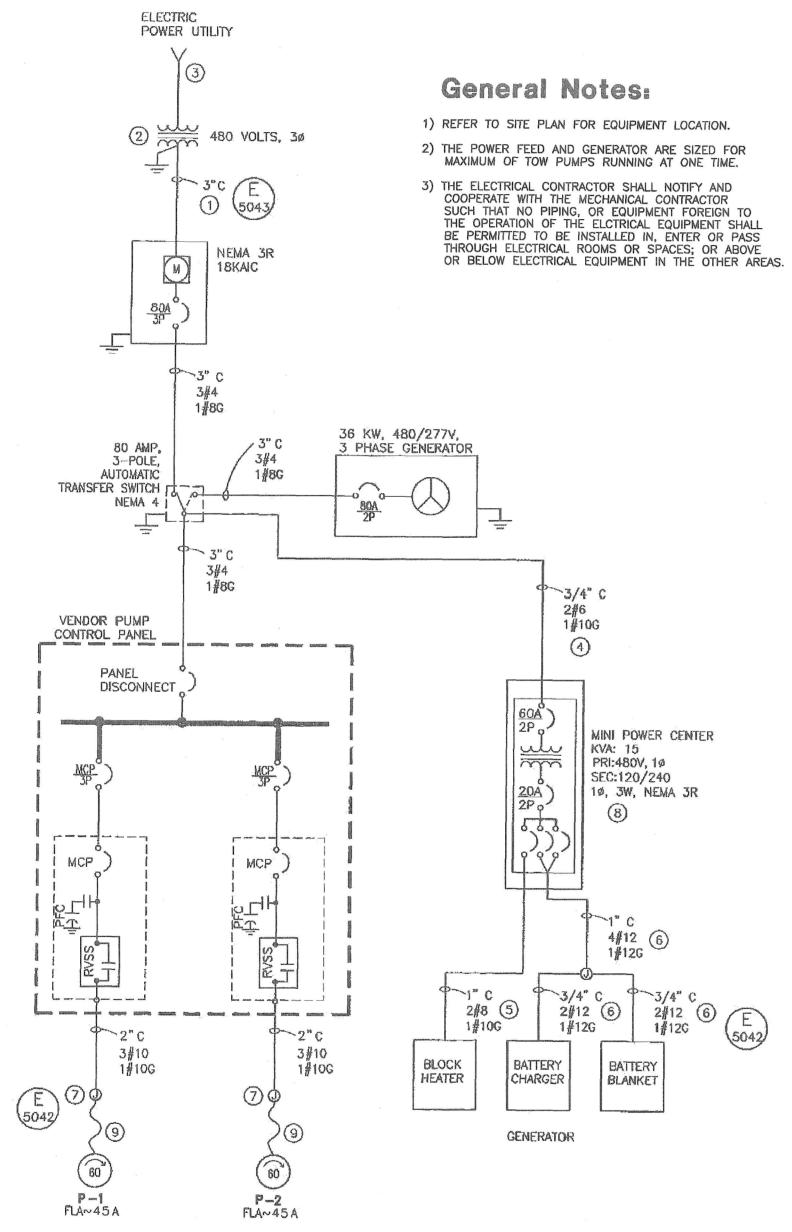
time (min)	time (sec)	i (in./hr.)	Q (cfs)	Vol. in (cf)	Vol. out (cf)	Difference (cf)
0	0	0.00	0.00	0.00	0.00	0.00
5	300	7.55	46.26	13878.25	2500.78	11377.46
10	600	5.75	35.23	21139.05	5001.56	16137.49
15	900	4.75	29.10	26194.04	7502.35	18691.69
30	1800	3.20	19.61	35293.02	15004.69	20288.33
60	3600	1.98	12.13	43675.12	30009.39	13665.73
120	7200	1.14	6.99	50292.56	60018.78	-9726.22
180	10800	0.79	4.82	52079.27	90028.17	-37948.90
360	21600	0.44	2.71	58630.54	180056.33	-121425.79
1440	86400	0.16	0.98	84703.26	720225.32	-635522.06

Huntsville, UT NOAA Atlas 14

Worksheet for Irregular Section - 1 Results Velocity 4.64 ft/s Velocity Head 0.33 ft Specific Energy 0.55 ft Froude Number 2.48 Flow Type Supercritical GVF Input Data 0.00 ft Downstream Depth Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description **Profile Headloss** 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.22 ft Critical Depth 0.31 ft Channel Slope 0.05000 ft/ft Critical Slope 0.00698 ft/ft

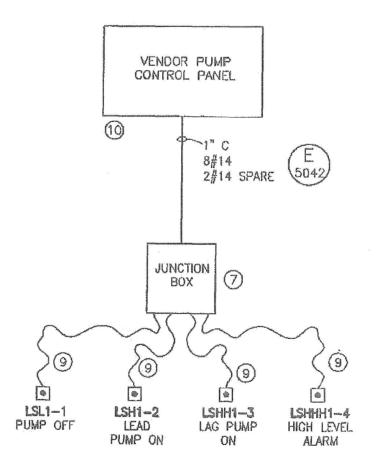

Cross Section for Irregular Section Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Channel Slope 0.05000 ft/ft Normal Depth 0.22 ft Discharge 5.72 ft³/s Cross Section Image 0.60 0.50



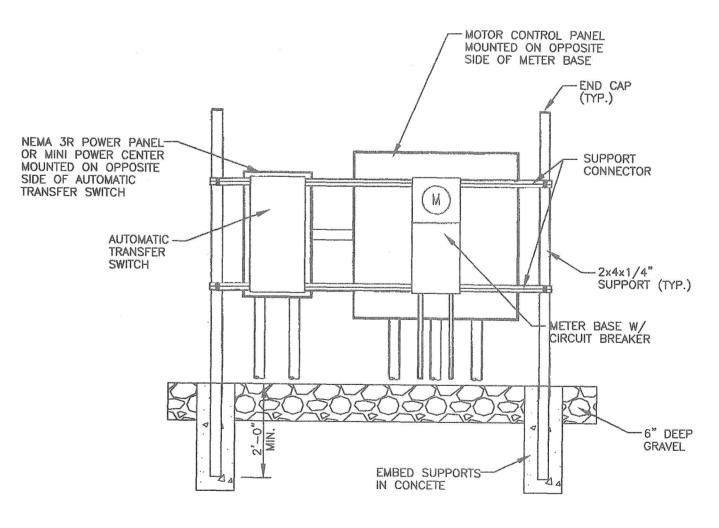

Bentley Systems, Inc. Bentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 6/28/2013 11:19:47 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06735 USA +1-203-755-1666 Page 2 of 2

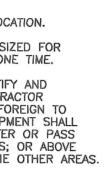
Bentley Systems, inc. Bentley FlowMa 6/28/2013 11:20:06 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-2/

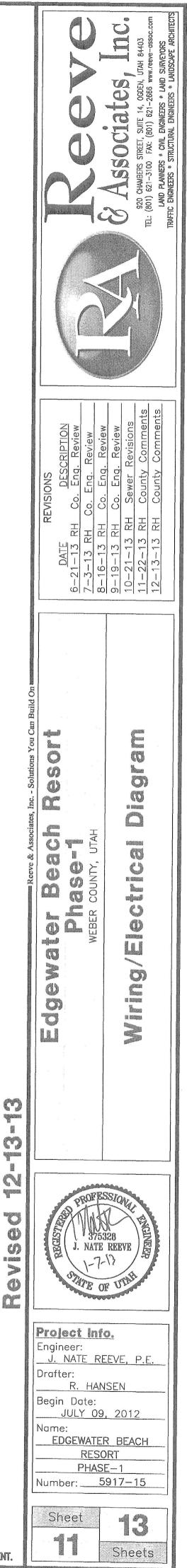
		C ASSOCIATES, InC. 920 CHAMBERS STREET, SUITE 14, OGDEN, UTAH 84403 TEL: (801) 621–3100 FAX: (801) 621–2666 www.reeve-ossoc.com LAND PLANNERS * CML ENGINEERS * LAND SURVEYORS TRAFFIC ENGINEERS * STRUCTURAL ENGINEERS * LANDSCAPE ARCHITECTS
	REVISIONSDATEDATEDESCRIPTION6-21-13RHCo.7-3-13RHCo.8-16-13RHCo.8-16-13RHCo.End.Review	RH Co. Eng. RH Sewer R RH County RH County
An - 1	Edgewater Beach Resort Phase-1 WEBER COUNTY, UTAH	Sacuations Carciations Carciations
		SSIQVAL

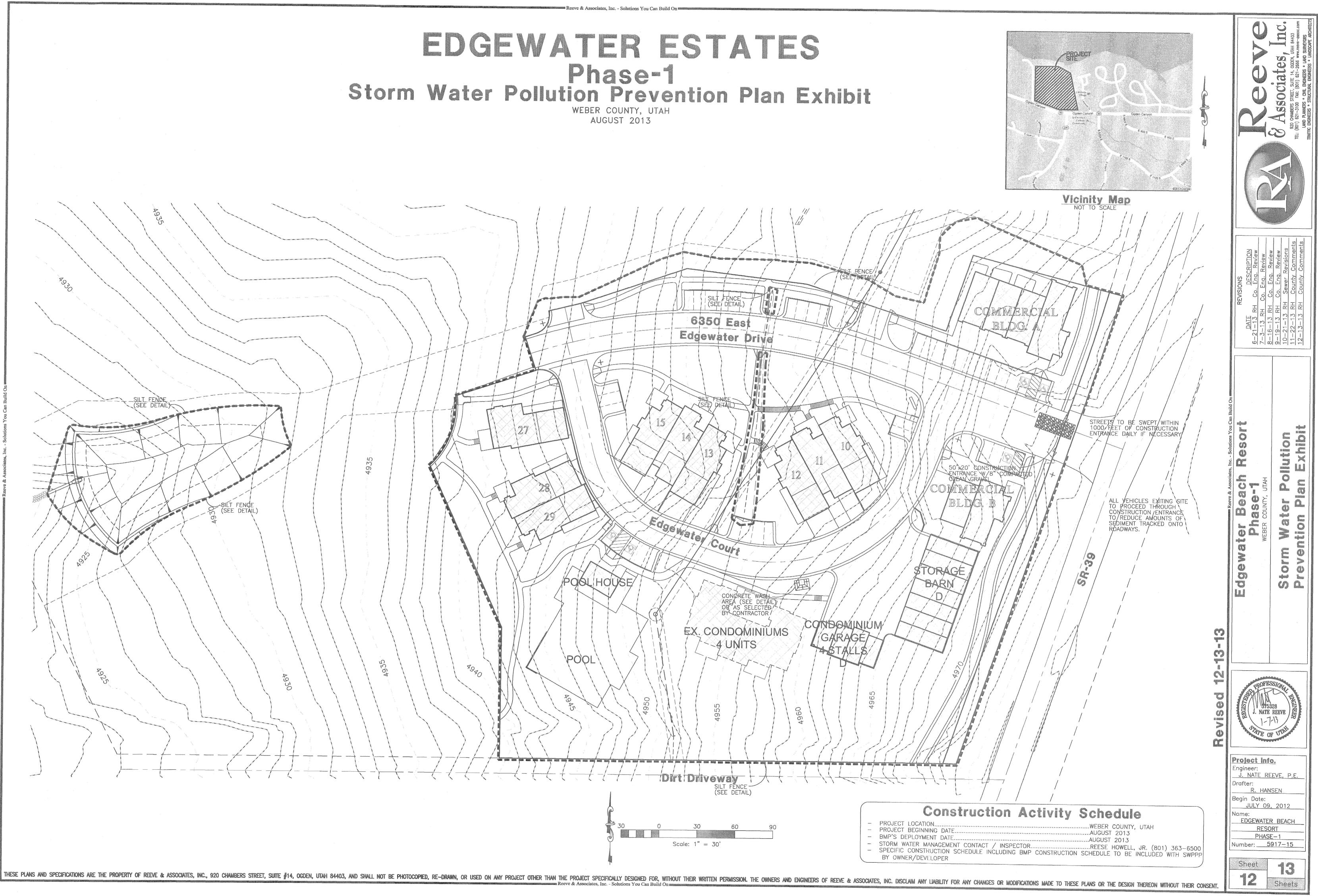

Power One-Line Diagram

Key Notes:


1 CONTRACTOR SHALL PROVIDE AND INSTALL CONDUIT IN ACCORDANCE WITH PACIFICORP POWER REQUIREMENTS. CONDUCTORS SHALL BE INSTALLED BY PACIFICORP.


Reeve & Associates, Inc. - Solutions You Can Build On


- (2) PROVIDED AND INSTALLED BY PACIFICORP. (3) PROVIDED AND INSTALLED BY DEVELOPER.
- (4) CONDUIT AND CONDUCTORS TO MIN POWER ZONE SHALL NOT EXCEED 10 FEET.
- (5) 1" CONDUIT FOR BLOCK HEATER WITH TWO #8 AND ONE #10 GROUND CONDUCTORS CONNECT TO A 40 AMP, 2-POLE CIRCUIT BREAKER IN MINI-POWER CENTER. (6) TWO CIRCUITS IN ONE 1" CONDUIT FOR BATTER CHARGER
- AND BATTERY BLANKET, CONNECT TO 20 AMP, SINGLE POLE CIRCUIT BREAKER IN MINI-POWER CNETER.
- (7) HAZARDOUS LOCATION JUNCTION BOX AND CONDUIT SEAL.
- 8 SINGLE PHASE TRANSFORMER, COPPER WINDINGS IN A NEMA 3R PAD LOCKABLE ENCLOSURE, EATON MINI-POWER CENTER OR EQUAL.
- (9) MANUFACTURER'S CABLE.
- 1 PROVIDE AND INSTALL AN INTRINSICALLY SAFE BARRIER FOR EACH LEVEL SWITCH. THE LEVEL SWITCHES SHALL BE MADE FOR LOW ENERGY CIRCUITS TO BE USED IN HAZARDOUS LOCATION, ANCHOR SCIENTIFIC TYPE GSI - GOLD OR EQUAL.


Control Block Diagram

Meter Enclosure and Panel Elevation

Notes:

1.

2.

3.

4.

5.

Describe all BMP's to protect storm water inlets: All storm water inlets to be protected by straw wattle barriers, or gravel bags (see detail)

Describe BMP's to eliminate/reduce contamination of storm water from: a. Equipment / building / concrete wash areas:

- To be performed in designated areas only and surrounded with silt fence barriers. Soil contaminated by soil amendments:
- If any contaminates are found or generated, contact environmental engineer and contacts listed.

Areas of contaminated soil: If any contaminates are found or generated, contact environmental engineer and contacts listed.

- d. Fueling area:
- To be performed in designated areas only and surrounded with silt fence. Vehicle maintenance areas:
- To be performed in designated areas only and surrounded with silt fence.
- Vehicle parking areas: To be performed in designated areas only and surrounded with silt fence.
- Equipment storage areas:
- To be performed in designated areas only and surrounded with silt fence. Materials storage areas:
- To be performed in designated areas only and surrounded with silt fence. Waste containment areas:
- To be performed in designated areas only and surrounded with silt fence. Service areas:
- To be performed in designated areas only and surrounded with silt fence.
- BMP's for wind erosion:

Stockpiles and site as needed to be watered regularly to eliminate / control wind erosion

- Construction Vehicles and Equipment: a. Maintenance
 - Maintain all construction equipment to prevent oil or other fluid leaks.
 - Keep vehicles and equipment clean, prevent excessive build-up of oil and grease.
 - Regularly inspect on-site vehicles and equipment for leaks, and repair immediately. - Check incoming vehicles and equipment (including delivery trucks, and employee and subcontractor vehicles)
 - for leaking oil and fluids. Do not allow leaking vehicles or equipment on-site. - Segregate and recycle wastes, such as greases, used oil or oil filters, antifreeze, cleaning solutions,
 - automotive batteries, hydraulic, and transmission fluids.
- b. Fueling - If fueling must occur on-site, use designated areas away from drainage.
 - Locate on-site fuel storage tanks within a bermed area designed to hold the tank volume.
 - Cover retention area with an impervious material and install in in a manner to ensure that any spills will be contained in the retention area. To catch spills or leaks when removing or changing fluids. Use drip pans for any oil or fluid changes.
- c. Washing
 - Use as little water as possible to avoid installing erosion and sediment controls for the wash area.
 - If washing must occur on-site, use designated, bermed wash areas to prevent waste water discharge into storm water, creaks, rivers, and other water bodies.
 - Use phosphate-free, biodegradable soaps.
 - Do not permit steam cleaning on-site.

Spill Prevention and Control

a. Minor Spills:

- Minor spills are those which are likely to be controlled by on-site personnel. After contacting local emergency response agencies, the following actions should occur upon discovery of a minor spill: Contain the spread of the spill.
- If the spill occurs on paved or impermeable surfaces, clean up using "dry" methods (i.e. absorbent
- materials, cat litter, and / or rags). - If the spill occurs in dirt areas, immediately contain the spill by constructing an earth dike. Dig up property dispose of contaminated soil.
- If the spill occurs during rain, cover the impacted area to avoid runoff.
- Record all steps taken to report and contain spill. Major Spills:

b. On-site personnel should not attempt to control major spills until the appropriate and qualified emergency response staff have arrived at the site. For spills of federal reportable quantities, also notify the National Response Center at (800) 424-8802. A written report should be sent to all notified authorities. Failure to report major spills can result in significant fines and penalties.

Post Roadway / Utility Construction

- a. Maintain good housekeeping practices.
- Enclose or cover building material storage areas.
- Properly store materials such as paints and solvents. Store dry and wet materials under cover, away from drainage areas.
- Avoid mixing excess amounts of fresh concrete or cement on-site.
- Perform washout of concrete trucks offsite or in designated areas only.
- Do not wash out concrete trucks into storm drains, open ditches, streets or streams.
- Do not place material or debris into streams, gutters or catch basins that stop or reduce the flow of runoff water.
- All public streets and storm drain facilities shall be maintained free of building materials, mud and debris
- caused by grading or construction operations. Roads will be swept within 1000' of construction entrance daily, if necessary. Install straw wattle around all inlets contained within the development and all others that receive runoff from the

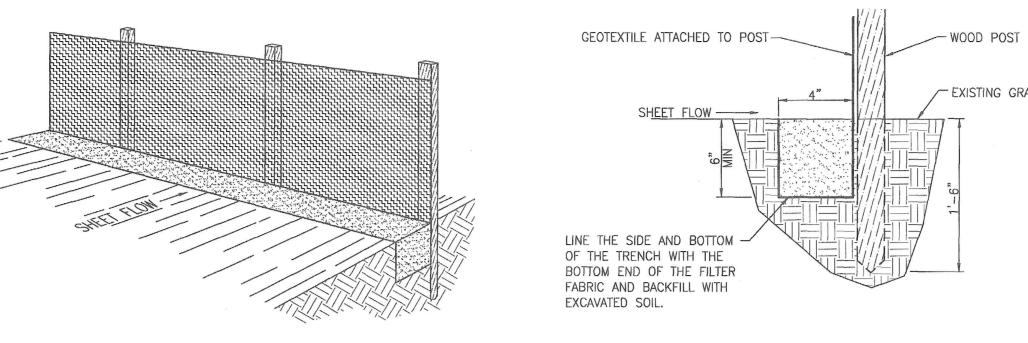
development. Erosion Control Plan Notes

a. The contractor will designate an emergency contact that can be reached 24 hours a day 7 days a week. b. A stand-by crew for emergency work shall be available at all times during potential rain or snow runoff events. Necessary materials shall be available on site and stockpiled at convenient locations to facilitate rapid construction of

emergency devices when rain or runoff is eminent. c. Erosion control devices shown on the plans and approved for the project may not be removed without approval of the engineer of record. If devices are removed, no work may continue that have the potential of erosion without consulting

- the engineer of record. If deemed necessary erosion control should be reestablished before this work begins. Graded areas adjacent to fill slopes located at the site perimeter must drain away from the top of the slope at the conclusion of each working day. this should be confirmed by survey or other means acceptable to the engineer of
- record. All silt and debris shall be removed from all devices within 24 hours after each rain or runoff event. Except as otherwise approved by the inspector, all removable protective devices shown shall be in place at the end of each working day and through weekends until removal of the system is approved.
- All loose soil and debris, which may create a potential hazard to offsite property, shall be removed from the site as directed by the Engineer of record of the governing agency.
- The placement of additional devices to reduce erosion damage within the site is left to the discretion of the Engineer of record.
- Desilting basins may not be removed or made inoperable without the approval of the engineer of record and the governing agency.
- Erosion control devices will be modified as need as the project progresses, and plans of these changes submitted for approval by the engineer of record and the governing agency.

Conduct a minimum of one inspection of the erosion and sediment controls every two weeks. Maintain documentation on site. a. Part III.D.4 of general permit UTR300000 identifies the minimum inspection requirements. Part II.D.4.C identifies the minimum inspection report requirements. b.

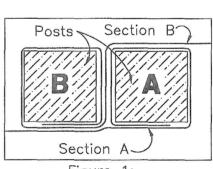

c. failure to complete and/or document storm water inspections is a violation of part III.D.4 of Utah General Permit UTR 300000.

50'x20' CONSTRUCTION ENTRANCE

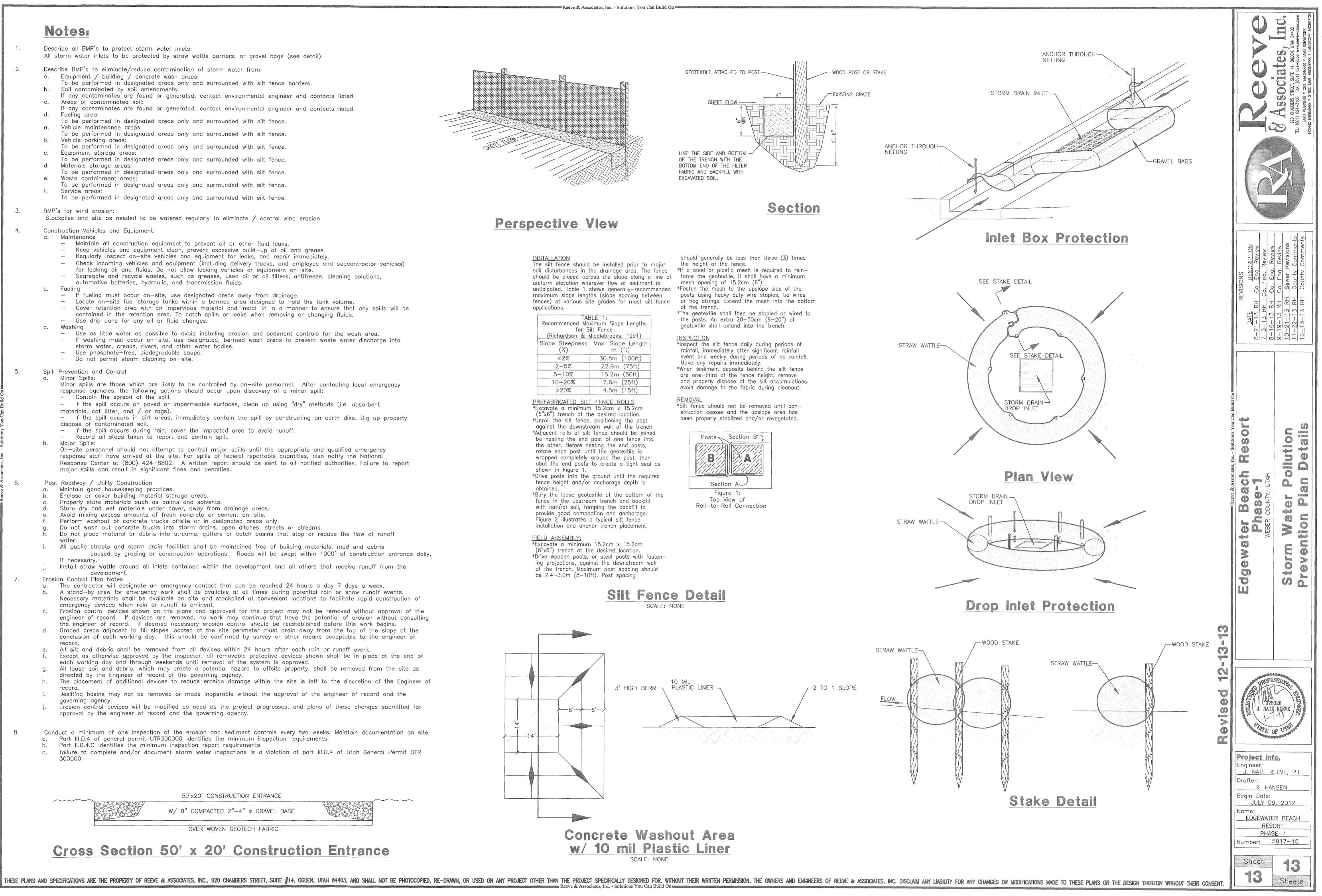
W/ 8" COMPACTED 2"-4" Ø GRAVEL BASE

OVER WOVEN GEOTECH FABRIC

Cross Section 50' x 20' Construction Entrance



TA	BLE 1:
	aximum Slope Lengths
	Silt Fence
(Richardson &	Middlebrooks, 1991)
Slope Steepness	Max. Slope Length
(%)	m (ft)
<2%	30.5m (100ft)


0 1070	10.2111 (0010)
10-20%	7.6m (25ft)
>20%	4.5m (15ft)
PREFABRICATED SI	LT FENCE ROLLS

- against the downstream wall of the trench. be nesting the end post of one fence into the other. Before nesting the end posts, rotate each post until the geotextile is wrapped completely around the post, then
- shown in Figure 1
- obtained. fence in the upstream trench and backfill with natural soil, tamping the backfill to provide good compaction and anchorage.
- *Excavate a minimum 15.2cm x 15.2cm
- (6"x6") trench at the desired location.
- ing projections, against the downstream wall of the trench. Maximum post spacing should

- geotextile shall extend into the trench.

Top View of

