STRUCTURAL CALCULATIONS

Revised August 2018

Project:

Date:

June 2018

Prepared By: Alex Hawkins, PE

Reviewed By:
David A. Jenkins, PE, SE

Ensign Engineering
45 West 10000 South, Suite 500
Sandy, Utah 84070
P: (801) 255-0529
F: (801) 255-4449
ensigneng.com

GENERAL PROJECT INFORMATION

Project: Blake Kingsbury and Merrit Chesson

Project Address:	Summit Powder Mountain, Lot \#70	
	$\mathbf{8 4 9 2}$ E. Spring Park, Utah	
Latitude:	41.380	North (Approximate)
Longitude:	-111.781	West (Approximate)
Elevation:	8570	ft

Client: Scandinavian

PROJECT DESCRIPTION

Provide structural calculations for Scandinavian Log Home

GENERAL DESIGN CRITERIA

Structure Type:	Structure Type
Design Code:	2015 IBC
Risk Category:	II

DESIGN LOADS

Dead Loads:		
Roof DL:		
	Roofing:	6
	Insulation:	3
	Sheathing:	2.5
	Framing:	4
	MPE:	1.5
	Sprinklers:	1.5
	Miscellaneous:	1.5
	Total Roof DL:	20

Floor DL:

Flooring:	3	psf
Sheathing:	2.5	psf
Framing:	10	psf
MPE:	1.5	psf
Sprinklers:	1.5	psf
Miscellaneous:	1.5	psf
Total Floor DL:	$\mathbf{2 0}$	psf

Wall DL:

| Exterior Walls: | 20 | psf |
| ---: | :--- | :--- | :--- |
| Interior Bearing Walls: | 15 | psf |
| Log Walls: | 30 | psf |

DEFLECTION LIMITS:

Roof:
Floor: Horizontal:

Live Loads:			
	Roof Live:	$\mathbf{2 0}$	psf
Floor Live:	$\mathbf{4 0}$	psf	
Main Floor Corridor / Stair:	$\mathbf{4 0}$	psf	
Corridors above Main Floor:	$\mathbf{4 0}$	psf	
Balconies:	$\mathbf{6 0}$	psf	

Snow Loads:

Ground Snow Load, p_{g} :	261
Exposure Factor, C_{e} :	1.0
Thermal Factor, C_{t} :	1.0
Importance Factor, I_{s} :	1.0
Roof Snow Load, p_{f} :	183

Wind Loads:
Wind Speed: $\quad 115$
Exposure: $\quad \mathrm{C}$

Seismic Loads:

S_{s} :	0.853
S_{1} :	0.285
Site Soil Class:	D
Importance Factor, I_{E} :	1.00

	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332
	By: Alex Hawkins, PE	Checked By: DAJ
E N N N	Date: June 2018	

FOUNDATION CRITERIA \& SPECIFICATIONS

Soils Report:
Company: Geostrata
Date: July 11, 2018
Report / Project Number: 594-004
Contact: \qquad

Allowable Bearing Pressure: \qquad psf

Passive Pressure: \qquad psf
Active Pressure psf

Coefficient of Friction, μ : \qquad 0.35

Foundation Type:
Footing Type: Concrete Spread Footing
Min. Depth to Frost: \qquad in

MATERIAL SPECIFICATIONS

CONCRETE \& REINFORCING STEEL SPECIFICATIONS:

Concrete Strength, $\mathrm{f}{ }_{\mathrm{c}} \mathrm{c}$:

| Footings / Foundation Walls: | 3,000 | psi |
| ---: | :--- | ---: | :--- |
| Grade Beams: | 4,000 | psi |
| Slab on Grade: | 4,000 | psi |
| Bearing/Shear Walls: | 4,000 | psi |

Deformed Reinforcing Bars:

Welded Wire Fabric:

ASTM A615 Grade 60
ASTM A706 Grade 60 Weldable Rebar is to be used where welds are specified on contract documents

ASTM A185-Flat sheets, not rolls

STEEL FRAMING SPECIFICATIONS

Structural Steel: | W-Shape: ASTM A992, $F_{y}=50 \mathrm{ksi}$ |
| ---: |
| Tubing: ASTM A500, Grade B, $F_{y}=46 \mathrm{ksi}$ |
| Channels, Plates and Angles: ASTM A36, $F_{y}=36 \mathrm{ksi}$ |
| Pipe: ASTM A53, Grade B, $F_{y}=35 \mathrm{ksi}$ |
| Machine Bolts: ASTM A307 |
| Welds: |
| High-strength Bolts: ASTM A325 or A490 |

E70XX Electrodes, Comply with AWS D1.1

	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332	
E NS\\|GN	By: Alex Hawkins, PE	Checked By: DAJ	
	Date: June 2018		

WOOD FRAMING SPECIFICATIONS
Unless noted otherwise, the following species and grades of lumber shall be used.

Sawn Lumber:	Species: Douglas Fir-Larch (North)
2×4 stu	uds up to $8^{\prime}-0$ " long: Stud Grade
2x4 st	uds over 8'-0" long: Grade \#2
	Other studs: Grade \#2
	Posts: Grade \#1
	Joists: Grade \#2
	Beams: Grade \#2
	Headers: Grade \#2
	Subpurlins: Grade \#2
	Purlins: Grade \#2
Glue Laminated Beams:	Species: Douglas Fir-Larch (North)
	Simple Spans: 24F-V4
	Continuous Spans: 24F-V8
Sheathing:	APA Rated OSB
Framing Hardware:	Simpson Strong-Tie Connectors
Structural Nails:	Common Wire Type (unless noted otherwise)
Bolts in Wood:	ASTM A307

THE STANDARD IN ENGINEERING	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332 Checked By: DAJ
	By: Alex Hawkins, PE	
	Date: June 2018	

SNOW DRIFT ANALYSIS

Drift 1 - Roof

CHAPTER 7, ASCE 7-10					
Design Parameters					
Terrain Category Roof Exposure Thermal Conditions Snow Drift Analysis Required?		C		30.0	Equation 7.7-1p_{f} / V
		Partially Exposed			
		All other structures			
		No			
Ground Snow Load, p_{g} (psf)	261	Utah Snow Load Study	Snow Density, Y (pcf)		
Exposure Factor, $\mathrm{C}_{\text {e }}$	1.0	Table 7-2	Balance Snow Load Height, $\mathrm{hb}_{\mathrm{b}}(\mathrm{ft})$	6.10	
Thermal Factor, C_{t}	1.0	Table 7-3	Adjacent Roof Height, $\mathrm{hr}_{\mathrm{r}}(\mathrm{ft})$	6.5	
Importance Factor, $\mathrm{I}_{\text {S }}$	1.0	Table 1.5-2	Length of Upper Roof, $\mathrm{L}_{\mathrm{u}}(\mathrm{ft})$	14	
Roof Snow Load, p_{f} (psf)	183	Equation 7.3-1	Length of Lower Roof, $L_{L}(\mathrm{ft})$	25	

Snow Drift Analysis

Windward Drift Height, $\mathrm{h}_{\mathrm{d} \text {, wind }}(\mathrm{ft})$	2.70	Figure 7-9
Leeward Drift Height, $\mathrm{h}_{\mathrm{d}, \text { lee }}(\mathrm{ft})$	3.24	Figure 7-9
$\mathrm{h}_{\mathrm{c}}(\mathrm{ft})$	0.40	$h_{r}-h_{b}$
Design Drift Height, $\mathrm{h}_{\mathrm{d}}(\mathrm{ft})$	0.40	Section 7.7.1
Design Drift Width, w (ft)	3.24	Section 7.7.1
Maximum Drift Surcharge Load, $\mathrm{p}_{\mathrm{d}}(\mathrm{psf})$	12.13	Section 7.7.1

	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332
	By: Alex Hawkins, PE	Checked By: DAJ
E	Date: June 2018	

SNOW DRIFT ANALYSIS

Drift 1 - Family Room

CHAPTER 7, ASCE 7-10					IBC 2015 / ASCE 7-10
Design Parameters					
Terrain Category C					
Roof Exposure Partially Exposed					
Thermal Conditions All other structures					
Snow Drift Analysis Required? Yes					
Ground Snow Load, p_{g} (psf)	261	Utah Snow Load Study	Snow Density, y (pcf)	30.0	Equation 7.7-1
Exposure Factor, C_{e}	1.0	Table 7-2	Balance Snow Load Height, $\mathrm{hb}_{\mathrm{b}}(\mathrm{ft})$	6.10	p_{f} / γ
Thermal Factor, C_{t}	1.0	Table 7-3	Adjacent Roof Height, $\mathrm{h}_{\mathrm{r}}(\mathrm{ft})$	10.25	
Importance Factor, $\mathrm{I}_{\text {S }}$	1.0	Table 1.5-2	Length of Upper Roof, L_{u} (ft)	40.5	
Roof Snow Load, p_{f} (psf)	183	Equation 7.3-1	Length of Lower Roof, L_{L} (ft)	11.5	

Snow Drift Analysis

Windward Drift Height, $\mathrm{h}_{\mathrm{d} \text { wind }}(\mathrm{ft})$	2.43	Figure 7-9
Leeward Drift Height, $\mathrm{h}_{\text {d,lee }}(\mathrm{ft})$	4.49	Figure 7-9
$\mathrm{h}_{\mathrm{c}}(\mathrm{ft})$	4.15	$h_{r}-h_{b}$
Design Drift Height, $\mathrm{h}_{\mathrm{d}}(\mathrm{ft})$	4.15	Section 7.7.1
Design Drift Width, w (ft)	19.43	Section 7.7.1
Maximum Drift Surcharge Load, $\mathrm{p}_{\mathrm{d}}(\mathrm{psf})$	124.63	Section 7.7.1

USGS Design Maps Summary Report

User-Specified Input

Report Title Powder Mountain

Tue June 5, 2018 23:24:18 UTC
Building Code Reference Document 2012/2015 International Building Code
(which utilizes USGS hazard data available in 2008)

Site Coordinates	$41.38004^{\circ} \mathrm{N}, 111.78098^{\circ} \mathrm{W}$
Site Soil Classification	Site Class D - "Stiff Soil"
Risk Category	I/II/III

USGS-Provided Output

$\mathbf{S}_{\mathrm{s}}=0.853 \mathrm{~g}$	$\mathbf{S}_{\mathrm{MS}}=0.989 \mathrm{~g}$	$\mathbf{S}_{\mathrm{DS}}=0.659 \mathrm{~g}$
$\mathbf{S}_{1}=0.285 \mathrm{~g}$	$\mathbf{S}_{\mathrm{M} 1}=0.521 \mathrm{~g}$	$\mathbf{S}_{\mathrm{D} 1}=0.347 \mathrm{~g}$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

SEISMIC FORCE ANALYSIS - EQUIVALENT LATERAL FORCE PROCEDURE

CHAPTER 12 ASCE 7-10					IBC 2015 / ASCE 7-10
Design Parameters					
Risk Category	11	Table 1604.5	$\mathrm{T}_{0}(\mathrm{sec})$	0.106	Section 11.4.5
Building Height, $\mathrm{h}_{\mathrm{n}}(\mathrm{ft})$	29		$\mathrm{T}_{\mathrm{S}}(\mathrm{sec})$	0.528	Section 11.4.5
$\mathrm{S}_{\mathrm{s}}(\mathrm{g})$	0.853	USGS	$\mathrm{T}_{\mathrm{L}}(\mathrm{sec})$	8	Section 11.4.5
$\mathrm{S}_{1}(\mathrm{~g})$	0.285	USGS	$\mathrm{Sa}_{\mathrm{a}}(\mathrm{g})$	N/A	if $T<T_{0}$ (Equation 11.4-5)
Site Class	D	Geotech Report	$\mathrm{Sa}_{\mathrm{a}}(\mathrm{g})$	0.659	$T_{0}<T<T_{s}$ (Section 11.4.5-2)
F_{a}	1.16	Table 1613.3.3(1)	$\mathrm{Sa}_{\text {a }}(\mathrm{g})$	N/A	$T_{S}<T<T_{L}$ (Equation 11.4-6)
F_{v}	1.83	Table 1613.3.3(2)	C_{t}	0.02	Table 12.8-2
$\mathrm{S}_{\text {MS }}(\mathrm{g})$	0.988	$F_{a} S_{s}$	x	0.75	Table 12.8-2
$\mathrm{S}_{\mathrm{M} 1}(\mathrm{~g})$	0.522	$F_{v} S_{1}$	$\mathrm{T}_{\mathrm{a}}(\mathrm{sec})$	0.250	Equation 12.8-7
$\mathrm{S}_{\mathrm{DS}}(\mathrm{g})$	0.659	$2 / 3\left(S_{\text {MS }}\right)$	Response Modification Factor, R	2.5	Table 12.2-1
$\mathrm{S}_{\mathrm{D} 1}(\mathrm{~g})$	0.348	2/3(S $S_{M 1}$)	Overstrength Factor, Ω_{0}	2.5	Table 12.2-1
Seismic Design Category	D	Table 1613.3.5(1,2)	$\mathrm{C}_{\text {S MAX }}$	0.556	Equation 12.8-3
Importance Factor, I_{E}	1.00	Table 1.5-2	$\mathrm{C}_{\text {S MIN }}$	0.029	Equation 12.8-4
Structure Type All other structural systems			$\mathrm{C}_{\text {S }}$	0.264	Section 12.8.1.1

Global Analysis							
Component	Unit Weight (psf)	Area (ft ${ }^{2}$)	Weight, wi (kips)	Elevation, h_{i} (ft)	$\begin{gathered} \mathrm{w}_{\mathrm{i}} \mathrm{~h}_{\mathrm{k}}^{\mathrm{k}} \\ \text { (kip-ft) } \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{aligned} & 0.7 \mathrm{~F}_{\mathrm{i}} \\ & \text { (kips) } \end{aligned}$
Roof Level:			-		-	-	-
Roof	20	362	7.24	29	209.96	3.04	2.13
Walls	30	344	10.32	29	299.28	4.34	3.03
Snow	36.57	362	13.24	29	383.95	5.56	3.89
Roof	20	660	13.20	21	277.20	4.02	2.81
Walls	30	969	29.07	21	610.47	8.84	6.19
Hot Tub	100	88	8.80	21	184.80	2.68	1.87
Floor	20	362	7.24	21	152.04	2.20	1.54
Snow	36.57	660	24.14	21	506.91	7.34	5.14
Walls	30	1400	42.00	11	441.00	6.39	4.47
Floor	20	1145	22.90	11	240.45	3.48	2.44
Snow	36.57	229	8.38	11	87.94	1.27	0.89
			-		-	-	-
			-		-	-	-
			-		-	-	-
			-		-	-	-
			-		-	-	-
			-		-	-	-
			-		-	-	-
			-		-	-	-
			-		-	-	-
			-		-	-	-
			-		-	-	-
		$\Sigma \mathrm{w}_{\mathrm{i}}$	187	$\sum w_{i} h_{i}^{k}$	3,394	V_{x} (kips)	49.17
Notes:				k	1	$0.7 \mathrm{~V}_{\mathrm{x}}$ (kips)	34.42

	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332
	By: Alex Hawkins, PE	Checked By: DAJ
NSIGN	Date: June 2018	

SEISMIC FORCE ANALYSIS - DIAPHRAGM FORCES

CHAPTER 12 ASCE 7-10

IBC 2015 / ASCE 7-10

Design Parameters					
Risk Category	11	Table 1604.5	$\mathrm{S}_{\mathrm{DS}}(\mathrm{g})$	0.659	$2 / 3\left(S_{\text {MS }}\right)$
$\mathrm{S}_{\mathrm{s}}(\mathrm{g})$	0.853	USGS	$\mathrm{S}_{\mathrm{D} 1}(\mathrm{~g})$	0.348	$2 / 3\left(S_{M 1}\right)$
$\mathrm{S}_{1}(\mathrm{~g})$	0.285	USGS	Seismic Design Category	D	Table 1613.3.5(1,2)
Site Class	D	Geotech Report	Importance Factor, I_{E}	1.00	Table 1.5-2

Diaphragm Design Forces									
Level	$\mathrm{F}_{\mathrm{i}}(\mathrm{k})$	Sum $\mathrm{F}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{w}_{\mathrm{px}}(\mathrm{k})$	Sum $\mathrm{w}_{\mathrm{i}}(\mathrm{k})$	$\begin{gathered} \mathrm{F}_{\mathrm{px}}(\mathrm{k}) \\ \mathrm{Eq.} 12.10-1 \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{px}, \min }(\mathrm{k}) \\ \mathrm{Eq} .12 .10-2 \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{px}, \max }(\mathrm{k}) \\ \mathrm{Eq} .12 .10-3 \end{gathered}$	$\mathrm{F}_{\mathrm{px} \text { design }}(\mathbf{k})$	Scale Factor $F_{p x} / F_{x}$
Roof	12.94	12.9	30.80	30.8	12.9	4.1	8.1	8.1	1.00
Rooftop Balcon	25.08	38.0	82.45	113.2	27.7	10.9	21.7	21.7	1.00
Upper	11.14	49.2	73.28	186.5	19.3	9.7	19.3	19.3	1.73
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-
		-		-	-	-	-	-	-

THE STANDARD IN ENGINEERIN	Project: Blake Kingsbury and Merrit Chesson By: Alex Hawkins, PE	Project No.: 8332 Checked By: DAJ
	Date: June 2018	

WIND FORCE ANALYSIS - DIRECTIONAL PROCEDURE

CHAPTER 27 (PART 1) ASCE 7-10
IBC 2015 / ASCE 7-10

Design Parameters					
Wind Speed, V (mph)	115	Section 26.5	Exposure Coefficient, K_{h}	1.024	Table 27.3-1
Exposure Category	C	Section 26.7	K_{zt} Applicable?	No	
Enclosure Classification	Enclosed		Height of Hill or Ridge, H (ft)	0	Table 26.8-1
Positive / Negative?	Positive		$\mathrm{L}_{\mathrm{h}}(\mathrm{ft})$	0	Table 26.8-1
nt. Pressure Coefficient, $\mathrm{GC}_{\mathrm{pi}}$	0.18	Table 26.11-1	$\mathrm{H} / \mathrm{L}_{\mathrm{h}}$	0.00	
Mean Roof Height, h (ft)	36.5		x (ft)	0	Table 26.8-1
Building Length, L (ft)	48		Horizontal Attenuation, μ	0	Table 26.8-1
Building Width, B (ft)	24		Height Attenuation, Y	0	Table 26.8-1
L/B	2.00		$\mathrm{K}_{1} /\left(\mathrm{H} / \mathrm{L}_{\mathrm{h}}\right)$	0	Table 26.8-1
h/L	0.76		K_{1}	0.00	Table 26.8-1
Roof Pitch	3.75	/12	K_{2}	0.00	Table 26.8-1
Roof Angle, θ	17.4		K_{3}	0.00	Table 26.8-1
Gust Effect Factor, G	0.85	Section 26.9	Topographic Factor, K_{zt} at h	1.00	Section 26.8
Terrain Constant, α	9.5	Table 26.9-1	Wind Directionality Factor, K_{d}	0.85	Section 26.6
Terrain Constant, zg_{g} (ft)	900	Table 26.9-1	Velocity Pressure, \mathbf{q}_{h} (psf)	29.46	Equation 30.3-1

MWFRS Wind Pressure Analysis									
Surface Mark	Surface Type	z (ft)	K_{z}	Pressure Coefficients, C_{p}	Wall			Parapet	
					Windward	Leeward	Side	Windward	Leeward
					0.80	-0.50	-0.70	1.50	-1.00
				q_{z} (psf)		W	ssure		
1	Roof	40	1.044	30.0	-	-	-	-	-
2	Wall	38	1.032	29.7	14.90	-17.82	-22.83	-	-
3	Wall	32	0.996	28.7	14.18	-17.82	-22.83	-	-
4	Wall	21	0.911	26.2	12.53	-17.82	-22.83	-	-
5	Wall	10.5	0.849	24.4	11.31	-17.82	-22.83	-	-
6			-	-	-	-	-	-	-

Roof Type	Monoslope	Roof							
	Pressure Coefficients, C_{p}	Normal to Ridge for $\theta \geq 10^{\circ}$			Parallel to Ridge for all θ				Windward Overhang
		Windward In	Windward Out	Leeward	0 to h/2	$\mathrm{h} / 2$ to h	h to 2 h	> 2h	
		-0.18	-0.85	-0.60	-1.10	-0.70	-0.70	-0.70	0.80
Surface Mark	Surface Type				Wind Pre	, p (psf)			
1	Roof	-9.81	-26.59	-20.33	-32.85	-22.83	-22.83	-22.83	20.03
2	Wall	-	-	-	-	-	-	-	-
3	Wall	-	-	-	-	-	-	-	-
4	Wall	-	-	-	-	-	-	-	-
5	Wall	-	-	-	-	-	-	-	-
6		-	-	-	-	-	-	-	-

North-South, Positive Internal Pressure						
		Projected Horizontal Pressure, p Surface Mark	Surface Type	(psf)	Tributary Height (ft)	Unit Force (plf)
1	Roof	8.00	5	40.0	Diaphragm Width, W (ft)	Force (kips)
2	Wall	32.72	3	98.2	24	1.0
3	Wall	32.00	8	256.0	24	2.4
4	Wall	30.35	10.667	323.8	24	6.1
5	Wall	29.13	10.5	305.9	24	7.8
6		-		-		7.3

	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332
	By: Alex Hawkins, PE	Checked By: DAJ
E	Date: June 2018	

WIND FORCE ANALYSIS - DIRECTIONAL PROCEDURE

CHAPTER 27 (PART 1) ASCE 7-10

IBC 2015 / ASCE 7-10

Wind Speed, V (mph)	115	Section 26.5
Exposure Category	C	Section 26.7
Enclosure Classification	Enclosed	
Positive / Negative?	Positive	
nt. Pressure Coefficient, $\mathrm{GC}_{\mathrm{pi}}$	0.18	Table 26.11-1
Mean Roof Height, h (ft)	36.5	
Building Length, L (ft)	24	
Building Width, B (ft)	48	
L/B	0.50	
h/L	1.52	
Roof Pitch	3.75	/12
Roof Angle, θ	17.4	
Gust Effect Factor, G	0.85	Section 26.9
Terrain Constant, a	9.5	Table 26.9-1
Terrain Constant, z_{g} (ft)	900	Table 26.9-1

Design Parameters		
Exposure Coefficient, K_{h}	1.024	Table 27.3-1
$\mathrm{K}_{\text {zt }}$ Applicable?	No	
Height of Hill or Ridge, H (ft)	0	Table 26.8-1
$L_{\text {h }}(\mathrm{ft})$	0	Table 26.8-1
$\mathrm{H} / L_{\text {h }}$	0.00	
x (ft)	0	Table 26.8-1
Horizontal Attenuation, μ	0	Table 26.8-1
Height Attenuation, Y	0	Table 26.8-1
$\mathrm{K}_{1} /\left(\mathrm{H} / \mathrm{L}_{\mathrm{h}}\right)$	0	Table 26.8-1
K_{1}	0.00	Table 26.8-1
K_{2}	0.00	Table 26.8-1
K_{3}	0.00	Table 26.8-1
Topographic Factor, K_{zt} at h	1.00	Section 26.8
Wind Directionality Factor, K_{d}	0.85	Section 26.6
Velocity Pressure, q_{h} (psf)	29.46	Equation 30.3-1

Roof Type	Monoslope	Roof							
	Pressure Coefficients, C_{p}	Normal to Ridge for $\theta \geq 10^{\circ}$			Parallel to Ridge for all θ				Windward Overhang
		Windward In	Windward Out	Leeward	0 to h/2	$\mathrm{h} / 2$ to h	h to 2h	> 2h	
		-0.18	-0.70	-0.30	-0.90	-0.90	-0.50	-0.30	0.80
Surface Mark	Surface Type				Wind Pre	e, p (psf)			
1	Wall	-	-	-	-	-	-	-	-
2	Wall	-	-	-	-	-	-	-	-
3	Wall	-	-	-	-	-	-	-	-
4	Wall	-	-	-	-	-	-	-	-
5		-	-	-	-	-	-	-	-
6		-	-	-	-	-	-	-	-

Diaphragm Forces						
East-West, Positive Internal Pressure						
Surface Mark	Surface Type	Projected Horizontal Pressure, p (psf)	Tributary Height (ft)	Unit Force (plf)	Diaphragm Width, W (ft)	Force (kips)
1	Wall	29.13	6	174.8	18.5	3.2
2	Wall	29.13	10	291.3	36	10.5
3	Wall	29.13	10.667	310.7	42	16.1
4	Wall	29.13	10.5	305.9	42	12.8
5		-		-		-
6		-		-		-
Total Force (kips) 42.6						

THE STANDARD IN ENGINEERING	Project:By:Blake Kingsbury and Merrit ChessonAlex Hawkins, PE	Project No.: 8332 Checked By: DAJ
	Date: June 2018	

WIND FORCE ANALYSIS - COMPONENTS \& CLADDING

CHAPTER 30 ASCE 7-10					IBC 2015 / ASCE 7-10
Design Parameters					
Wind Speed, V (mph)	115	Section 26.5	$\mathrm{L}_{\mathrm{h}}(\mathrm{ft})$	0	Table 26.8-1
Exposure Category	C	Section 26.7	$\mathrm{H} / \mathrm{L}_{\mathrm{h}}$	0.00	
nt. Pressure Coefficient, $\mathrm{GC}_{\mathrm{pi}}$	0.18	Table 26.11-1	x (ft)	0	Table 26.8-1
Mean Roof Height, h (ft)	36.5		Horizontal Attenuation, μ	0	Table 26.8-1
Roof Pitch	3.75	/12	Height Attenuation, Y	0	Table 26.8-1
Roof Angle, θ	17.4		$\mathrm{K}_{1} /\left(\mathrm{H} / \mathrm{L}_{\mathrm{h}}\right)$	0	Table 26.8-1
Gust Effect Factor, G	0.85	Section 26.9	K_{1}	0.00	Table 26.8-1
Terrain Constant, α	9.5	Table 26.9-1	K_{2}	0.00	Table 26.8-1
Terrain Constant, z_{g} (ft)	900	Table 26.9-1	K_{3}	0.00	Table 26.8-1
Exposure Coefficient, K_{h}	1.024	Table 30.3-1	Topographic Factor, K_{zt} at h	1.00	Section 26.8
$\mathrm{K}_{\text {zt }}$ Applicable?	No		Wind Directionality Factor, K_{d}	0.85	Section 26.6
Height of Hill or Ridge, H (ft)	0	Table 26.8-1	Velocity Pressure, q_{h} (psf)	29.46	Equation 30.3-1

Design Wind Pressure							
Location			Tributary Area (ft^{2})				
			< 10	20	50	100	>500
Walls	Within 5 ft of building corner		-46.5	-43.6	-39.2	-36.2	-28.9
	All other areas		-37.7	-36.2	-34.8	-32.6	-28.9
	Positive Pressure		34.8	33.3	31.8	30.3	25.9
Roof	Within 5 ft of building corner		-87.8	-73.1	-52.4	-37.7	-37.7
	Within 5 ft of building edge		-58.3	-52.4	-43.6	-37.7	-37.7
	All other areas		-34.8	-34.0	-33.3	-31.8	-31.8
Parapet	Within 5 ft of building corner	A	111.9	95.7	73.6	57.4	53.0
		B	-70.7	-66.3	-60.4	-56.0	-44.2
	All other areas	A	82.5	75.1	64.8	57.4	53.0
		B	-61.9	-58.9	-56.0	-52.3	-44.2

Ensign Engineering
Project Title: Powder Mountain

ANALYSIS SUMMARY

Maximum shear forces applied to resisting elements. Eccentricity with respect to Center of Rigidity

Max Shear along Member Local "y-y" Axis
 Max Shear along Member Local "x-x" Axis

Resisting Element	Load Angle	X-Ecc (ft)	Y-Ecc (ft)	Shear Force (k)	Load Angle	X-Ecc (ft)	Y-Ecc (ft)	Shear Force (k)
1 Mid	0	0.72	-13.95	17.158	0	-0.48	-16.25	0.000
2 Mid	0	-0.17	-16.17	4.937	0	-0.48	-16.25	0.036
3 Left	45	-1.08	-15.94	19.310	345	-0.17	-16.17	0.000
4 Right	45	-0.17	-16.17	1.059	345	-0.79	-11.73	0.000
5 Right	45	-0.17	-16.17	15.803	345	-0.17	-16.17	0.000
6 Front	0	-0.17	-16.17	3.860	0	-0.48	-16.25	0.978
7 Back	0	-0.48	-16.25	0.364	0	-0.48	-16.25	0.049
8 Back	0	-0.17	-16.17	0.618	0	-0.48	-16.25	0.079
Layout of Resisting Elements								

Legend: \square Defined Wall

Ensign Engineering
45 West 10000 South, Suite 500
Project Title: Powder Mountain
Engineer: Alex Hawkins
Sandy, Utah 84070
Project ID: 8332

Torsional Analysis of Rigid Diaphragm

Lic. \# : KW-06004069
Description: Upper Level - Find center of Rigidity / where to apply load from upper level on to main level

Analysis Notes

This program is designed to distribute an applied shear load to a set of resisting elements.
Each resisting element data entry specifies a deflection along a "major" and "minor" axis due to a $1,000 \mathrm{lb}$ load. Each resisting element may be entered as a wall or a column (whereby the deflection is calculated), or as a generic resisting element with specified deflection. The deflections define the stiffness of each resisting element.

Each resisting element is defined at an (X, Y) location from a datum the user has previously defined. A counter-clockwise rotation of the element can be entered with respect to a traditional " +X " axis line.

A main "shear" load and an optional orthogonal shear load are specified for distribution to the system of resisting elements. In addition the maximum orthogonal dimensions of the structure and minimum accidental eccentricity percentage are specified.

From the entered loads the program calculates resultant force vectors for each angular orientation that is requested. The force is applied to the resisting elements in angular increments to generate a series of resulting direct and torsional shear loads on each element. This application of force is then repeated at angular intervals along an elliptical path defined by the minimum accidental eccentricity.

The end result is a table of direct shear and torsional shear values for each element from the iterated angles of load application and accidental eccentricity. These values are then searched to find the maximum major and minor axis shears applied to each resisting element.

Ensign Engineering
45 West 10000 South, Suite 500
Project Title: Powder Mountain
Engineer: Alex Hawkins
Sandy, Utah 84070
Project ID: 8332
Project Descr:

THE STANDARD IN ENGINEERING
Torsional Analysis of Rigid Diaphragm
Lic. \# : KW-06004069
Description : Main Level - Average of center of rigidity above and

General Information

Calculations per IBC 2015, CBC 2016, ASCE 7-1

Applied Lateral Force	34.420 k
.....Additional Orthogonal Force	10.326 k
Maximum Load Used for Analysis :	35.936 k

Note: \quad This load is the vector resolved from the above two entries and will be applied to the system of elements at angular increments.

Resisting Element	Max Shear along Member Local "y-y" Axis					Max Shear along Member Local "x-x" Axis		
	Load Angle	X-Ecc (t)	Y-Ecc (tt)	Shear Force (k)	Load Angle	X-Ecc (tt)	Y-Ecc (tt)	Shear Force (k)
1 Left	315	4.09	-10.86	3.102	345	4.40	-10.79	0.000
2 Left	315	4.09	-10.86	18.969	345	4.40	-10.79	0.000

Ensign Engineering
Project Title: Powder Mountain

Torsional Analysis of Rigid Diaphragm
Lic. \# : KW-06004069
Description : Main Level - Average of center of rigidity above and

ANALYSIS SUMMARY

Maximum shear forces applied to resisting elements. Eccentricity with respect to Center of Rigidity

Resisting Element	Load Angle	X-Ecc (ft)	Y-Ecc (ft)	Shear Force (k)	Load Angle	X-Ecc (ft)	Y-Ecc (ft)	Shear Force (k)
3 Back	0	4.09	-10.86	0.704	345	4.40	-10.79	0.020
4 Back	0	4.40	-10.79	16.008	345	4.40	-10.79	0.449
5 Right	105	5.13	-9.71	21.335	345	3.78	-6.34	0.000
6 Right	105	5.13	-9.71	12.174	345	4.40	-10.79	0.000
7 Mid	0	4.09	-10.86	22.211	345	4.40	-10.79	0.000

Layout of Resisting Elements

Legend : \square Defined Wall
Center of Rigidity

Accidental eccentricity application boundary

Ensign Engineering
45 West 10000 South, Suite 500
Project Title: Powder Mountain
Engineer: Alex Hawkins
Sandy, Utah 84070
Project ID: 8332

Torsional Analysis of Rigid Diaphragm

Lic. \# : KW-06004069
Description : Main Level - Average of center of rigidity above and

Analysis Notes

This program is designed to distribute an applied shear load to a set of resisting elements.
Each resisting element data entry specifies a deflection along a "major" and "minor" axis due to a 1,000 lb load. Each resisting element may be entered as a wall or a column (whereby the deflection is calculated), or as a generic resisting element with specified deflection. The deflections define the stiffness of each resisting element.

Each resisting element is defined at an (X, Y) location from a datum the user has previously defined. A counter-clockwise rotation of the element can be entered with respect to a traditional " +X " axis line.

A main "shear" load and an optional orthogonal shear load are specified for distribution to the system of resisting elements. In addition the maximum orthogonal dimensions of the structure and minimum accidental eccentricity percentage are specified.

From the entered loads the program calculates resultant force vectors for each angular orientation that is requested. The force is applied to the resisting elements in angular increments to generate a series of resulting direct and torsional shear loads on each element. This application of force is then repeated at angular intervals along an elliptical path defined by the minimum accidental eccentricity.

The end result is a table of direct shear and torsional shear values for each element from the iterated angles of load application and accidental eccentricity. These values are then searched to find the maximum major and minor axis shears applied to each resisting element.

	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332
ENT	By: Alex Hawkins, PE	Checked By: DAJ
	Date: June 2018	

SHEAR WALL SCHEDULE

CHAPTER 4.3, AWC SDPWS-2015
IBC 2015/ASCE 7-10

Mark	Nailing Requirements		Notes	$\begin{gathered} V_{\text {allow }}(8) \\ \text { Seismic (plf) } \end{gathered}$	$V_{\text {allow }}$ (8) Wind (pif)	Sole Plate Nailing (10 \& 13) (Sole Plate to $2 \times$ blocking or rim)
	Edge	Field				
SW1	6 "	12 "	1,2,3	260	365	16d common @ 6" o.c.
SW2	$4{ }^{4}$	$12^{\prime \prime}$	1,2,3	350	490	16d common @ 4" o.c.
SW3	$4{ }^{4}$	12 "	1,2,3,4	380	532	16d common @ 4" o.c.
SW4	3"	$12^{\prime \prime}$	1,2,3,4	490	685	(2) 16d common @ 6" o.c.
SW5	2"	$12^{\prime \prime}$	1,2,3,4	640	895	(2) 16d common @ 6" o.c.
SW6	2 "	12"	1,3,4,6	770	1078	(2) 16d common @ 4" o.c.
SW7	3"	12"	1,2,3,4,5	980	1370	(2) SDS screws @ 6" o.c.
SW8	2"	12 "	1,2,3,4,5,11	1280	1790	(2) SDS screws @ 4" o.c.
SW9	2 "	$12^{\prime \prime}$	1,3,4, $, 6,6,11$	1540	2155	(2) SDS screws @ 4" o.c.
SW10	2"	12 "	1,3,4,5,7,11	1740	2435	(2) SDS screws @ 3" o.c.

Notes: $\quad 1.16$ " o.c. max stud spacing or panels applied with the long dimension across the studs (AF\&PA SDPWS table 4.3A note 2).
2. $7 / 16$ " APA rated sheathing panel with 8 d common or galvanized box nails.
3. Block all edges.
4. 3 " nominal framing at abutting panel edges (AF\&PA SDPWS 4.3.7.1.5.c)
5. Sheathing applied to both sides of wall
6. $15 / 32$ " APA rated sheathing with 10 d common or galvanized box nails
7. $15 / 32^{\prime \prime}$ APA Structural I rated sheathing with 10 d common or galvanized box nails
8. Allowable shear values per AF\&PA SDPWS table 4.3A.
9. For all walls, provide hot dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper nails at preservative-treated and fire-retardant-treated wood locations.
10. SDS screws to be $4.5^{\prime \prime}$ minimum length and penetrate 2 " into rim board or blocking
11. SDS screws must be into $2 x$ DFL blocking or $2 x$ DFL rim board (not LVL or LSL)
12. Where panels are applied to both faces of the wall and nail spacing is less than $6^{\prime \prime}$ on center on either side offset panel joints to different framing members.
13. If (2) SDS screws are required on the sole plate nailing $2 x$ blocking must be provided adjacent to rimboard or (2) $2 x$ blocks must be provided. SDS screws require $5 / 8$ " edge and 3 " end distance.

STAPLE EQUIVALENCY CHART

Staple Type	Stapling Requirements		$\begin{gathered} V_{\text {allow }}(8) \\ \text { Seismic (pif) } \\ \hline \hline \end{gathered}$	Equivalent to Nailed Shearwall designated above:	$\begin{aligned} & V_{\text {allow }}(8) \\ & \text { Wind (plf) } \\ & \hline \end{aligned}$	Equivalent to Nailed Shearwall designated above:
	Edge	Field				
$\begin{array}{\|c\|} \hline 16 \text { Gage } \\ 1 / 2 " \text { Staples } \end{array}$	6 "	$6^{\prime \prime}$	155	NONE	215	NONE
	$4{ }^{4}$	6 "	230	NONE	320	NONE
	3"	6 "	310	SW1	435	SW1
	2"	$6 "$	395	SW2 and SW3	555	SW2 and SW3

Notes: \quad 1. Minimum staple penetration into main member is $1^{\prime \prime}$.
2. Staples shall have a minimum crown width of $7 / 16$ ".
3. Install staple crown parallel to the long dimension of the framing member.
4. Where staple spacing is 2 " or less, framing at adjoining panel edges shall be 3 " nominal.
5. Provide $3 / 8$ " distance from panel edge to staple.
6. Table valid for shearwalls only.
7. Provide hot dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper staples at perservative-treated and fire-retardant- treated wood locations.
8. Allowable shear values per ICC-ES Evaluation Report ESR-1539 and IBC 2015 Table 2306.3(1).
9. Allowable shear values shown are based on $7 / 16$ " nominal sheathing thickness.

	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332
ENSIGN	By: Alex Hawkins, PE	Checked By: DAJ
	Date: June 2018	

SINGLE-STORY WOOD SHEAR WALLS

NOTES: 1. Typically when seismic is found to govern wind loads will not be checked here. However, if wind loads are found to govern both wind
and seismic need to be checked in order to account for the difference in shearwall capacities.
2. ASD loads are to be entered here.
3. PSW is defined as Perforated Shear Wall.
4. For PSW analysis the Length column is entered as the sum of the PSW segment lengths. The Shortest Wall Segment column is entered
as the shortest segment in the PSW. The Opening Height column is the worst case opening height of all the openings in the PSW.

Grid B					nd Force o	Wall Line:				lbs / Do	wel:		lbs		0	
Roof Balcony				Seismic Force on Wall Line:			4,711	lbs		\# of Dowels:			NG			
Wall ID	\# of Walls	Length (t)	Height (ft)	$\begin{aligned} & \mathrm{H}: \mathrm{W} \\ & \text { Ratio } \end{aligned}$	Aspect Ratio Reduct.	Effective Length $\left(2 b_{s} / h\right)^{*}$ L	$\begin{array}{c\|} \text { Total } \\ \text { Length (ft) } \end{array}$	Uniform DL (plf)	Seismic Uplift (b)	Wind Uplift (b)	$\left\|\begin{array}{l} 3 \\ 0 \\ 0 \end{array}\right\|$	Shortest Wall Seg. (ft)	Opening Height (ft)	Opening Length (t)	$\begin{gathered} \text { Co, } \\ \text { PSW } \\ \text { Reduct. } \end{gathered}$	Holdown Required
1	1	22.75	3.5	0.15	1.00	22.75	22.75	145	0	0					1.00	
Total Length: 22.75				Wind Force $/$ Wind Length $=$			45	plf (SW1)	Use: SW1				Anchor Bolt Size (inches):			NA
				ismic Force $/$ Seismic Length $=$			207	plf (SW1)					Anchor Bolt Designation:			NA

	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332
ENSIGN THE STANDARD IN ENGINEERING	By: Alex Hawkins, PE	Checked By: DAJ
	Date: June 2018	

SINGLE-STORY WOOD SHEAR WALLS

CHAPTER 4.3, AWC SDPWS-2015

NOTES: 1. Typically when seismic is found to govern wind loads will not be checked here. However, if wind loads are found to govern both wind	
and seismic need to be checked in order to account for the difference in shearwall capacities.	IBC 2015/ASCE 7-10
2. ASD loads are to be entered here.	
3. PSW is defined as Perforated Shear Wall.	
4. For PSW analysis the Length column is entered as the sum of the PSW segment lengths. The Shortest Wall Segment column is entered	
as the shortest segment in the PSW. The Opening Height column is the worst case opening height of all the openings in the PSW.	

Grid 1	cony		Wind Force on Wall Line: Seismic Force on Wall Line:				$\begin{gathered} 960 \\ 4,711 \end{gathered}$			lbs / Dowell: \# of Dowells:		$\begin{gathered} 2,750 \\ 0 \end{gathered}$	lbs		$N G^{0}$	
Wall ID	\# of Walls	Length (ft)	Height (ft)	$\begin{aligned} & \text { H:W } \\ & \text { Ratio } \end{aligned}$	Aspect Ratio Reduct.	Effective Length $\left(2 b_{s} / h\right)^{*} L$	$\begin{gathered} \text { Total } \\ \text { Length (ft) } \end{gathered}$	Uniform DL (plf)	Seismic Uplift (b)	Wind Uplift (lb)	$\frac{3}{3}$	Shortest Wall Seg. (ft)	Opening Height (ft)	Opening Length (ft)	Co, PSW Reduct.	Holdown Required
1	2	6.00	11.0	1.83	1.00	6.00	12.00	210	4234	531					1.00	MSTC52-(44)
Total Length: 12.00			Wind Force $/$ Wind Length $=$ smic Force $/$ Seismic Length $=$				$\begin{gathered} 80 \\ 393 \end{gathered}$	plf (SW1)plf (SW4)					Anchor Bolt Size (inches): Anchor Bolt Designation:			$\begin{aligned} & \text { NA } \\ & N A \end{aligned}$
Roof Balcony				Wind Force on Wall Line: Seismic Force on Wall Line:			$\begin{gathered} 960 \\ 4,711 \end{gathered}$	lbs		lbs / Dowell:		$\begin{gathered} 2,750 \\ 0 \end{gathered}$	lbs	Total:	$N G^{0}$	lbs
Wall ID	\# of Walls	Length (ft)	Height (ft)	$\begin{aligned} & \text { H:W } \\ & \text { Ratio } \end{aligned}$	Aspect Ratio Reduct.	$\begin{gathered} \text { Effective } \\ \text { Length } \\ \left(2 b_{s} h\right)^{\star}\llcorner \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Length (ft) } \end{gathered}$	Uniform DL (plf)	Seismic Uplift (lb)	Wind Uplift (lb)	$\frac{3}{6}$	Shortest Wall Seg. (ft)	Opening Height (ft)	Opening Length (ft)	$\begin{gathered} \text { Co, } \\ \text { PSW } \\ \text { Reduct. } \end{gathered}$	Holdown Required
1	1	3.00	5.0	1.67	1.00	3.00	3.00	165	8691	1633					1.00	CMST12
Total Length: 3.00			Wind Force $/$ Wind Length $=$				320	plf (SW1)	Use: SW1				Anchor Bolt Size (inches):			

Grid 1			Wind Force on Wall Line:				2,010	lbs		lbs / Dowell:		2,750	lbs	Total: 8,250		lbs
Upper Floor			Seismic Force on Wall Line:				7,753	lbs		\# of Dow	ells:	3			OK	
Grid 2			Wind Force on Wall Line: Seismic Force on Wall Line:				4,110	lbs		Ibs / Do		2,750	lbs	Total:	0	lbs
Upper Floor							13,839	lbs		\# of Dowells:		0	NG			
Wall ID	\# of Walls	Length (ft)	Height (ft)	H:W Ratio	$\begin{gathered} \hline \text { Aspect } \\ \text { Ratio } \\ \text { Reduct. } \end{gathered}$	Effective Length $\left(2 b_{s} / h\right)^{*} L$	Total Length (ft)	Uniform DL (plf)	Seismic Uplift (lb)	$\left\|\begin{array}{c} \text { Wind } \\ \text { Uplift (lb) } \end{array}\right\|$	$\underset{\infty}{2}$	Shortest Wall Seg. (ft)	Opening Height (ft)	Opening Length (ft)		Holdown Required
1	1	12.50	10.0	0.80	1.00	12.50	12.50	200	7473	1642					1.00	HDU11
2	1	5.00	10.0	2.00	1.00	5.00	5.00	200	8200	2195					1.00	HDU11
Total Length: 17.50			Wind Force $/$ Wind Length =				235	plf (SW1)	Use: SW7				Anchor Bolt Size (inches):			NA
			Seismic Force $/$ Seismic Length $=$				791	plf (SW7)					Anchor Bolt Designation:			NA
Grid 3			Wind Force on Wall Line:				2,100	lbs		lbs / Dowell:		2,750	lbs	Total:	8,250	lbs
Upper Floor			Seismic Force on Wall Line:				6,086	lbs		\# of Dowells:		3			OK	

	Project: Blake Kingsbury and Merrit Chesson	$\begin{aligned} & \text { Project No.: } 8332 \\ & \text { Checked By: DAJ } \end{aligned}$
	By: Alex Hawkins, PE	
	Date: June 2018	

Beam Id: Lot 70 / Garage column Structural Engineer: Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load=1.2 Load factor of imposed load= 1.6 Load width $1(\mathrm{~m})$ (by which the loads has been multiplied during calculation)
Max/Min reactions of beam [kN]

$$
\begin{aligned}
\left.\begin{array}{c}
M d \text { (rave } \\
\text { Bans }
\end{array}\right)=\frac{M d}{Z \cdot P r D}=\frac{3182 \cdot 10^{6}}{600 \cdot 412} & =1275 \mathrm{man}^{2} \\
& \Rightarrow(4) H 7 \mathrm{BAns}
\end{aligned}
$$

Project: Blake Kingsbury and Merrit Chesson		Project No.: 8332 Checked By: DAJ
ENSIGN	By: Alex Hawkins, PE	
the standaro in enginerring	Date: June 2018	

HOLDOWN \& VERTICAL STRAP SCHEDULE

IBC 2015/ASCE 7-10

HOLDOWN INTO CONCRETE					
Mark	Anchor	Wind or Seismic Capacity (LBS)	Rod Diameter	Min. Post Size	Minimum Embed Depth in Footing
H-1	HTT4 w/ (18) 10dx1½ nails	3610	$5 / 8{ }^{\prime \prime}$	$3^{\prime \prime} \times 3$ 1/2"	$9{ }^{\prime \prime}$
H-2	HTT5 w/ (26) 10d nails	4670	5/8"	$3^{\prime \prime} \times 31 / 2^{\prime \prime}$	$9{ }^{\prime \prime}$
H-3	HDU5 - SDS2.5 (14)	5645	5/8"	$3^{\prime \prime} \times 31 / 2^{\prime \prime}$	$9 "$
H-4	HDU8 - SDS2.5 (20)	7870	7/8"	$41 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$	10 1/2"
H-5	HDU11 - SDS2.5 (30)	9535	$1{ }^{\prime \prime}$	$51 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$	$14{ }^{\prime \prime}$
H-6	HDU11 - SDS2.5 (30)	11175	$1{ }^{1 \prime}$	$71 / 4$ " $\times 31 / 2^{\prime \prime}$	14"
H-7	HDU14 - SDS2.5 (36)	14445	$1{ }^{\prime \prime}$	$51 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}$	$14 "$
		14375	$1{ }^{\prime \prime}$	71/4" $\times 31 / 2^{\prime \prime}$	14 "

FLOOR TO FLOOR TIES (STRAPS OR RODS)				
Mark	Anchor	Wind or Seismic Capacity (LBS)	Rod Diameter	

Notes:
All anchors are Simpson Strong-Tie. Install per manufacturer's specifications.
Use 4" end distance at foundation blockouts.
CS straps are specified with: strap type - total \# of of 10d nails required - end length required
MSTC straps are specified with: strap type - total \# of 16d sinker nails required
All straps are designed for $18^{\prime \prime}$ max floor to floor clear span
Provide 3/8" X 1 1/2" X $11 / 2^{\prime \prime}$ plate washer for $5 / 8^{\prime \prime}$ dia. anchors, 3/8" X $21 / 4$ " X $21 / 4$ " plate washer for $7 / 8^{\prime \prime}$ dia. anchors, 3/8" X 2 1/2" X 2 1/2" plate washer for $1^{\prime \prime}$ dia. anchors. Provide nut top and bottom.
For stem wall applications use simspon SB $5 / 8^{\prime \prime} \times 24$ " embed 18 " min. in wall for HTT4, HTT5, HDU5 holdowns.
Ensure that the Min. Edge distances are met for all anchors in concrete.
Min. anchor bolt strength is ASTM F-1554 GRADE 36 U.N.O.

THE STANDARD IN ENGINEERIN	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332 Checked By: DAJ
	By: Alex Hawkins, PE	
	Date: June 2018	

Mark	Strap Req.	Notes
${ }^{* *}$	CS16	Strap horizontally above and below window. Header
above and sill below window must be continuous.		
Provide $2 x$ blocking in wall as required and (2) $2 x$ sill..		

ANCHOR BOLTS

1/2" Diameter Anchor Bolts		
Mark	Bolt Spacing	Capacifty (plf)
AB32	$32^{\prime \prime}$	384
AB24	$24^{\prime \prime}$	512
AB16	$16{ }^{\prime \prime}$	768
AB12	$12^{\prime \prime}$	1024
AB8	$8^{\prime \prime}$	1536

2015 NDS Table 12E

$5 / 8^{\prime \prime}$ Diameter Anchor Bolts		
Mark	Bolt Spacing	Capacifty (plf)
AB32	$32^{\prime \prime}$	552
AB24	24 "	736
AB16	$16{ }^{\prime \prime}$	1104
AB12	12 "	1472
AB8	$8^{\prime \prime}$	2208

Notes: $\quad 7$ " minimum embedment depth on all anchor bolts.
$3^{\prime \prime} \times 3^{\prime \prime} \times 0.229^{\prime \prime}$ plate washers on all anchor bolts. $1 / 2^{\prime \prime}$ away from sheathing (2) anchor bolts min. per shear wall.

Anchors are located a minimum of $13 / 4$ " away from the edge of concrete
Anchor bolts are to be located 15 anchor diameters away from a concrete edge that is perpendicular to the sill plate. Sill plate is 2 x or 3 x minimum. (Capacities shown here are based on a 2 x sill plate)

	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332 Checked By: DAJ	
ENS\\| N	By: Alex Hawkins, PE		
$\underset{\text { the Standard in engineering }}{\text { N }}$	Date: June 2018		

ROOF FRAMING

Roof Trusses:

Use pre-engineered trusses @ 24" o.c.
Provide truss blocking as shown on plans and per manufacturer's specifications.
All truss connection hardware to be designed by the truss manufacturer.
Provide full depth blocking at all bearing locations with (1) A35 clip to top plate per block U.N.O.
Nail through sheathing with 8d common @ 4" o.c. into blocking U.N.O.
Provide " H 1 " clips at both ends of every truss U.N.O.

Roof Stick Frame:

Use roof joists per span chart.
Provide full depth blocking at all bearing locations with (1) A35 clip to top plate per block UNO.
Nail through sheathing with 8 d common @ 4" o.c. into blocking U.N.O.
Provide "H1" clips at both ends of every joist UNO.

Roof Overbuild:

Frame roof overbuild areas with 2×6 DF\#2 @ 24" o.c.
Brace joists at 6' 0" o.c.
Use 2×8 DF\#2 ridge board braced at $4^{\prime} 0$ " o.c.
Use 2×8 DF\#2 valley members laid flat and nailed to trusses with (2) 16 d per truss.
Brace ridge and joists such that load is distributed uniformly to trusses below.
Sheath under all overbuild areas.
Provide access and ventilation to overbuild areas as necessary.

Roof Beams:

See attached beam calculations.

Roof Sheathing:

Provide $5 / 8$ " or thicker 24/16 APA rated panel.
Nail with 8 d common at 6 " o.c. at panel edge and 12 " o.c. in the field.
Provide ' H ' clips at all unsupported edges.
Provide $1 / 8$ " gap between panels at time of installation.

\checkmark	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332
ENSIGN	By: Alex Hawkins, PE Date: June 2018	Checked By: DAJ
the standaro in enginering		

FLOOR FRAMING

Floor Joists:

TJI Engineered Floor Joist Span Tables: 20DL + 40LL + L/480					
Depth	Series	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
$91 / 2^{\prime \prime}$	110	$16^{\prime}-11^{\prime \prime}$	$15^{\prime}-6{ }^{\prime \prime}$	14'-7"	$13^{\prime}-7{ }^{\prime \prime}$
$91 / 2^{\prime \prime}$	210	17-9"	16'-3"	15'4"	14'-3"
11-7/8"	110	20'-2"	$18^{\prime}-5{ }^{\prime \prime}$	17-4"	15'-9"**
11-7/8"	210	21'-1"	19'-3"	18'-2"	16'-11"
11-7/8"	360	22'-11"	20'-11"	19'-8"	18'-4"

LPI Engineered Floor Joist Span Tables: 15DL + 40LL + L/480					
Depth	Series	12" o.c.	16" o.c.	19.2" 0.c.	24" o.c.
91/2"	LPI 20Plus	17'-9"	$16^{\prime \prime} 2^{\prime \prime}$	$15^{\prime}-3$ "	$14^{\prime}-3{ }^{\prime \prime}$
$91 / 2^{\prime \prime}$	LPI32Plus	18'9"	$17^{\prime}-01$	$16^{\prime}-0{ }^{\prime \prime}$	$14{ }^{\prime}-9 "$
11-7/8"	LPI 20Plus	21'-2"	19'-4"	18'-3"	17'-0"
11-7/8"	LPI32Plus	22'-3"	$20^{\prime \prime} 2$	19'-0"	17'-7"

Roseberg Engineered Floor Joist Span Tables: 20DL + 40LL + L/480					
Depth	Series	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
$91 / 2^{\prime \prime}$	RFPI 20	$16^{\prime}-7{ }^{\prime \prime}$	$15^{\prime}-2^{\prime \prime}$	$14^{\prime}-4^{\prime \prime}$	12'-10"
$91 / 2^{\prime \prime}$	RFPI 400	18'-0"	16'-5"	15'-6"	14'-6"
11-7/8"	RFPI 20	19'-10"	17'-11"	$16^{\prime}-4{ }^{\prime \prime}$	13'-8"
11-7/8"	RFPI 400	21'-5"	19'-7"	18'-6"	16'-10"

1-1/4" Rimboard around perimeter of all floors.
Install per manufacturers specifications.
Equivalent engineered floor joists may be substituted based on published information.
**Web stiffener is required at intermediate support when bearing length is less than $51 / 4 "$

Floor Beams:

See attached beam calculations.

Floor Sheathing:

Provide 3/4" T\&G APA rated Sturd---Floor sheathing
Glue and nail with 10 d common at 6 " o.c. at panel edges and 12 " $0 . c$. in the field.

\checkmark	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332
ENSIGN	By: Alex Hawkins, PE	Checked By: DAJ

STUD COLUMN DESIGN

NDS 2015 EDITION

Species $=$	DFLN Stud
Height $=$	11.0
$\mathrm{Fc}=$	900
$\mathrm{E}=$	1400
Kce $=$	0.3
$\mathrm{C}=$	0.8

Size =	2x4	2x6
d $=$	3.50	5.25
Fce $=$	295.28	664.39
$\mathrm{Cp}=$	0.30	0.58
$\mathrm{F}^{\prime} \mathrm{C}=$	271.77	521.08

Height	$(2) 2 \times 4$	$(3) 2 \times 4$	$(4) 2 \times 4$	$(5) 2 \times 4$	$(6) 2 \times 4$	$(7) 2 \times 4$
11 ft	2.9	4.3	5.7	7.1	8.6	10.0
9 ft	4.0	6.0	8.1	10.1	12.1	14.1
10 ft	3.4	5.1	6.8	8.4	10.1	11.8
12 ft	2.4	3.7	4.9	6.1	7.3	8.5
18 ft	1.1	1.7	2.3	2.8	3.4	3.9
kips						
kips						
kips						
kips						

Height	$(2) 2 \times 6$	$(3) 2 \times 6$	$(4) 2 \times 6$	$(5) 2 \times 6$	$(6) 2 \times 6$	$(7) 2 \times 6$
11 ft	8.2	12.3	16.4	20.5	24.6	28.7
9 ft	10.3	15.4	20.5	25.6	30.8	35.9
10 ft	9.2	13.8	18.4	23.1	27.7	32.3
12 ft	7.3	10.9	14.5	18.2	21.8	25.4
kips						
kips						
kips						
18 ft	3.7	5.5	7.3	9.1	11.0	12.8
kips						

SOLID POSTS

Species $=$	DFLN \#1
Height =	14.0
$\mathrm{Fc}=$	925
E =	1600
Kce $=$	0.3
$\mathrm{c}=$	0.8

Size $=$	4×4	4X6	6x6
d $=$	3.5	3.5	5.5
Fce $=$	208.33	208.33	514.46
$\mathrm{Cp}=$	0.214	0.214	0.472
$\mathrm{F}^{\prime} \mathrm{C}=$	197.60	197.60	436.47

Height	4×4	4×6	6×6
14 ft	2.4	3.8	13.2
9 ft	5.6	8.8	21.9
10 ft	4.7	7.3	20.1
12 ft			
kips			
kips			
18 ft	3.3	5.2	16.5
kips			
kips			

	Project: Blake Kingsbury and Merrit Chesson	Project No.: 8332
ENSIGN THE STANDARD IN ENGINEERING	By: Alex Hawkins, PE	Checked By: DAJ
	Date: June 2018	

STANDARD FOUNDATION WALLS

Foundation Schedule			Horizontal Reinforcement		Vertical Reinforcement	
Mark	Wall Height	Thickness	Size	Spacing	Size	Spacing
Typ.	4^{\prime}	$8^{\prime \prime}$	$\# 4$	$18^{\prime \prime}$	$\# 4$	$24^{\prime \prime}$
Typ.	8^{\prime}	$8^{\prime \prime}$	$\# 4$	$18^{\prime \prime}$	$\# 4$	$24^{\prime \prime}$
Typ.	9^{\prime}	$8^{\prime \prime}$	$\# 4$	$18^{\prime \prime}$	$\# 4$	$16^{\prime \prime}$
Typ.	10^{\prime}	$8^{\prime \prime}$	$\# 4$	$18^{\prime \prime}$	$\# 5$	$12^{\prime \prime}$

Notes: Wall height refers to final grade difference through the wall. Total height of wall may be higher due to footing drop for frost protection or native soil bearing as long as wall is backfilled such that the grade difference does not exceed the wall height at any time during construction.
ALL REBAR TO BE GRADE 60.
Place vertical bars in the center of wall.
Extend vertical bars from the footing to within 3 " of the top of wall.
Provide \#4 dowel with standard hook in the footing to match the vertical rebar.
Extend vertical leg of dowel 24 " min. into wall.
Place (1) \#4 horizontally within 4 " of top and bottom of wall.
Provide corner reinforcing so as to lap 24 " min.
Provide (2) \#4 above, (1) \#4 each side, and (1) \#4 below all openings.
Place steel within 2 " of openings \& extend 24 " min. beyond edge of opening.
Vertical bars around openings may terminate 3 " from top of wall.

This product failed due to an excessive uplift of -16402 lbs at support located at 4.00".
This product failed due to an excessive uplift of -3166 Ibs at support located at $10^{\prime} 4.00^{\prime \prime}$.
Overall Length: $10^{\prime} 8.00^{\prime \prime}$

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (Ibs)	16785 @ 4.00"	18047 (5.50")	Passed (93\%)	--	1.0 D + 0.7 E (All Spans)
Shear (lbs)	16720 @ $1^{\prime} 5.38^{\prime \prime}$	18953	Passed (88\%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-lbs)	27888 @ 2' $0.00^{\prime \prime}$	42836	Passed (65\%)	1.60	1.0 D + 0.7 E (All Spans)
Live Load Defl. (in)	-0.274 @ 4' $8.38^{\prime \prime}$	0.333	Passed (L/437)	--	0.6 D - 0.7 E (All Spans)
Total Load Defl. (in)	$0.282 @ 44^{\prime} 8.59^{\prime \prime}$	0.500	Passed (L/425)	--	1.0 D + 0.7 E (All Spans)

System : Floor
Member Type : Flush Beam
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 9' 6.00" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $9^{\prime} 9.00 \mathrm{o} \mathrm{o} / \mathrm{c}$ unless detailed otherwise.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Seismic	Total	
1 - Stud wall - DF	5.50"	5.50"	5.12"	239	284	$\begin{gathered} \hline 23637 /- \\ 23637 \\ \hline \end{gathered}$	$\begin{gathered} 24160 /- \\ 23637 \\ \hline \end{gathered}$	Blocking
2 - Stud wall - DF	5.50"	5.50"	1.50 "	239	284	4727/-4727	5250/-4727	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Wributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Seismic $(\mathbf{1 . 6 0)}$	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Ensign Engineering	
Ensign Engineering	
(801)255-0529	
ensign@ensignutah.com	

3 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

This product failed due to an excessive uplift of -3247 lbs at support located at $7^{\prime} 4.25^{\prime \prime}$.
This product failed due to an excessive uplift of -5018 lbs at support located at $11^{\prime} 9.75^{\prime \prime}$.
This product failed due to an excessive uplift of -16627 lbs at support located at $24^{\prime} 0.50^{\prime \prime}$.

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	18596 @ 24' 0.50"	18596 (4.72")	Passed (100\%)	--	$1.0 \mathrm{D}+0.7 \mathrm{E}$ (All Spans)
Shear (lbs)	18390 @ 23' 0.62"	18953	Passed (97\%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-lbs)	28434 @ 22' 6.00"	42836	Passed (66\%)	1.60	1.0 D + 0.7 E (All Spans)
Live Load Defl. (in)	0.287 @ 19' 3.13"	0.306	Passed (L/512)	--	$\begin{array}{\|l} \hline 1.0 \mathrm{D}+0.525 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S} \text { (Alt } \\ \text { Spans) } \\ \hline \end{array}$
Total Load Defl. (in)	0.343 @ 19' 1.48"	0.611	Passed (L/428)	--	$\begin{aligned} & 1.0 \mathrm{D}+0.525 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S} \text { (Alt } \\ & \text { Spans) } \end{aligned}$

System : Floor
Member Type : Flush Beam
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: $\mathrm{LL}(\mathrm{L} / 480)$ and $\mathrm{TL}(\mathrm{L} / 240)$.
- Top Edge Bracing (Lu): Top compression edge must be braced at 9' 2.00 " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $16^{\prime} 7.00 \mathrm{o} \circ \mathrm{o}$ c unless detailed otherwise.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Seismic	Total	
1 - Column - DF	5.50"	5.50"	1.50"	760	1437/-46	473/-473	2670/-519	None
2 - Column - DF	5.50"	5.50 "	1.50"	489	$\begin{gathered} 2837 /- \\ 1060 \\ \hline \end{gathered}$	5057/-5057	8383/-6117	None
3 - Column - DF	5.50"	5.50 "	3.21"	3028	6001	9764/-9764	$\begin{gathered} \hline 18793 /- \\ 9764 \\ \hline \end{gathered}$	None
4 - Hanger on $117 / 8{ }^{\text {" DF }}$ beam	3.50"	Hanger ${ }^{1}$	4.72"	1231	2298/-17	$\begin{gathered} \hline 24807 /- \\ 24807 \\ \hline \end{gathered}$	$\begin{array}{r} 28336 /- \\ 24824 \\ \hline \end{array}$	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie Connectors						
Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
4 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

Loads	Location (Side)	Wributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Seismic $(\mathbf{1 . 6 0)}$	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values.
Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is
compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at
Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Ensign Engineering	
Ensign Engineering	
(801) 255-0529	
ensign@ensignutah.com	

3 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

This product failed due to an excessive uplift of -2356 Ibs at support located at 13' 1.00 ".
This product failed due to an excessive uplift of -17861 lbs at support located at $17^{\prime} 0.50^{\prime \prime}$.
This product failed due to an excessive uplift of -1511 lbs at support located at $24^{\prime} 4.75^{\prime \prime}$.
Overall Length: 24' $\mathbf{1 0 . 0 0 "}$

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	20807 @ 17' 1.75"	21656 (5.50")	Passed (96\%)	--	1.0 D - 0.7 E (All Spans) [5]
Shear (lbs)	16964 @ 18' 4.38"	18953	Passed (90\%)	1.60	1.0 D - 0.7 E (All Spans) [5]
Moment (Ft-lbs)	-9004 @ 13' 2.25"	26772	Passed (34\%)	1.00	1.0 D + 1.0 L (Adj Spans) [5]
Live Load Defl. (in)	0.082 @ 20' 6.87"	0.184	Passed (L/999+)	--	$\begin{aligned} & 1.0 \mathrm{D}-0.525 \mathrm{E}+0.75 \mathrm{~L}+0.75 \mathrm{~S} \text { (Alt } \\ & \text { Sbans) } 51 \end{aligned}$
Total Load Defl. (in)	0.097 @ 20' 7.33"	0.368	Passed (L/909)	--	```1.0 D - 0.525 E + 0.75 L + 0.75 S (Alt Spans) [5]```

System : Floor
Member Type : Flush Beam
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240)
- Top Edge Bracing (Lu): Top compression edge must be braced at 22' 10.00" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 20' 11.00" o/c unless detailed otherwise.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Floor Live	Seismic	Total	
1-Column - DF	5.50"	4.25"	1.50 "	1100	2013	169/-169	3282/-169	1 1/4" Rim Board
2 - Column - DF	5.50"	5.50"	2.21"	2332	5191/-265	5364/-5364	$\begin{gathered} 12887 /- \\ 5629 \\ \hline \end{gathered}$	None
3-Column - DF	5.50"	5.50"	5.28"	1841	$\begin{gathered} \hline 5273 /- \\ 1097 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27093 /- \\ 27093 \\ \hline \end{gathered}$	$\begin{gathered} 34207 /- \\ 28190 \\ \hline \end{gathered}$	None
4 - Column - DF	5.50"	4.25"	1.50"	876	1632	2909/-2909	5417/-2909	11/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Seismic $(\mathbf{1 . 6 0)}$	Comments
0 - Self Weight (PLF)	$1.25^{\prime \prime}$ to $24^{\prime} 8.75^{\prime \prime}$	N/A	18.2			
1- Uniform (PSF)	0 to $24^{\prime} 10.00^{\prime \prime}$ (Front)	$9^{\prime} 0.00 "$	20.0	40.0	-	Residential - Living Areas
2 - Point (lb)	$18^{\prime} 9.00^{\prime \prime}$ (Front)	N/A	1231	$2298 /-17$	$24807 /-24807$	Linked from: MB11, Support 4

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Ensign Engineering	
Ensign Engineering	
(801)255-0529	
ensign@ensignutah.com	

Right cantilever length exceeds $1 / 3$ member length or $1 / 2$ back span length.
Overall Length: $11^{\prime} 0.50^{\prime \prime}$

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.;Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3263 @ 7' 0.50"	3209 (5.25")	Passed (102\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	1375 @ 7' 3.50"	1903	Passed (72\%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-2896 @ 7' 0.50"	4847	Passed (60\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.151 @ 11' 0.50"	0.200	Passed (2L/638)	--	1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.160 @ 11' 0.50"	0.400	Passed (2L/600)	--	1.0 D + 1.0 S (Alt Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	68	40	Passed	--	--

- Deflection criteria: $\operatorname{LL}(L / 480)$ and $T L(L / 240)$.
- Overhang deflection criteria: $\mathrm{LL}\left(0.2^{\prime \prime}\right)$ and $\mathrm{TL}(2 \mathrm{~L} / 240)$.
- Top Edge Bracing (Lu): Top compression edge must be braced at $6^{\prime} 9.00$ " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 5 ' 0.00 o o c unless detailed otherwise.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{\mathrm{TM}}$ Panel (24 " Span Rating) that is glued and nailed down
- Additional considerations for the $\mathrm{TJ}-\mathrm{Pro}^{\text {TM }}$ Rating include: None

Supports	Bearing			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $117 / 8{ }^{\text {" DF }}$ D ledger	3.50"	Hanger ${ }^{1}$	1.75" / - 2	66	293/-71	1261	1620/-71	See note ${ }^{1}$
2 - Stud wall - DF	6.00"	6.00"	5.25"	228	685	3035	3948	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Connector: Simpson Strong-Tie Connectors						
Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
$1-$ Top Mount Hanger	ITS2.37/11.88	$2.00 "$	$4-10 \mathrm{~d} \times 1-1 / 2$	$2-10 \mathrm{~d} \times 1-1 / 2$	N/A	

Loads	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Ensign Engineering	
Ensign Engineering	
(801) 255-0529	
ensign@ensignutah.com	

Right cantilever length exceeds $1 / 3$ member length or $1 / 2$ back span length. Right overhang exceeds the maximum length of $5^{\prime} 0.00$ " for this product.

Overall Length: 14' 3.50 "

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.;Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	950 @ 8' 6.50"	2790 (5.25")	Passed (34\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	440 @ 8' 9.50"	1655	Passed (27\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	-1323 @ 8' 6.50"	3161	Passed (42\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.103 @ 14' 3.50"	0.287	$\begin{aligned} & \hline \text { Passed } \\ & (2 \mathrm{~L} / 999+) \\ & \hline \end{aligned}$	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Total Load Defl. (in)	0.140 @ 14' 3.50"	0.575	Passed (2L/988)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	66	40	Passed	--	--

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.
- Top Edge Bracing (Lu): Top compression edge must be braced at 9' 7.00" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' 6.00 o " c unless detailed otherwise.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{T M}$ Rating include: None

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

Supports	Bearing			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	Accessories
1-Hanger on 11 7/8" DF ledger	$3.50 "$	Hanger 1	$1.75^{\prime \prime} /-2$	64	$236 /-91$	$300 /-91$	See note ${ }^{1}$
2 - Stud wall - DF	$6.00 "$	$6.00^{\prime \prime}$	$3.50^{\prime \prime}$	317	634	951	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Connector: Simpson Strong-Tie Connectors						
Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
1 - Top Mount Hanger	ITS2.37/11.88	$2.00^{\prime \prime}$	$4-10 \mathrm{~d} \times 1-1 / 2$	$2-10 \mathrm{~d} \times 1-1 / 2$	N/A	

Loads	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 3.50 "$	$16^{\prime \prime}$	20.0	40.0	Residential - Living Areas

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Ensign Engineering	
Ensign Engineering	
(801) 255-0529	
ensign@ensignutah.com	

Overall Length: 18' 7.00"

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.;Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$743 @ 2.50 "$	$1485(3.50 ")$	Passed (50\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$720 @ 3.50 "$	1655	Passed (44\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$3300 @ 99^{\prime} 3.50^{\prime \prime}$	4215	Passed (78\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.350 @ 99^{\prime} 3.50 "$	0.454	Passed (L/623)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.525 @ 99^{\prime \prime} 3.50 "$	0.908	Passed (L/415)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	40	40	Passed	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 4' 7.00 " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 18 ' 7.00 " $0 / \mathrm{c}$ unless detailed otherwise.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{T M}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None

Supports	Bearing			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	248	496	744	Blocking
2 - Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	248	496	744	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $18^{\prime} 7.00 "$	$16^{\prime \prime}$	20.0	40.0	Residential - Living Areas

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Ensign Engineering	
Ensign Engineering	
(801) 255-0529	
ensign@ensignutah.com	

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.;Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1628 @ 2.50"	1731 (3.50")	Passed (94\%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	1567 @ 15' 3.50"	1961	Passed (80\%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	6008 @ 7' 9.50"	7107	Passed (85\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.683 @ 7' 9.50"	0.794	Passed (L/279)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.760 @ 7' 9.50"	1.059	Passed (L/251)	--	1.0 D + 1.0 S (All Spans)

- Deflection criteria: LL (L/240) and TL (L/180).
- Top Edge Bracing (Lu): Top compression edge must be braced at $3^{\prime} 7.00 \mathrm{o} \mathrm{o} / \mathrm{c}$ unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $16^{\prime} 4.00$ " o/c unless detailed otherwise.

Supports	Bearing			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - DF	$3.50 "$	$3.50 "$	$3.13^{\prime \prime}$	163	1465	1628	Blocking
2 - Beveled Plate - DF	$3.50 "$	$3.50 "$	$3.13 "$	163	1465	1628	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $15^{\prime} 7.00 "$	$12^{\prime \prime}$	20.0	188.0	Roof Snow

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Ensign Engineering	
Ensign Engineering	
(801) 255-0529	
ensign@ensignutah.com	

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.;Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1106 @ 2.50"	1708 (3.50")	Passed (65\%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	1045 @ 10' 3.50"	1903	Passed (55\%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2700 @ 5' 3.50"	4847	Passed (56\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.187 @ 5' 3.50"	0.533	Passed (L/685)	--	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.207 @ 5' 3.50"	0.710	Passed (L/616)	--	1.0 D + 1.0 S (All Spans)

- Deflection criteria: LL (L/240) and TL (L/180).
- Top Edge Bracing (Lu): Top compression edge must be braced at $5^{\prime} 2.00 \mathrm{o} \mathrm{o} / \mathrm{c}$ unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $11^{\prime} 1.00$ " o/c unless detailed otherwise.

Supports	Bearing			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	111	995	1106	Blocking
2 - Beveled Plate - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	111	995	1106	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $10^{\prime} 7.00^{\prime \prime}$	$12^{\prime \prime}$	20.0	188.0	Roof Snow

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Ensign Engineering	
Ensign Engineering	
(801) 255-0529	
ensign@ensignutah.com	

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.;Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1606 @ 2.50"	1708 (3.50")	Passed (94\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	1547 @ 3.50"	1903	Passed (81\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	4728 @ 6' 0.76"	4847	Passed (98\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.398 @ 6' 1.66"	0.397	Passed (L/359)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.431 @ 6' 1.69"	0.596	Passed (L/332)	--	1.0 D + 0.75 L + 0.75 S (All Spans)

System : Roof
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD
Member Pitch: 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $3^{\prime} 9.00$ " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12 4.00" o/c unless detailed otherwise.

Supports	Bearing			Loads to Supports (Ibs)				
	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1-Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$3.13^{\prime \prime}$	123	725	1252	2100	Blocking
2 - Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$2.71^{\prime \prime}$	123	568	1252	1943	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1- Uniform (PSF)	0 to $12^{\prime} 4.00^{\prime \prime}$	$12^{\prime \prime}$	20.0	40.0	203.0	Roof Snow
2 - Uniform (PSF)	$1^{\prime} 0.00 "$ to $9 ' 0.00 "$	$12^{\prime \prime}$	-	100.0	-	Hot tub

Weyerhaeuser Notes
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values.
Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design
professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is
compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at
Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES
under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser
product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Ensign Engineering	
Ensign Engineering	
(801) 255-0529	
ensign@ensignutah.com	

Beam Id: Lot 770 - 1 12

Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load= 1
Load width 1 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
30,043 97,664 52,083
$-3,57711,8054,227$
KER 133×406 B $2 \quad \mathrm{Cf}=0,97$ Design method: Allowable stress design Increasing factor of the allowable stress 1,03
Factored Moment/Moment capacity [kNm] 48,519 65,401 74%
Factored shear force/shear capacity [kN] 59,212 62,936 94%

Load factor of dead load= 1 Load factor of imposed load= 1
Load width 2.75 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
$5,069 \quad 31,713 \quad 12,567$
$-1,17310,5713,945$
T24 164×260 B $2 C f=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,09
Factored Moment/Moment capacity [kNm] 10,650 19,351 55%
Factored shear force/shear capacity [kN] 18,138 29,770 61%

Beam Id: Lot \#70-MB 3

Structural Engineer:

Licensed to: FINNLAMELLI OY

0
85.8
11.8 30\%
11.8
230%
230%

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1.2 Load factor of imposed load=(1.6)
Load width $.406(\mathrm{~m})$ (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
220,373-4,057
21,542-62,893
HEB 260 (Class of section=1/1) $G=93 \quad \mathrm{l}(\mathrm{cm} 4)=14919 \quad W(\mathrm{~cm} 3)=1150 \mathrm{fy}=235$
Factored Moment/Moment capacity [kNm] 186,058 301,270 62%
Factored shear force/shear capacity [kN] 153,619 341,925 45%
$W 10 \times 68$

Deflection due to unfactored load (Deflection limit L/360)/L/180)!
$6,4 \mathrm{~mm}(94 \%)-0,2 \mathrm{~mm}$ (3%)
Attention! Ultimate limit design! Remember the load factors!!

Beam Id: Lot \$ $70-\mathrm{MB}$

Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load $=1.2$ Load factor of imposed load= $=1.6$
Load width $1(\mathrm{~m})$ (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
123,932 322,000 41,617
3,559 26,755-11,967

Sum infl $M+S 0,89$ (must be<=1) $x=1900 M=135,98 S=75,93$
Deflection due to unfactored load (Deflection limit $\mathrm{L} / 360$)
$8,8 \mathrm{~mm}(82 \%) 2,2 \mathrm{~mm}(25 \%)$
Attention! Ultimate limit design! Remember the load factors!!

Beam Id: Lot $\# 70-\mathrm{MB} 5$

Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1.2 Load factor of imposed load= 1.6
Load width 2.45 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
104,678 284,183 14,466
$6,193 \quad 17,781-63,424$

Sum inf $M+S 0,80$ (must be <=1) $x=5549 M=137,3 S=153,62$
Deflection due to unfactored load (Deflection limit L/360)
$11,3 \mathrm{~mm}$ (74%) $0,0 \mathrm{~mm}(0 \%)$
Attention! Ultimate limit design! Remember the load factors!!

Beam Id: Lot \# $70-$ MB 6
Structural Engineer:
Licensed to: FINNLAMELLI OY
(200

Licensed to: FINNLAMELLI OY

Load factor of dead load=1.2 Load factor of imposed load= 1.6
Load width 1 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
84,707 186,903 9,791
$6,166 \quad 14,144-44,463$
LEA 220 (Class of section=1/1) $\mathrm{G}=50,5 \mathrm{I}(\mathrm{cm} 4)=5410 \quad W(\mathrm{~cm} 3)=515 \mathrm{fy}=235$
Factored Moment/Moment capacity [kNm] 96,638 133,480 72%
Factored shear force/shear capacity [kN] 99,582 196,413 51%

Beam Id: Lot \# $70-\mathrm{MB} \nrightarrow$

Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1.2 Load factor of imposed load= 1.6
Load width $.305(\mathrm{~m})$ (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
32,349 35,204
2,400 2,655

HEA 180 (Class of section=1/1) $\mathrm{G}=35,5 \mathrm{I}(\mathrm{cm} 4)=2510 \mathrm{~W}(\mathrm{~cm} 3)=294$ fy=235
Factored Moment/Moment capacity [kNm] 49,586 76,140 65%
Factored shear force/shear capacity [kN] 35,201 136,629 26%

Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load= 1
Load width 1 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
11,838 11,840
$0,800 \quad 0,800$
T24 76×300 B $2 C f=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,02
Factored Moment/Moment capacity [kN] 4,736 11,132 43% Factored shear force/shear capacity $[\mathrm{kN}] \quad 11,838 \quad 14,843 \quad 80 \%$
(2) Lu L

Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load= 1
 Load width 1.875 (m) (by which the loads
 has been multiplied during calculation)
 Max/Min reactions of beam [kN]
 29,524 74,803 5,969
 2,686 7,355 -8,307

GER 44×300 B $2 \mathrm{Cf}=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,03 Factored Moment/Moment capacity [kNm] 26,202 12,179 215% Factored shear force/shear capacity [kN] 43,120 15,337 281%

$$
\begin{aligned}
& \frac{L U L}{L O G} \quad \frac{L O}{12,1}+18,1=30,2 \quad \text { ok } \\
\Rightarrow & 15,3+27 A=43,2 \quad \text { ok }
\end{aligned}
$$

Beam Id: Lot \# 70 - MB
Structural Engineer:
Licensed to: FINNLAMELLI OY

\%-number=permanent part of imposed load I= relative flexural rigidity
$1=1$
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load= 1
Load width 1.875 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
29,524 74,803 5,969
2,686 7,355-8,307
T24 164×260 B $2 C f=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,03
Factored Moment/Moment capacity [kNT] 26,202 18,185 144 \% Factored shear force/shear capacity [kN] 43,120 27,977 154%
(1) Lo 6 +
(1) LV C $1 / 4 \times 11 / 8$

Deflection due to unfactored load (Deflection limit L/240)
$18,6 \mathrm{~mm}(117 \%) 0,2 \mathrm{~mm}(3 \%)$ ~

Beam Id: Lot \# $70-\mathrm{MB} / /$
Structural Engineer:
Licensed to: FINNLAMELLI OY
(20\%
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load= 1
Load width 1 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
$8,022 \quad 10,366 \quad 37,053 \quad 15,479$
$\begin{array}{lllll}2,501 & -4,886 & 10,825 & 5,100\end{array}$
GER 76×300 B $2 C f=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,09
Factored Moment/Moment capacity [kNm] 12,930 22,385 58%
Factored shear force/shear capacity [kN] 21,147 28,189 75%

Deflection due to unfactored load (Deflection limit L/360)
$0,9 \mathrm{~mm}(16 \%)-0,2 \mathrm{~mm}(4 \%) 7,1 \mathrm{~mm}(71 \%)$
(2) LVL
$1 \frac{1}{2} x$
1178
SEE FORTE CALCULATION WITH SEISMIC HOLD DOWN FORCE

Beam Id: Lot \#70-MB 12
Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load= 1
Load width 1.95 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
9,093 21,730 25,306 8,360
$3,000 \quad 3,339 \quad 2,735 \quad 2,697$
KR 76×300 B $2 \mathrm{Cf}=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,09
Factored Moment/Moment capacity [kNm] 8,102 22,377 36% Factored shear force/shear capacity [kN] 20,274 28,178 72%
(2) LUC $11 / 2 \times 11 / 8$

SEE FORTE CALCULATION WITH SEISMIC HOLD DOWN FORCE

Beam Id: Lot \# $70-\mathrm{MB} \mid 2$
Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

200
Licensed to: FINNLAMELLI OY

Load factor of dead load 1.2 Load factor of imposed load $=1.6$
Load width $1(\mathrm{~m})$ (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
140,863 426,732 29,743
8,779 28,212-107,791
HEB 240 (Class of section=1/1) $G=83,2 \quad I(\mathrm{~cm} 4)=11259 \quad W(\mathrm{~cm} 3)=938$ fy $=235$
Factored Moment/Moment capacity [kNT] 213,255 247,690 86%
Factored shear force/shear capacity [kN] 231,180 314,430 74%
Sum infl $M+S 0,88$ (must be <=1) $x=5649 \mathbb{M}=213,15 S=231,18$
Deflection due to unfactored load (Deflection limit $L / 360$)
$11,5 \mathrm{~mm}(73 \%) \quad 0,0 \mathrm{~mm}(1 \%)$
Attention! Ultimate limit design! Remember the load factors!!

Beam Id: Lot \# $70-\mathrm{MB} / 4$

Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load= 1
Load width $2(\mathrm{~m})$ (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
$50,211 \quad 151,030 \quad 50,223$
$-2,417 \quad 8,630 \quad-2,416$
L. 40255×390 B $2 C f=0,97$ Design method: Allowable stress design Increasing factor of the allowable stress 1,01 Factored Moment/Moment capacity [kNm] 52,248 94,906 55% Factored shear force/shear capacity [kN] 75,515 77,350 98%

$$
61(90+165) \times 390
$$

$$
615+165=280
$$

$$
6\left(4 \frac{1}{2}+6 \frac{1}{2}\right) \times 153 / 8
$$

Deflection due to unfactored load (Deflection limit L/360) $3,6 \mathrm{~mm}(38 \%) 3,6 \mathrm{~mm}(38 \%)$

Beam Id: Lot \# $70-\mathrm{MB}$
Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load= 1
Load width $1(\mathrm{~m})$ (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
$125,43355,731$
15,743 9,513
T24 825×260 B $2 C f=1,00$ Design method: Allowable stress design
Increasing factor of the allowable stress 1,03
(5) LOGS

Factored Moment/Moment capacity $[k N m]$ 87,277 92,120 95%
Factored shear force/shear capacity [kN] $125,433 \quad 141,722 \quad 89 \%$

Deflection due to unfactored load (Deflection limit $L / 360$)
$5,5 \mathrm{~mm}(45 \%)$

Beam Id: Lot ; $70-\mathrm{MB} / 6$
Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load=1 Load factor of imposed load= 1
Load width 2.975 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
$9,640 \quad 30,527 \quad 10,230$
1,303 7,632 1,647

T24 164×260 B $2 C f=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,07
Factored Moment/Moment capacity [kNm] 6,283 18,921 33%
Factored shear force/shear capacity [kN] 15,486 29,109 53%
Beam Id: Lot \# $70-\mathrm{MB} \quad \mathrm{Q} /$ Date 24-05-2018
Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load=1.2 Load factor of imposed load= 1.6
Load width $1(\mathrm{~m})$ (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
56,736 561,507
$-18,05050,761$
HEB 280 (Class of section=1/1) $G=103 \quad \mathrm{I}(\mathrm{cm} 4)=19270 \mathrm{~W}(\mathrm{~cm} 3)=1380$ fy $=235$
Factored Moment/Moment capacity $[\mathrm{kNm}]$ 111,815 $\quad 360,490 \quad 31 \%$
Factored shear force/shear capacity [kN] 380,598 $387,891 \quad 98 \%$

Deflection due to unfactored load (Deflection limit L/360)/L/180)
$1,3 \mathrm{~mm}(15 \%) 2,6 \mathrm{~mm}(23 \%)$
Attention! Ultimate limit design! Remember the load factors!!

Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load= 1
Load width 2.75 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
4,330 4,331
1,443 1,444
T24 $76 \times 185 \mathrm{~B} 2 \quad \mathrm{Cf}=1,00$ Design method: Allowable stress design
Increasing factor of the allowable stress 1,09
Factored Moment/Moment capacity $[\mathrm{kNm}] 1,1374,540 \quad 25 \%$
Factored shear force/shear capacity [kN] 4,330 9,816 44%

Deflection due to unfactored load (Deflection limit L/360)
$0,5 \mathrm{~mm}$ (17\%)

Licensed to: FINNLAMELLLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load=1 Load factor of imposed load= 1
Load width $3.4(\mathrm{~m})$ (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
15,552 15,555
5,184 5,185
KER $76 \times 300 \mathrm{~B} 2 \mathrm{Cf}=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,09
Factored Moment/Moment capacity $[\mathrm{kNm}] 11,861$ 22,385 53% Factored shear force/shear capacity [kN] 15,552 28,189 55%

Beam Id: Lot $£ 70$ - MB
 24
 Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

HEB 220 (Class of section=1/1) $\mathrm{G}=71,5 \mathrm{I}(\mathrm{cm} 4)=8091 \mathrm{~W}(\mathrm{~cm} 3)=736 \mathrm{fy}=235$ Factored Moment/Moment capacity [kNm] 51,553 194,580 26 \% Factored shear force/shear capacity [kN] 241,190 273,258 88%

Load factor of dead load=1.2 Load factor of imposed load= 1.6
Load width 1.625 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
201,392-6,455
17,097-81,333
HEB 320 (Class of section=1/1) $\mathrm{G}=127 \quad \mathrm{l}$ (cm4)=30823 $\mathrm{W}(\mathrm{cm} 3)=1930 \mathrm{fy}=235$
Factored Moment/Moment capacity $[\mathrm{kNm}] 260,239502,900 \quad 52 \%$
W12×87
Factored shear force/shear capacity [kN] 120,059 485,604 25%

Deflection due to unfactored load (Deflection limit L/360)/L/180)!
$17,9 \mathrm{~mm}(91 \%)-0,2 \mathrm{~mm}(2 \%)$
Attention! Ultimate limit design! Remember the load factors!!

Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load =1 Load factor of imposed load=1
Load width $1(\mathrm{~m})$ (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
79,439 205,008 25,666
4,281 22,173 -6,793
$4,28122,173-6,793$
$\mathrm{~L} 40380 \times 390 \mathrm{~B} 2 \quad \mathrm{Cf}=0,97$ Design method: Allowable stress design
Increasing factor of the allowable stress 1,03
Factored Moment/Moment capacity [kNT] 87,130 142,984 61%
Factored shear force/shear capacity [kN] 115,429 116,534 99%

Deflection due to unfactored load (Deflection limit L/360)
$6,6 \mathrm{~mm}$ (62 \%) $1,6 \mathrm{~mm}$ (18 \%)

Structural Engineer:

number=permanent part of imposed load I=relative flexural rigidity

Licensed to: FINNLAMELLI OY

Load factor of dead load $=1$ Load factor of imposed load $=1$
Load width $2.45(\mathrm{~m})$ (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
67,927 209,092 8,202
$5,246 \quad 17,155-43,405$
L40 380×430 B $2 C f=0,96$ Design method: Allowable stress design Increasing factor of the allowable stress 1,02
Factored Moment/Moment capacity [kNm] 92,662 171,091 54%
Factored shear force/shear capacity [kN] 122,747 127,850 96%

$$
\left.\operatorname{co}(2)^{7} / /^{1 / x^{1}}\right]^{11}
$$

Deflection due to unfactored load (Deflection limit L/360)
$9,0 \mathrm{~mm}(58 \%) 0,0 \mathrm{~mm}(0 \%)$

Beam Id: LOT\#70 MB (o) (2) 1
Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load =1 Load factor of imposed load=1
Load width 1 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
54,274 119,761 5,612
5,186 11,786-28,297
L40 380×430 B 2 Cf=0,96 Design method: Allowable stress design Increasing factor of the allowable stress 1,03
Factored Moment/Moment capacity [kNm] 61,922 171,870 36%
Factored shear force/shear capacity [kN] 63,808 128,433 50%

Deflection due to unfactored load (Deflection limit L/360)
$6,3 \mathrm{~mm}(41 \%) 0,0 \mathrm{~mm}(0 \%)$

Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load =1 Load factor of imposed load=1
Load width .305 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
20,991 21,381
2,054 2,099
GER 152×300 B $2 \quad C f=1,00$ Design method: Allowable stress design
Increasing factor of the allowable stress 1,03
Factored Moment/Moment capacity [kNm] 29,825 42,071 71%
Factored shear force/shear capacity [kN] 21,379 52,978 40%

$$
(4) L U L \quad 1 / L^{4}+1 / /^{4}
$$

Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load=1 Load factor of imposed load=1
Load width 1 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
89,999 272,494 17,303
7,447 23,510-68,593
L40 380×515 B $2 \mathrm{Cf}=0,94$ Design method: Allowable stress design Increasing factor of the allowable stress 1,02
Factored Moment/Moment capacity [kNm] 136,336 240,880 57%
Factored shear force/shear capacity [kN] 147,826 153,335 96%

$$
\text { (2) } 64+2 \times 20 / 4
$$

Deflection due to unfactored load (Deflection limit L/360)
$7,4 \mathrm{~mm}(47 \%) 0,0 \mathrm{~mm}$ (0\%)

Beam Id: LOTH70 HDR +1

Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

70	
60	
50	
40	
30	
20	
10	
-10	
-20	
-30	
-40	
-50	
-60	
-70	

Load factor of dead load $=1.2$ Load factor of imposed load $=1.6$
Load width .61 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
29,893 76,083
2,196 5,534

T24 328×260 B $2 \quad \mathrm{Cf}=1,00$ Design method: Ultimate limit design Factored Moment/Moment capacity [kNm] 36,831 56,853 65% Factored shear force/shear capacity [kN] 76,081 87,467 87%
(2) 1065

Deflection due to unfactored load (Deflection limit L/360)
$3,1 \mathrm{~mm}$ (50\%)

Beam Id: LOT\#70 HDR ff
Structural Engineer:

Licensed to: FINNLAMELLI OY

Load factor of dead load $=1.2$ Load factor of imposed load =1.6
Load width .61 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
47,031 91,761
2,094 3,851
T24 492×260 B $2 \quad C f=1,00$ Design method: Ultimate limit design
Factored Moment/Moment capacity [kNm] 40,312 85,280 47%
Factored shear force/shear capacity [kN] 91,759 131,200 70%
(3) 1064

Deflection due to unfactored load (Deflection limit L/360)
$0,9 \mathrm{~mm}(22 \%)$

Beam Id: LOT\#70 HDR
Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

50		
40		
30		
20		
10		
-10		
-20		
-30		
-40		
-50		

Load factor of dead load= 1.2 Load factor of imposed load= 1.6
Load width .61 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
35,741 56,764
2,694 4,275
T24 328×260 B $2 \quad C f=1,00$ Design method: Ultimate limit design Factored Moment/Moment capacity [kNm] 49,557 56,853 87% Factored shear force/shear capacity [kN] 56,761 87,467 65%

$2 \operatorname{Lo65}$

Deflection due to unfactored load (Deflection limit L/360)
$6,9 \mathrm{~mm}$ (88\%)

Beam Id: LOTH70 HDR If
Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load=1.2 Load factor of imposed load=1.6
Load width .61 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
34,577 3,552
1,933-2,500
T24 164×260 B $2 C f=1,00$ Design method: Ultimate limit design Factored Moment/Moment capacity [kNm] 10,807 28,427 38% Factored shear force/shear capacity [kN] 17,553 43,733 40 \%

Deflection due to unfactored load (Deflection limit L/360)/L/180)!
$4,5 \mathrm{~mm}$ (65%) $0,4 \mathrm{~mm}$ (6 \%)

Beam Id: LOT\#70 HDR ff 5
Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load $=1.2$ Load factor of imposed load 1.6
Load width 2.9 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
134,715 24,026
10,364 3,387
T24656 x 260 B $2 C f=1,00$ Design method: Ultimate limit design Factored Moment/Moment capacity [kNm] 20,064 113,707 18 \% Factored shear force/shear capacity [kN] 134,715 174,933 77%
(4) Lobs

Deflection due to unfactored load (Deflection limit L/360)
$0,3 \mathrm{~mm}(8 \%)$

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Strong4lie
 Software
 Version 2.6.6682.21

Company:	Ensign Engineering	Date:	$6 / 11 / 2018$
Engineer:	Alex Hawkins, P.E.	Page:	$1 / 5$
Project:			
Address:	45 W 10000 S Ste. 500		
Phone:	$801-255-0529$		
E-mail:	ahawkins@ensigneng.com		

1.Project information

Customer company:
Project description:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Concrete screw
Material: Carbon Steel
Diameter (inch): 0.750
Nominal Embedment depth (inch): 6.000
Effective Embedment depth, hef (inch): 4.640
Code report: ICC-ES ESR-2713
Anchor category: 1
Anchor ductility: No
$\mathrm{h}_{\text {min }}$ (inch): 9.58
Cac (inch): 7.00
$\mathrm{C}_{\text {min }}$ (inch): 1.75
$\mathrm{S}_{\text {min }}$ (inch): 3.00

Location: Utah
Fastening description:

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 120.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}(\mathrm{psi}): 3000$
$\Psi_{\text {c,v: }} 1.0$
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No
Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No
Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): $10.00 \times 10.00 \times 0.81$

Recommended Anchor

Anchor Name: Titen HD® - 3/4"Ø Titen HD, hnom:6" (152mm)
Code Report: ICC-ES ESR-2713

SIMPSON Anchor Designer ${ }^{T M}$
Strongllie
Software
Version 2.6.6682.21

Company:	Ensign Engineering	Date:	$6 / 11 / 2018$
Engineer:	Alex Hawkins, P.E.	Page:	$2 / 5$
Project:			
Address:	45 W 10000 S Ste. 500		
Phone:	$801-255-0529$		
E-mail:	ahawkins@ensigneng.com		

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: not set
Seismic design: No
Anchors subjected to sustained tension: Not applicable
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No
Strength level loads:
Nua [lb]: 3180
$V_{\text {uax }}[\mathrm{lb}]$: 0
$V_{\text {uay }}$ [lb]: 0
Mux [ft-lb]: 0
Muy [ft-lb]: 0
$M_{u z}[f t-l b]: 0$
<Figure 1>

Z

3180 lb

Company:	Ensign Engineering	Date:	$6 / 11 / 2018$
Engineer:	Alex Hawkins, P.E.	Page:	$3 / 5$
Project:			
Address:	45 W 10000 S Ste. 500		
Phone:	$801-255-0529$		
E-mail:	ahawkins@ensigneng.com		

<Figure 2>

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.6.6682.21

Company:	Ensign Engineering	Date:	$6 / 11 / 2018$
Engineer:	Alex Hawkins, P.E.	Page:	$4 / 5$
Project:			
Address:	45 W 10000 S Ste. 500		
Phone:	$801-255-0529$		
E-mail:	ahawkins@ensigneng.com		

3. Resulting Anchor Forces

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}$ (lb)	ϕ	$\phi N_{\text {sa }}$ (lb)
45540	0.65	29601

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_{b}=k_{c} \lambda_{a} V^{\prime} f_{c} h_{e f}{ }^{1.5}$ (Eq. 17.4.2.2a)

k_{c}	λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	$h_{e f}$ (in)	$N_{b}(\mathrm{lb})$
17.0	1.00	3000	4.640	9307

$\phi N_{c b g}=\phi\left(A_{N c} / A_{N c o}\right) \Psi_{e c, N} \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Sec. 17.3.1 \& Eq. 17.4.2.1b)

$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$C_{a, \min }(\mathrm{in})$	$\Psi_{e c, N}$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c p, N}$	$N_{b}(\mathrm{lb})$	ϕ	$\phi N_{c b g}(\mathrm{lb})$
139.20	193.77	2.00	1.000	0.786	1.00	1.000	9307	0.65	3417

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\phi N_{p n}=\phi \Psi_{c, P} \lambda_{a} N_{p}\left(f_{c}^{\prime} / 2,500\right)^{n}$ (Sec. 17.3.1, Eq. 17.4.3.1 \& Code Report)

$\Psi_{c, P}$	λ_{a}	$N_{p}(\mathrm{lb})$	$f_{c}^{\prime}(\mathrm{psi})$	n	ϕ	$\phi N_{p n}(\mathrm{lb})$
1.0	1.00	6820	3000	0.50	0.65	4856

Company:	Ensign Engineering	Date:	$6 / 11 / 2018$
Engineer:	Alex Hawkins, P.E.	Page:	$5 / 5$
Project:			
Address:	45 W 10000 S Ste. 500		
Phone:	$801-255-0529$		
E-mail:	ahawkins@ensigneng.com		

11. Results
11. Interaction of Tensile and Shear Forces (Sec. D.7)? 11 Tension
Factored Load, Nua (lb)
Steel

3/4"Ø Titen HD, hnom:6" (152mm) meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Beam Id: Lot \# 70 - RB

Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load= 1
Load width 1.7 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
28,521 28,527
2,804 2,805

GER 114×300 B $2 \mathrm{Cf}=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,03
Factored Moment/Moment capacity [kNm] 23,535 31,556 75% Factored shear force/shear capacity [kN] 28,521 39,737 72%
(3)LUL $112 \times 11 \%$

Beam Id: Lot \#70-RB?
Structural Engineer:
Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load= 1 Load factor of imposed load=1
Load width 1 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
$15,08030,111$
2,336 3,304
KR $114 \times 300 \mathrm{~B} 2 \mathrm{Cf}=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,03
Factored Moment/Moment capacity $[\mathrm{kNm}] 9,194 \quad 31,648 \quad 29 \%$
Factored shear force/shear capacity [kN] 30,103 39,853 76%
(3) ul $1 / 2 \times 1 / \%$

Beam Id: Lot \# $70-\mathrm{RB}$

Structural Engineer:

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Licensed to: FINNLAMELLI OY

Load factor of dead load =1 Load factor of imposed load= 1
Load width 1.7 (m) (by which the loads
has been multiplied during calculation)
Max/Min reactions of beam [kN]
4,510 61,976 23,762
$-10,1846,0942,231$
KR 114×300 B $2 \quad C f=1,00$ Design method: Allowable stress design Increasing factor of the allowable stress 1,03
Factored Moment/Moment capacity [kNm] 19,462 31,556 62% Factored shear force/shear capacity [kN] 35,111 $39,737 \quad 88 \%$
(3) Ln $1 / 2 \times 11 / 8 \mathrm{y}$

ROOF LOADS

$$
S_{\text {Now }}=188 \mathrm{psp}=9,17 \mathrm{kN} / \mathrm{mo}
$$

LOT 70
ROOF "LEVEL LOADS

$\left(\frac{1}{54}\right.$ UPPER LEVEL FRAMING PLAN

UPPER FLOOR LOADS

MAin floor lands

(1) FOOTING AND FOUNDATION PLAN

Ensign Engineering
45 West 10000 South, Suite 500
Project Title: Powder Mountain
Engineer: Alex Hawkins
Sandy, Utah 84070
Project ID: 8332
Project Descr:

CODE REFERENCES

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10

Material Properties

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Load for Span Number 1
Varying Uniform Load : $\mathrm{D}=0.020->0.020, \mathrm{~L}=0.040->0.040 \mathrm{ksf}$, Extent $=0.0--\gg 9.0 \mathrm{ft}$, Trib Width $=2.50->1.563 \mathrm{ft}$, (Floor)

Uniform Load : D $=0.020, \mathrm{~S}=0.1880 \mathrm{ksf}$, Tributary Width $=7.0 \mathrm{ft}$, (Roof)

Point Load : E = $15.991 \mathrm{k} @ 0.0 \mathrm{ft}$, (Hold Down)

Point Load : E =-15.991 k @ 6.0 ft , (Hold Down)

Load for Span Number 2
Varying Uniform Load : $D=0.020->0.020, L=0.040->0.040 \mathrm{ksf}$, Extent $=0.0$-->> 14.250 ft , Trib Width $=1.563->1.0 \mathrm{ft}$, (Floor)

Uniform Load : D $=0.020, \mathrm{~S}=0.1880 \mathrm{ksf}$, Tributary Width $=7.0 \mathrm{ft}$, (Roof)

Point Load : E = $14.492 \mathrm{k} @ 9.0 \mathrm{ft}$, (Hold Down)

Point Load : E =-14.492 k @ 14.250 ft, (Hold Down)

Project Title: Powder Mountain

Maximum Forces \& Stresses for Load Combinations

Load Combination	Max Stress Ratios			C_{d}	$C_{\text {F/V }}$	C_{i}	C_{r}	C_{m}	C_{t}	C_{L}	Moment Values			Shear Values		
Segment Length	Span \#	M	V								M	fb	F'b	V	fv	F'v
D Only													0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.078	0.084	0.90	0.962	1.00	1.00	1.00	1.00	1.00	3.29	176.15	2250.22	1.21	21.55	256.50
Length $=14.250 \mathrm{ft}$	2	0.078	0.084	0.90	0.962	1.00	1.00	1.00	1.00	1.00	3.29	176.15	2250.22	1.21	21.55	256.50
+D+L					0.962	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.095	0.100	1.00	0.962	1.00	1.00	1.00	1.00	1.00	4.41	236.29	2500.24	1.60	28.56	285.00
Length $=14.250 \mathrm{ft}$	2	0.095	0.100	1.00	0.962	1.00	1.00	1.00	1.00	1.00	4.41	236.29	2500.24	1.60	28.56	285.00
+D+S					0.962	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.539	0.583	1.15	0.962	1.00	1.00	1.00	1.00	1.00	28.92	1,549.25	2875.28	10.71	191.17	327.75
Length $=14.250 \mathrm{ft}$	2	0.539	0.583	1.15	0.962	1.00	1.00	1.00	1.00	1.00	28.92	1,549.25	2875.28	10.71	191.17	327.75
+D+0.750L					0.962	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.071	0.075	1.25	0.962	1.00	1.00	1.00	1.00	1.00	4.13	221.26	3125.30	1.50	26.80	356.25
Length $=14.250 \mathrm{ft}$	2	0.071	0.075	1.25	0.962	1.00	1.00	1.00	1.00	1.00	4.13	221.26	3125.30	1.50	26.80	356.25
+D+0.750L+0.750S					0.962	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.435	0.470	1.15	0.962	1.00	1.00	1.00	1.00	1.00	23.35	1,251.08	2875.28	8.63	154.02	327.75
Length $=14.250 \mathrm{ft}$	2	0.435	0.470	1.15	0.962	1.00	1.00	1.00	1.00	1.00	23.35	1,251.08	2875.28	8.63	154.02	327.75
+D+0.70E					0.962	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.368	0.237	1.60	0.962	1.00	1.00	1.00	1.00	1.00	27.47	1,471.41	4000.38	6.05	108.05	456.00
Length $=14.250 \mathrm{ft}$	2	0.452	0.260	1.60	0.962	1.00	1.00	1.00	1.00	1.00	33.77	1,809.27	4000.38	6.64	118.62	456.00
+D+0.750L+0.750S+0.525	50E				0.962	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.382	0.462	1.60	0.962	1.00	1.00	1.00	1.00	1.00	28.52	1,527.67	4000.38	11.79	210.55	456.00
Length $=14.250 \mathrm{ft}$	2	0.573	0.462	1.60	0.962	1.00	1.00	1.00	1.00	1.00	42.82	2,293.97	4000.38	11.79	210.55	456.00
+0.60D					0.962	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.026	0.028	1.60	0.962	1.00	1.00	1.00	1.00	1.00	1.97	105.69	4000.38	0.72	12.93	456.00
Length $=14.250 \mathrm{ft}$	2	0.026	0.028	1.60	0.962	1.00	1.00	1.00	1.00	1.00	1.97	105.69	4000.38	0.72	12.93	456.00
$+0.60 \mathrm{D}+0.70 \mathrm{E}$					0.962	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.365	0.247	1.60	0.962	1.00	1.00	1.00	1.00	1.00	27.24	1,459.31	4000.38	6.31	112.67	456.00
Length $=14.250 \mathrm{ft}$	2	0.438	0.249	1.60	0.962	1.00	1.00	1.00	1.00	1.00	32.70	1,751.62	4000.38	6.36	113.48	456.00

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
	1	0.0000	0.000	E Only	-0.1262	
$+D+0.750 L+0.750 S+0.5250 E$	2	0.3407	7.881		4.978	
4.978						

Vertical Reactions	Support notation : Far left is \#1		
Load Combination	Support 1	Support 2	Support 3
Overall MAXimum in KIPS			
Overall MINimum	9.568	22.533	8.514
D Only	9.568	-3.539	-6.029
+D+L	0.462	2.588	0.936
+D+S	0.731	3.521	1.196
+D+0.750L	3.536	22.533	8.514
+D+0.750L+0.750S	0.663	3.288	1.131

Project Title: Powder Mountain
Engineer: Alex Hawkins
Project ID: 8332
Project Descr:

Vertical Reactions	Support notation : Far left is \#1		
Load Combination	Support 1	Support 2	Support 3
+D+0.70E	7.159	0.111	-3.284
+D+0.750L+0.750S+0.5250E	7.992	16.389	3.649
+0.60D	0.277	1.553	0.562
+0.60D+0.70E	6.975	-0.924	-3.659
L Only	0.269	0.933	0.260
S Only	3.074	19.945	7.578
E Only	9.568	-3.539	-6.029

Ensign Engineering
45 West 10000 South, Suite 500
Project Title: Powder Mountain
Engineer: Alex Hawkins
Project ID: 8332
Project Descr:

CODE REFERENCES

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10

Material Properties

Analysis Method: Allowable Strength Design	Fy : Steel Yield:	50.0 ksi
Beam Bracing:	Beam is Fully Braced against lateral-torsional buckling	E: Modulus :
Bending Axis:	Major Axis Bending	

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Beam self weight NOT internally calculated and added Load for Span Number 1

Uniform Load: $\mathrm{D}=0.020, \mathrm{~L}=0.040 \mathrm{ksf}$, Tributary Width $=1.0 \mathrm{ft}$, (Floor)

Load for Span Number 2
Uniform Load : D = 0.020, L = 0.040 ksf, Tributary Width $=1.0 \mathrm{ft}$, (Floor)

Point Load : $D=2.588, L=0.9331, S=19.948, E=-2.364 \mathrm{k} @ 4.0 \mathrm{ft},(\mathrm{MB1})$

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.424:1 M	ximum Shear Stress Ratio =	0.231: 1
Section used for this span	W10x68	Section used for this span	W10x68
Ma : Applied	$90.304 \mathrm{k}-\mathrm{ft}$	Va: Applied	22.616 k
Mn / Omega : Allowable	212.824 k-ft	Vn/Omega : Allowable	97.760 k
Load Combination	+D+S	Load Combination	+D+S
Location of maximum on span	9.500ft	Location of maximum on span	9.500 ft
Span \# where maximum occurs	Span \# 1	Span \# where maximum occurs	Span \# 1
Maximum Deflection			
Max Downward Transient Deflection	0.217 in Ratio $=$	$442>=360$	
Max Upward Transient Deflection	-0.070 in Ratio $=$	1,623 >=360	
Max Downward Total Deflection	0.245 in Ratio $=$	$392>=240$	
Max Upward Total Deflection	-0.079 in Ratio =	$1440>=240$	

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values							Summary of Shear Values		
		M	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
D Only													
Dsgn. L = 9.50 ft	1	0.049	0.027		-10.51	10.51	355.42	212.82	1.00	1.00	2.67	146.64	97.76
Dsgn. L = 4.00 ft	2	0.049	0.027		-10.51	10.51	355.42	212.82	1.00	1.00	2.67	146.64	97.76
+D+L													
Dsgn. L = 9.50 ft	1	0.068	0.038		-14.56	14.56	355.42	212.82	1.00	1.00	3.76	146.64	97.76
Dsgn. L = 4.00 ft	2	0.068	0.038		-14.56	14.56	355.42	212.82	1.00	1.00	3.76	146.64	97.76
+D+S													
Dsgn. L = 9.50 ft	1	0.424	0.231		-90.30	90.30	355.42	212.82	1.00	1.00	22.62	146.64	97.76
Dsgn. L $=4.00 \mathrm{ft}$	2	0.424	0.231		-90.30	90.30	355.42	212.82	1.00	1.00	22.62	146.64	97.76
+D+0.750L													
Dsgn. L = 9.50 ft	1	0.064	0.036		-13.55	13.55	355.42	212.82	1.00	1.00	3.49	146.64	97.76
Dsgn. L $=4.00 \mathrm{ft}$	2	0.064	0.036		-13.55	13.55	355.42	212.82	1.00	1.00	3.49	146.64	97.76
+D+0.750L+0.750S													
Dsgn. L = 9.50 ft	1	0.345	0.189		-73.40	73.40	355.42	212.82	1.00	1.00	18.45	146.64	97.76
Dsgn. L = 4.00 ft	2	0.345	0.189		-73.40	73.40	355.42	212.82	1.00	1.00	18.45	146.64	97.76
+D+0.70E													

Ensign Engineering
45 West 10000 South, Suite 500
Project Title: Powder Mountain
Engineer: Alex Hawkins
Sandy, Utah 84070
Project ID: 8332
Project Descr:

Load Combination		Max Stre	atios			mmary of	ent Va				Sum	ry of She	ear Values
Segment Length	Span \#	M	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
Dsgn. L $=9.50 \mathrm{ft}$	1	0.018	0.010		-3.89	3.89	355.42	212.82	1.00	1.00	1.01	146.64	97.76
Dsgn. L $=4.00 \mathrm{ft}$	2	0.018	0.010		-3.89	3.89	355.42	212.82	1.00	1.00	1.01	146.64	97.76
+D+0.750L+0.750S+0.5250E													
Dsgn. L = 9.50 ft	1	0.322	0.176		-68.43	68.43	355.42	212.82	1.00	1.00	17.21	146.64	97.76
Dsgn. L = 4.00 ft	2	0.322	0.176		-68.43	68.43	355.42	212.82	1.00	1.00	17.21	146.64	97.76
+0.60D													
Dsgn. L $=9.50 \mathrm{ft}$	1	0.030	0.016		-6.31	6.31	355.42	212.82	1.00	1.00	1.60	146.64	97.76
Dsgn. L = 4.00 ft	2	0.030	0.016		-6.31	6.31	355.42	212.82	1.00	1.00	1.60	146.64	97.76
+0.60D+0.70E													
Dsgn. L = 9.50 ft	1	0.002	0.001	0.34		0.34	355.42	212.82	1.00	1.00	0.09	146.64	97.76
Dsgn. L = 4.00 ft	2	0.001	0.001	0.31		0.31	355.42	212.82	1.00	1.00	0.10	146.64	97.76

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span Load Combination	Max. "+" Defl	Location in Span
	1	0.0000	0.000 +D+S	-0.0792	5.510
+D+S	2	0.2451	4.000	0.0000	5.510
Vertical Reactions			Support notation : Far left is \#1	Values in KIPS	
Load Combination	Support 1	Support 2	Support 3		
Overall MAXimum	-9.411	32.217			
Overall MINimum	0.090	-0.030			
D Only	-1.012	3.870			
+D+L	-1.248	5.579			
+D+S	-9.411	32.217			
+D+0.750L	-1.189	5.152			
+D+0.750L+0.750S	-7.488	26.412			
+D+0.70E	-0.315	1.518			
+D+0.750L+0.750S+0.5250E	-6.966	24.648			
+0.60D	-0.607	2.322			
+0.60D+0.70E	0.090	-0.030			
L Only	-0.237	1.710			
S Only	-8.399	28.347			
E Only	0.995	-3.359			

Ensign Engineering
45 West 10000 South, Suite 500
Project Title: Powder Mountain
Engineer: Alex Hawkins
Sandy, Utah 84070
Project ID: 8332
Project Descr:

Steel Beam

Lic. \# : KW-06004069
Description: MB4

CODE REFERENCES

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10

Material Properties

Analysis Method: Allowable Strength Design	Fy : Steel Yield :	50.0 ksi
Beam Bracing:	Beam is Fully Braced against lateral-torsional buckling	E: Modulus :
Bending Axis:	Major Axis Bending	

Applied Loads

Beam self weight NOT internally calculated and added
Load for Span Number 1
Uniform Load: $\mathrm{D}=0.020, \mathrm{~S}=0.1880 \mathrm{ksf}$, Tributary Width $=6.0 \mathrm{ft}$, (Roof)

Uniform Load : $\mathrm{D}=0.020, \mathrm{~L}=0.060, \mathrm{~S}=0.2030 \mathrm{ksf}$, Tributary Width $=6.0 \mathrm{ft}$, (Balcony)

Uniform Load: $\mathrm{D}=0.020, \mathrm{~L}=0.040 \mathrm{ksf}$, Tributary Width $=5.0 \mathrm{ft}$, (Floor)

Point Load : E = 31.403 k @ 3.0 ft, (Hold Down)

Point Load : E = 31.403 k @ 0.0 ft , (Hold Down)

Load for Span Number 2
Uniform Load : $\mathrm{D}=0.020, \mathrm{~S}=0.1880 \mathrm{ksf}$, Extent $=0.0$-->> 5.0 ft , Tributary Width $=6.0 \mathrm{ft}$, (Roof)

Uniform Load : $\mathrm{D}=0.020, \mathrm{~L}=0.060, \mathrm{~S}=0.2030 \mathrm{ksf}$, Extent $=0.0$-->> 5.0 ft , Tributary Width $=6.0 \mathrm{ft}$, (Balcony)

Uniform Load : D $=0.020, \mathrm{~L}=0.040 \mathrm{ksf}$, Tributary Width $=5.0 \mathrm{ft}$, (Floor)

Maximum Forces \& Stresses for Load Combinations

Load Combination		Max Stress Ratios		Summary of Moment Values							Summary of Shear Values		
Segment Length	Span \#	M	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
D Only													
Dsgn. L = 13.00 ft	1	0.054	0.044	4.73	-5.40	5.40	165.83	99.30	1.00	1.00	2.63	89.10	59.40

Ensign Engineering
45 West 10000 South, Suite 500
Project Title: Powder Mountain
Engineer: Alex Hawkins
Sandy, Utah 84070
Project ID: 8332
Project Descr:

Description: MB4

Load Combination		Max Stre	atios			mary of	nt Va				Sum	of She	ear Values
Segment Length	Span \#	M	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
Dsgn. L = 11.00 ft	2	0.054	0.033	0.55	-5.40	5.40	165.83	99.30	1.00	1.00	1.97	89.10	59.40
+D+L													
Dsgn. L $=13.00 \mathrm{ft}$	1	0.145	0.117	12.48	-14.43	14.43	165.83	99.30	1.00	1.00	6.96	89.10	59.40
Dsgn. L $=11.00 \mathrm{ft}$	2	0.145	0.089	1.73	-14.43	14.43	165.83	99.30	1.00	1.00	5.28	89.10	59.40
+D+S													
Dsgn. $\mathrm{L}=13.00 \mathrm{ft}$	1	0.406	0.346	38.39	-40.27	40.27	165.83	99.30	1.00	1.00	20.56	89.10	59.40
Dsgn. $\mathrm{L}=11.00 \mathrm{ft}$	2	0.406	0.239		-40.27	40.27	165.83	99.30	1.00	1.00	14.20	89.10	59.40
+D+0.750L													
Dsgn. L = 13.00 ft	1	0.123	0.099	10.54	-12.17	12.17	165.83	99.30	1.00	1.00	5.88	89.10	59.40
Dsgn. $\mathrm{L}=11.00 \mathrm{ft}$	2	0.123	0.075	1.44	-12.17	12.17	165.83	99.30	1.00	1.00	4.45	89.10	59.40
+D+0.750L+0.750S													
Dsgn. $\mathrm{L}=13.00 \mathrm{ft}$	1	0.386	0.325	35.79	-38.33	38.33	165.83	99.30	1.00	1.00	19.32	89.10	59.40
Dsgn. L $=11.00 \mathrm{ft}$	2	0.386	0.229	0.44	-38.33	38.33	165.83	99.30	1.00	1.00	13.63	89.10	59.40
+D+0.70E													
Dsgn. L = 13.00 ft	1	0.509	0.293	50.59	-22.31	50.59	165.83	99.30	1.00	1.00	17.40	89.10	59.40
Dsgn. $\mathrm{L}=11.00 \mathrm{ft}$	2	0.225	0.059		-22.31	22.31	165.83	99.30	1.00	1.00	3.51	89.10	59.40
+D+0.750L+0.750S+0.5250E													
Dsgn. L = 13.00 ft	1	0.648	0.423	64.30	-51.01	64.30	165.83	99.30	1.00	1.00	25.13	89.10	59.40
Dsgn. $\mathrm{L}=11.00 \mathrm{ft}$	2	0.514	0.249		-51.01	51.01	165.83	99.30	1.00	1.00	14.78	89.10	59.40
+0.60D													
Dsgn. L $=13.00 \mathrm{ft}$	1	0.033	0.027	2.84	-3.24	3.24	165.83	99.30	1.00	1.00	1.58	89.10	59.40
Dsgn. L = 11.00 ft	2	0.033	0.020	0.33	-3.24	3.24	165.83	99.30	1.00	1.00	1.18	89.10	59.40
+0.60D+0.70E													
Dsgn. L $=13.00 \mathrm{ft}$	1	0.494	0.281	49.04	-20.15	49.04	165.83	99.30	1.00	1.00	16.69	89.10	59.40
Dsgn. L = 11.00 ft	2	0.203	0.046		-20.15	20.15	165.83	99.30	1.00	1.00	2.72	89.10	59.40

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl
+D+0.750L+0.750S+0.5250E	1	0.3723	5.668	0.0000	
	2	0.0000	5.668	E Only	-0.0773
Vertical Reactions			Support notation : Far left is \#1		
Load Combination	Support 1	Support 2	Support 3		
Overall MAXimum	53.701	38.886	-2.196		
Overall MINimum	1.077	2.757	-0.173		
D Only	1.794	4.594	0.331		
+D+L	4.740	12.240	1.020		
+D+S	14.361	34.760	-0.173		
+D+0.750L	4.004	10.329	0.848		
+D+0.750L+0.750S	13.429	32.953	0.470		
+D+0.70E	39.385	12.505	-1.206		
+D+0.750L+0.750S+0.5250E	41.622	38.886	-0.683		
+0.60D	1.077	2.757	0.199		
+0.60D+0.70E	38.667	10.667	-1.338		
L Only	2.946	7.646	0.689		
S Only	12.567	30.165	-0.504		
E Only	53.701	11.301	-2.196		

Ensign Engineering
45 West 10000 South, Suite 500
Project Title: Powder Mountain
Engineer: Alex Hawkins
Sandy, Utah 84070
Project ID: 8332
Project Descr:

Steel Column

Lic. \# : KW-06004069

Code References

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : ASCE 7-10

General Information

Steel Section Name :	HSS $4 \times 4 \times 3 / 8$	Overall Column Height	9.50 ft
Analysis Method:	Allowable Strength	Top \& Bottom Fixity	Top \& Bottom Pinned
Steel Stress Grade		Brace condition for deflection (buckling)) along columns :
Fy : Steel Yield	46.0 ksi	X-X (width) axis :	
E : Elastic Bending Modulus	29,000.0 ksi	Unbraced Length for X-X Axis buckli	$\mathrm{gg}=9.50 \mathrm{ft}, \mathrm{K}=1.0$
		Y-Y (depth) axis : Unbraced Length for Y-Y Axis buckling	$\mathrm{ng}=9.50 \mathrm{ft}, \mathrm{~K}=1.0$
Applied Loads		Service loads entered. Load	Factors will be applied for

Column self weight included : 163.376 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $9.50 \mathrm{ft}, \mathrm{D}=9.509, \mathrm{~L}=71.759 \mathrm{k}$

DESIGN SUMMARY

Bending \& Shear Check Results			
PASS Max. Axial+Bending Stress Ratio =	0.9269 : 1	Maximum Load Reactions . .	
Load Combination	+D+L	Top along X-X	0.0 k
Location of max.above base	0.0 ft	Bottom along $X-X$	0.0 k
At maximum location values are.		Top along $\mathrm{Y}-\mathrm{Y}$	0.0 k
Pa: Axial	81.431 k	Bottom along Y-Y	0.0 k
Pn / Omega : Allowable	87.856 k		
Ma-x : Applied	0.0 k-ft	Maximum Load Deflections ...	
Mn-x / Omega : Allowable	14.668 k-ft	Along Y - $Y \quad 0.0$ in at for load combination :	0.0 ft above base
Ma-y : Applied	0.0 k-ft		
Mn-y / Omega : Allowable	14.668 k-ft	Along X-X 0.0 in at for load combination :	0.0ft above base
PASS Maximum Shear Stress Ratio =	0.0:1		
Load Combination			
Location of max.above base	0.0 ft		
At maximum location values are . Va : Applied			
Vn / Omega : Allowable	0.0 k		

Load Combination Results

Maximum Reactions						Note: Only non-zero reactions are listed.				
		X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction		Mx - End Moments @ Base @ Top		k-ft	My - End Moments @ Base @ Top	
Load Combination				@ Base	@ Top					
D Only	9.672									
+D+L	81.431									
+D+0.750L	63.492									
+0.60D	5.803									
L Only	71.759									

Item	Extreme Value	Axial Reaction @ Base	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top		Mx - End Moments @ Base @ Top		$\mathrm{k} \text {-ft }$	My - End Moments @ Base @ Top	
$\overline{\text { Axial @ Base }}$	Maximum	81.431									
	Minimum	5.803									

Ensign Engineering
45 West 10000 South, Suite 500
Project Title: Powder Mountain
Engineer: Alex Hawkins
Sandy, Utah 84070
Project ID: 8332

Project Title: Powder Mountain
Engineer: Alex Hawkins
Project ID: 8332
Project Descr:

THE STANDARD IN ENGINEERING

Sketches

