

Structural Calculations

For

Kimberly Clark Parts Storage Building

Project Number: 18179

July 3, 2018

Prepared by ARW Engineers 1594 West Park Circle Ogden, Utah 84404

ENGINEERS

Uplift Capacity of Exterior Concrete Footings

Author: SLE Reviewed By: ZCH Version Date: January 27, 2010
JOB TITLE: Kimberly Clark Parts Storage
DESCRIPTION: Footing Uplift Schedule

inches

9 20%

Slab Thickness = Slab Percentage =

Slab-on Grade Parameters:

(See User Note #1)

Foundation Wall Parameters:

(See User Note #2)

Strip Footing Parameters: (Strip footing below foundation wall)

1- If a concrete slab-on-grade is present, the program will calculate and include a portion of

2:43 PM

June 22, 2018

18179 ZCH

JOB #: DESIGNED BY:

the slab weight above the spot footing. The "Slab Percentage" cell is used to determine what 2- If a foundation wall is present, the program will calculate and include the weight of the wall percentage of the footing area is covered by the slab.

footing beyond the dimensions of the spot footing may be used. The distance to be included beyond each side of the spot footing is entered in the "Additional Wall and Footing Length" 3- Due to "beam action" from the foundation wall, a portion of the foundation wall and strip

4- The program will calculate the weight of soil directly above the spot footing. Do not include the thickness of the slab in the soil depth.

pcf 145 Concrete Weight

that is directly above the spot footing. inches feet inches inches inches inches inches pcf 115 18 8 24 24 Footing Thickness = Additional Wall and Footing Length = Wall Thickness = Foundation Depth = Footing Width = Soil Weight = Soil Depth =

(See User Note #3)

Soil Weight Parameters:

(See User Note #4)

				Spot Ftg.	163	Foundation Wall	Strip Ftg.	Soil Weight	Total Weight
Area (sq. ft)	_	Thickness (in)	Volume (cu. ft)	Weight (lbs.)	Slab Weight (lbs.)	Weight (lbs.)	Weight (lbs.)	(lbs.)	(kips)
6	H	12	6	1305	326	2127	2320	1553	7.63
12.25		12	12	1776	444	2223	2320	2113	8.88
16		12	16	2320	280	2320	2320	2760	10.30
20.25		12	20	2936	734	2417	2320	3493	11.90
		12	25	3625	906	2513	2320	4313	13.68
Ci	2	14	35	5117	1097	2610	2320	5218	16.36
		16	48	0969	1305	2707	2320	6210	19.50
	42.25	16	26	8168	1532	2803	2320	7288	22.11
	49	18	74	10658	1776	2900	2320	8453	26.11
	56.25	18	84	12234	2039	2997	2320	9703	29.29
	64	20	107	15467	2320	3093	2320	11040	34.24
	72.25	20	120	17460	2619	3190	2320	12463	38.05
	81	22	149	21533	2936	3287	2320	13973	44.05
	90.25	24	181	26173	3272	3383	2320	15568	50.72
=	100	24	200	29000	3625	3480	2320	17250	55.68
6855	.25	26	239	34637	3997	3577	2320	19018	63.55
اذا	121	26	262	38014	4386	3673	2320	20873	69.27
	132.25	28	309	44745	4794	3770	2320	22813	78.44
14	144	28	336	48720	5220	3867	2320	24840	84.97
1000	156.25	0	0	0	5664	3963	2320	26953	38.90
19	169	0	0	0	6126	4060	2320	29153	41.66
اما	182.25	0	0	0	2099	4157	2320	31438	44.52
00	196	0	0	0	7105	4253	2320	33810	47.49
0	.25	0	0	0	7622	4350	2320	36268	50.56
ini	2	0	0	0	8156	4447	2320	38813	53.74
1 _ ;	240.25	0	0	0	8709	4543	2320	41443	57.02
iñ	9	0	0	0	9280	4640	2320	44160	60.40
1.	272.25	0	0	0	6986	4737	2320	46963	63.89
126	289	0	0	0	10476	4833	2320	49853	67.48
1.0	.25	0	0	0	11102	4930	2320	52828	71.18
ı N	324	O	C	C	11745	2005	0000	55890	74 98

ARW ENGINEERS FOOTING SUMMARY (PER IBC 2015 & ACI 318-14)

6/22/18 2:40 PM

JOB TITLE: Kimberly Clark Parts Storage

DESCRIPTION: Footing Schedule

JOB #: DESIGNER: 18179 ZCH

Version: September 1, 2017

COLUMN SUMMARY:

SOIL SUMMARY:

CONCRETE SUMMARY:

Material

Net Soil Bearing Pressure

Concrete Strength

Steel or Wood

2500 psf 3000 psi

Size

Base Plate Dimension

14 x 14

WIDTH (ft)	LENGTH (ft)	THICK (in)	A _{s req'd} (in ²)	A _{s actual} (in ²)	Number of Bars Ea. Way	Bar No.	Max Total Load (kips)
2	2	12	0.52	0.62	(2)	# 5	10.0
2.5	2.5	12	0.65	0.93	(3)	# 5	15.6
3	3	12	0.78	0.93	(3)	# 5	22.5
3.5	3.5	12	0.91	0.93	(3)	# 5	30.6
4	4	12	1.04	1.24	(4)	# 5	40.0
4.5	4.5	12	1.17	1.24	(4)	# 5	50.6
5	5	12	1.37	1.55	(5)	# 5	62.5
5.5	5.5	14	1.66	2.20	(5)	#6	75.6
6	6	16	2.07	2.64	(6)	# 6	90.0
6.5	6.5	16	2.27	2.64	(6)	#6	105.6
7	7	18	2.72	3.08	(7)	# 6	122.5
7.5	7.5	18	3.14	3.08	(7)	#6	140.6
8	8	20	3.46	3.52	(8)	# 6	160.0
8.5	8.5	20	4.15	4.80	(8)	#7	180.6
9	9	22	4.45	5.40	(9)	#7	202.5
9.5	9.5	24	4.92	5.40	(9)	#7	225.6
10	10	24	5.63	6.00	(10)	#7	250.0
10.5	10.5	26	6.00	6.00	(10)	#7	275.6
11	11	26	6.96	6.60	(11)	#7	302.5
11.5	11.5	28	7.36	8.69	(11)	#8	330.6
12	12	28	8.42	9.48	(12)	#8	360.0

IBC 2015 Cast-in-place Anchor Bolt Design referencing ACI 318-14 Chapter 17 Version Date: December 5, 2017 Author: Troy M. Dye JOB TITLE: Kimberly Clark Parts Storage DESCRIPTION: Grid 2 thru 10 Anchors

Reviewed By: Scott Porter

25-Jun-18 8:30 AM

JOB #: DESIGNER: 18179 ZCH

Pier and Anchor Bolt Geometry

P_{ss}': 25.1 kips / AB

Figure 1. Generic Anchor Bolt Locations

Ultimate Steel Tension Capacity

_			
Des	sıan	Loa	ds

Design Loads											
Shear V _u :	16	kips	Use ACI 3	318 Section 5.3	load com	binations					
Tension P _u :	9.3	kips		tension compo % of the total fa		YES					Tensile
Increase She	ear Vu an	⊐ d Tension	Pier confined	for tension forc	e?	YES			Bolt	Threads	Stress
Pu abo	ve by On	nega	Pier confined	for shear force	?	NO			Diameter	per	Area
Anchors Torqued:	NO	0.00							(in ²)	(inch)	(in ²)
Bolt Grade:	F1554	Gr. 55			Omega	Level Force	17 2 2 4 24	& 17.2.3.5.3c	0.5	13	0.14
Bolt Diameter:	0.75	inches					17.2.3.4.30	& 17.2.5.5.5c	0.625	11	0.23
Embedment Length:	12	inches	E	Bearing Area:	0.79	in ²			0.75	10	0.33
Concrete f'c:	4500	psi		Steel ϕ_t :	0.75	Section 17.	3.3		0.875	9	0.46
				Steel φ _s :	0.65	Section 17.	3.3		1	8	0.61
Rebar f _y :	60000	psi		Concrete ¢:	0.75	Section 17.	3.3		1.125	7	0.76
Anchor F _u :	75	ksi		λ:	1	Section 19.	2.4		1.25	7	0.97
Bolt Area Abolt :	0.33	in ²		λ_a :	1	Section 17.	2.6		1.375	6	1.15
Seismic Design	0.75	Section	17.2.3.4.4						1.5	6	1.41
Category Factor:	0.73	Section	111.2.3.4.4						1.75	5	1.90
				E		ty for Tension			2	4.5	2.50
Dissella / Cha Thisle	20	08 tarabar	OK		0	in			2.25	4.5	3.25
Pier Ht / Ftg Thick: Bolt type:	36 H	inches	OK	E	ccentricit 0	ty for Shear			2.5 2.75	4 4	4.00
Boil type.					Q				3	4	5.97
Tension Calculatio	ns					C _{a2}				C _{a1}	
A _N :	320	in ²		Left E	dge Dist.		inches	Top	Edge Dist. :	6	inches
A _{NO} :	400	in ²			dge Dist.		inches		Edge Dist. :	10	inches
Concrete Te	ension C	apacity	(Section 17.4.2) - Breakout S	trength						
$\psi_{ec,N}$:	1.00	Ψ _{ed,N}	: 0.80	Ψ _{c,N} : {	1						
N _b =	25.3	kips			N _{cb} =	16.2	kips				
Concrete Te	ension C	apacity	(Section 17.4.3) - Pullout Stre	ength		501 * 055				
$\psi_{c,P}$:	1				N _{pn} =	28.4	kips				
N _p =	28.4	kips		Capacity	of Group	: 113.8	kips				
Concrete Te	ension C	apacity	(Section 17.4.4	4) - Side-Face	Blowout	Strength	2000 COS				
Use A _N :	320	in ²									
	N _{sb} :	= N/A	kips		N _{sbq} =	= N/A	kips				
0	φP _c		kips		Pc		kips				ength Based
Steel Tension	on Capa	city (Sec	tion 17.4.1)		1000		_		on Pullout (only	

P_{ss}: 100.3 kips

IBC 2015 Cast-in-place Anchor Bolt Design referencing ACI 318-14 Chapter 17

25-Jun-18

8:30 AM

Version Date: December 5, 2017

JOB TITLE: Kimberly Clark Parts Storage DESCRIPTION: Grid 2 thru 10 Anchors

JOB #: DESIGNER: 18179 ZCH

Shear Calculations Bolts Resisting Shear

Steel Shear Capacity (Section 17.5.1)

V_{sa}: 15.05 kips / AB 60.2 Ultimate Steel Shear Capacity based on

Assumed Breakout Surface

Number of anchors resisting shear based on assumed concrete breakout surface Grout height below base plate, h₂: 0 inches

Concrete Shear Breakout Capacity (Section 17.5.2)

$\psi_{ec,V}$:	1.00	$\psi_{\text{ed,V}}$: 0.82	$\psi_{c,V}$: 1.2	$\psi_{h,V}$	1.00
Top Edge E	Bolts		Bottom Edg	e Bolts	
Edge Distance:	6.0	inches	Edge Distance:	10.0	inches
A _{Vc} =	144.0	in ²	A _{Vc} =	240.0	in ²
A _{Vco} =	162.0	in ²	A _{Vco} =	450.0	in ²
V _b =	9.1	kips	$V_b =$	19.5	kips
V _{cb} =	7.9	kips	V _{cb} =	10.2	kips
Concrete S	hear Pry	out Capacity (Section 17.5.3)			
V _{cp} =	86.4	kips	$N_b =$	67.5	kips
$V_b = V_{cb} = $ Concrete S	9.1 7.9 hear Pry	kips kips out Capacity (Section 17.5.3)	$V_b = V_{cb} =$	19.5 10.2	kips kips

Group Capacity V_n: 31.7 kips Group Capacity V_n: 40.9 kips

Ultimate Concrete Strength

Combined Tension and Shear

n·

Shear Force Acting Towards Top Pier Edge, Vtop

				0.145	< 1 - OK	Concrete Tension (P _u /\phiP _n)
0	.897	< 1 - OK	Concrete Shear (V _u /\phiV _n)	0.695	< 1 - OK	Concrete Shear (V _u / ϕ V _n)
				0.695	< 1 - OK	Concrete Combined (Section D.7)
				0.124	< 1 - OK	Steel Tension (P _u /\phiP _{ss})
0	.409	< 1 - OK	Steel Shear (V _u /\phiV _{ss})	0.409	< 1 - OK	Steel Shear (V _u /\phiV _{ss})
				0.409	< 1 - OK	Steel Combined (Section D.7)

Anchor Bolts O.K. Concrete O.K.

Checks Shear Only

Anchor Bolts O.K. Concrete O.K.

Checks Shear and Tension

FORCES INCLUDE OMEGA PER 17.2.3.4.3d and 17.2.3.5.3c

Shear Force Acting Towards Bottom Pier Edge, Vbottom

B Specify which system resists shear Bolts resist tension and shear

kips

DESIGN SUMMARY

Anchor Bolts

(4) 0.75" diameter headed anchor bolts w/ 12"minimum embedment

Designed for combined tension and shear

Tension Confined Pier

16" wide x 20" long w/ min (2) #5 vertical bars

Designed to transfer anchor bolt tension into reinforcement

Shear Confined Pier

N/A

Designed to transfer anchor bolt shear into reinforcement

IBC 2015 Cast-in-place Anchor Bolt Design referencing ACI 318-14 Chapter 17 Version Date: December 5, 2017 JOB TITLE: Kimberly Clark Parts Storage DESCRIPTION: Grid 2 thru 10 Anchors

25-Jun-18

8:30 AM

JOB #:

DESIGNER:

Anchor reinforcement

placed symmetrically

18179 ZCH

Anchor Reinforcing

Reinforcing Data

Ψt:	1
Ψe:	1
Ψs:	1
ν.	0.8

Assumes that vertical reinforcement layout is symmetrical around anchor bolt pattern

NOTE: The calculation for the concrete anchor capacities are based on 1) Tension pullout, 2) Shear pryout. The breakout strength in tension and shear and side face blowout are omitted because the vertical reinforcement is used to confine this failure cone.

Pier Reinforcement to Resist Tension Breakout (17.4.2.9)

Vert. Pier Reinforcing Size: 5 Distance from A.B. to Rebar (B) :

Cover above vert. reinf (A): 2 in 3 c: in

Rebar Area: 0.31 Rebar Diameter: 0.625 in 17.44 in

l_{de}: 6.00 in 0.75*F_v of Rebar @ I_{de} - f_s: 15.48 ksi

0.60 in² A_{st}:

Quantity of reinforcement placed symmetrically Total # of vertical bars required : around anchor bolts

bar

Embedment of standard hook: 6.00

Section A-A

 $\leq 0.5 h_{el}$

Pier Reinforcement to Resist Shear Breakout (17.5.2.9)

Hairpin/stirrup reinforcing size: 7 bar Rebar area: 1.2 in²

A_{st}: 0.36 in²

Total # of hairpins/stirrups Quantity of hairpins or stirrups wrapped around anchor bolts required

Fig. RD.6.2.9(a)—Hairpin anchor reinforcement for shear

IBC 2015 Cast-in-place Anchor Bolt Design referencing ACI 318-14 Chapter 17 Version Date: December 5, 2017 Author: Troy M. Dye Reviewed By

25-Jun-18 11:52 AM

Version Date: December 5, 2017

JOB TITLE: Kimberly Clark Parts Storage
DESCRIPTION: Grid 2 thru 10 Anchors

Reviewed By: Scott Porter

JOB #: 18179 DESIGNER: ZCH

Pier and Anchor Bolt Geometry

Figure 1. Generic Anchor Bolt Locations

Des	ian	Loa	ds

Design Loads										
Shear V _u :	55.5 kips	Use AC	l 318 Section 5.3	load com	binations					
Tension P _u :	22.2 kips		nic tension compo 20% of the total fa e?		YES					Tensile
Increase Shea	ar Vu and Tensio	n Pier confine	d for tension force	e?	YES			Bolt	Threads	Stress
Pu abov	e by Omega	Pier confine	d for shear force	?	YES			Diameter	per	Area
Anchors Torqued:	NO				DESINATION AND AND AND AND AND AND AND AND AND AN			(in ²)	(inch)	(in²)
Bolt Grade:	F1554 Gr. 55			Omogo	evel Force	17 2 2 4 24	& 17.2.3.5.3c	0.5	13	0.14
Bolt Diameter:	1 inches	3		Offiega		17.2.3.4.30	α 17.2.3.3.3C	0.625	11	0.23
Embedment Length:	16 inches	5	Bearing Area:	0.98	in ²			0.75	10	0.33
Concrete f'c:	4500 psi		Steel ϕ_t :	0.75	Section 17.	3.3		0.875	9	0.46
			Steel φ _s :	0.65	Section 17.	3.3		1	8	0.61
Rebar f _v :	60000 psi		Concrete 6:	0.75	Section 17.	3.3		1.125	7	0.76
Anchor F _u :	75 ksi		λ:	1	Section 19.	2.4		1.25	7	0.97
Bolt Area Abolt :	0.61 in ²		λ _a :	1	Section 17.	2.6		1.375	6	1.15
Seismic Design	0.75 Section	on 17.2.3.4.4						1.5	6	1.41
Category Factor:	0.75 Section	311 17.2.3.4.4						1.75	5	1.90
			E	Eccentricit	y for Tension	1		2	4.5	2.50
				0	in			2.25	4.5	3.25
Pier Ht / Ftg Thick:	36 inches	OK	E		y for Shear			2.5	4	4.00
Bolt type:	Н			0				2.75	4	4.93
								3	4	5.97
Tension Calculation	ns				C _{a2}				C _{a1}	
A_N :	384 in ²		Left E	dge Dist. :	6	inches	Тор	Edge Dist. :	12	inches
A _{NO} :	576 in ²		Right E	dge Dist. :	6	inches	Bottom	Edge Dist.:	8	inches
Concrete Ter	nsion Capacity	(Section 17.4	I.2) - Breakout S	trength						
$\psi_{ec,N}$:	1.00 ψ_{ed}	. _N : 0.78	¥c,N:	1						
N _b =	34.3 kips			N _{cb} =	17.7	kips				
Concrete Ter	nsion Capacity	(Section 17.4	l.3) - Pullout Stre	ength						
$\psi_{c,p}$:	1			$N_{pn} =$	35.3	kips				
$N_p =$	35.3 kips		Capacity	of Group:	141.1	kips				
Concrete Ter Use A _N :	nsion Capacity 384 in ²	(Section 17.	4.4) - Side-Face	Blowout	Strength					
	$N_{sb} = 63.8$	kips		N _{sbg} =	70.8	kips				
	φP _c : 39.8	kips		P _c :	70.8	kips		Ultimate Co	oncrete Str	ength Based
Steel Tensio	n Capacity (Se	ection 17.4.1)				and think		on Pullout (**************************************
	P _{ss} ': 45.4	kips / AB		P _{ss} :	181.7	kips		Ultimate St	eel Tensior	n Capacity

IBC 2015 Cast-in-place Anchor Bolt Design referencing ACI 318-14 Chapter 17

25-Jun-18

11:52 AM

Version Date: December 5, 2017

JOB TITLE: Kimberly Clark Parts Storage DESCRIPTION: Grid 2 thru 10 Anchors

JOB #: DESIGNER: 18179 ZCH

Shear Calculations

Bolts Resisting Shear

n:

Steel Shear Capacity (Section 17.5.1)

V_{sa}: 21.81 kips / AB 87.2 kips 4

Ultimate Steel Shear Capacity based on Assumed Breakout Surface

B Specify which system resists shear

Bolts resist tension and shear

Number of anchors resisting shear based on assumed concrete breakout surface

Grout height below base plate, h₂: 1.5 inches

Concrete Shear Breakout Capacity (Section 17.5.2)

 $\psi_{\mathsf{c},\mathsf{V}}$: 1.2 Vec V: 1.00 1.00 1.00 $\psi_{\text{ed,V}}$: Top Edge Bolts **Bottom Edge Bolts** Edge Distance: 12.0 inches Edge Distance: 8.0 inches A_{Vc} = 288.0 $A_{Vc} =$ in² 192.0 in² $A_{Vco} =$ 648.0 in² A_{Vco} = 288.0 in² $V_b =$ 29.6 V_b = kips 16.1 kips V_{cb} = 15.8 kips V_{cb} = 12.9 kips Concrete Shear Pryout Capacity (Section 17.5.3) V_{cp} = 112.7 kips $N_b =$ 109.0 kips

Group Capacity V_n: 112.7 kips Group Capacity V_n: Ultimate Concrete Capacity Based 112.7 kips on Pryout Strength Only

Combined Tension and Shear

Shear Force Acting Towards Bottom Pier Edge, Vbottom Shear Force Acting Towards Top Pier Edge, Vtop 0.280 < 1 - OK Concrete Shear (V_u/\phiV_n) 0.876 < 1 - OK Concrete Shear (V_u/\(\phi \)V_n) 0.876 < 1 - OK 1.155 <1.2 - O.K. Concrete Combined (Section D.7) Steel Tension (P_u/\phiP_{ss}) < 1 - OK 0.163 < 1 - OK Steel Shear (V_u/\phiV_{ss}) 0.979 < 1 - OK Steel Shear (Vu/6Vss) 0.979 < 1 - OK Steel Combined (Section D.7) Anchor Bolts O.K. Anchor Bolts O.K. Checks Shear Only Checks Shear and Tension Concrete O.K. Concrete O.K.

FORCES INCLUDE OMEGA PER 17.2.3.4.3d and 17.2.3.5.3c

DESIGN SUMMARY

Anchor Bolts

(4) 1" diameter headed anchor bolts w/ 16"minimum embedment

Designed for combined tension and shear

Tension Confined Pier

16" wide x 24" long w/ min (3) #5 vertical bars

Designed to transfer anchor bolt tension into reinforcement

Shear Confined Pier

16" wide x 24" long w/ min (2) #7 hairpin

Designed to transfer anchor bolt shear into reinforcement

IBC 2015 Cast-in-place Anchor Bolt Design referencing ACI 318-14 Chapter 17

25-Jun-18 11:52 AM

Version Date: December 5, 2017 JOB TITLE: Kimberly Clark Parts Storage DESCRIPTION: Grid 2 thru 10 Anchors

JOB #: 18179 DESIGNER: ZCH

Anchor Reinforcing

Reinforcing Data

Ψt:	1
Ψe:	1
Ψs:	1
ν:	0.8

Assumes that vertical reinforcement layout is symmetrical around anchor

bolt pattern

bar

NOTE: The calculation for the concrete anchor capacities are based on 1) Tension pullout, 2) Shear pryout. The breakout strength in tension and shear and side face blowout are omitted because the vertical reinforcement is used to confine this failure cone.

Pier Reinforcement to Resist Tension Breakout (17.4.2.9)

Vert. Pier Reinforcing Size: 5 Distance from A.B. to Rebar (B): Cover above vert. reinf (A):

in in 3 0.31

Rebar Area: Rebar Diameter: 0.625 in 17.44 in

l_{de}: 10.00 in 0.75*F_y of Rebar @ I_{de} - f_s: 25.80 ksi in²

0.86 A_{st}: Total # of vertical bars required :

Quantity of reinforcement placed symmetrically 3 around anchor bolts

Embedment of standard hook: 6.00

Section A-A

Pier Reinforcement to Resist Shear Breakout (17.5.2.9)

Hairpin/stirrup reinforcing size : 7 bar Rebar area: 1.2 in^2

A_{st}: 1.23 in² 2

Total # of hairpins/stirrups required

Quantity of hairpins or stirrups wrapped around anchor bolts

Fig. RD.6.2.9(a)—Hairpin anchor reinforcement for shear

IBC 2015 FACTORED REACTIONS FOR PRE-MANUFACTURED METAL BUILDINGS Version Date: July 19, 2016 JOB TITLE:

ENGINEERS stratural resealth and							G	rid 1 &	11							Grid 2 -	10		ees.v.oc 1 **	THE SECOND				
Monday, June 25, 2018		Grid A			Grid B			Grid C			Grid D	i		Grid E			Grid A &	E						
	X	Y	Z	X	Y	Z	X	Y	Z	Х	Y	Z	Х	Y	Z	X	Y	Z	X	Y	Z	X	Y	T
Dead	303193	1.0	A THE STATE OF	THE STATE	3.0	表现是	OF THE REAL PROPERTY.	3.0	diam'r.		3.0	CHMIN	TANCES.	1.0	012009	5.0	8.0	7,000	ME SYL	ATTENDED	DESCRIPTION OF THE PERSON OF T	Solicita	SHAPE	10
Collateral, C	PHREA	1.0	の大学系	400	2.0	FILM SE	STREET	2.0	18254	DESCRIPTION OF	2.0	Entire	A CRINE N	1.0	1565K	4.0	6.0		STREET,	1510/6-7	DAKES A	第三人	ALCOHOL:	
Floor Live	XH OCHO	RANGE TO	130100	N. SERVICE	LPESTS.	STATE OF	STATE OF THE	N CLEAR	ESSESSIVE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO PERSON NAMED IN COLUMN TO P	期供物件	United to	2000	ALIGNA CO	4890000	MANAGE	1050	ROUGH.	Habbala	EASTER THE	BORLEG	233314	HEESTER.	BOUGHT.	100
Roof Live	125157	1.0	The section	A113277	5.0	415539	Wifnin	4.0	VASCASS	THEFT	5.0	NE POR	VETERAL DE	1.0	TO VESTIGA	9.0	14.0	Herris	The sale	THOUSE.	CESTVA.	36MP33	180 tini	100
Crane, C,	26.41	在供证		100		SEL SE	Q Syar	51201		300	1000		1000			E ST	100%		ROMES!	DELCE:	88.50	\$25.00 B	10.50	100
Snow	ALAZZIY Y	3.0	NAME OF	ATTENDED.	13.0	E SPERM	ONE WE	10.0	34863	5740.767	13.0	- AZA	STATE OF	3.0	MK4700	22.0	34.0	SERVICE STREET	QX F-SL	H61216	NETWOOD STATE	A STATE OF	Same 27	53
Wind	7/50/5/65	I I I I I I I I I I I I I I I I I I I	Siste.	BEET C	HELD W	FEMALE.	ME IN	56F-13F6	310.40	Restu	SCHOOL STATE	93,000	(let-set)	500 174	APPART.	etyle ac	100000	ALC: N	Children .	4044	35754	TURNEZ	THATA	30
Wind (Uplift)	2.0	3.0	基準性的	3.0	10.0	Balwes	5.0	8.0	10.7073	3.0	12.0	THE REAL PROPERTY.	2.0	3.0	RM959	14.0	20.0	REPORT	UKS TELL	IS IN CASE	RESE	5,500	130393	
Selsmic	DESTRUCTION OF THE PARTY OF THE	1.0	1000	58110	1.0	THE PARTY	8.0	8.0	THE REAL PROPERTY.	8.0	7.0	PROTEIN	SAME IN	1.0	WHILE ST	20.0	14.0	CERTER	ASSES	(TC/125	Bio701	B285970	104000	10
Seismic (Uplift)	4500	BALSEY)	ENTINE	\$1855 E	ROPERS.	经验证	BRUD	BURNER	SEMANA.	2000	22111/21119	100 PER 100 PE	1000	5491310		20.0	14.0	(BELIANDE	20,000	TENSON STATE	NUTERO.	13.44	Secrets.	21
																								_
Selsmic Design Factors																			1					_
Seismic Coefficient Sds	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	0.955	NO.	100,000	INFO IS	DAHRE	anth:	SOUR	T
Amplification Factor - Ωσ	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	LEW AND	SP(S)	and the	BERTA	Barrie	Minist.	
Padundaneu Enclas a	100 March 1997		7 7			1				411		1000	WANTED HELD	10.00		1000		100000	1	13000000	100000000000000000000000000000000000000	1000	ALC: N	+

ASD Combinations		and the		es an V				ASD	Factored R	eaction	15						
D		1.0		3.0		3.0		3.0		T	1.0	5.0	8.0				
D+L+C,		1.0		3.0		3.0		3.0			1.0	5.0	8.0				
D+C+L,		3.0		10.0		9.0		10.0			3.0	18.0	28.0			7	
D+C+S		5.0		18.0	Conservation of the conser	15.0		18.0			5.0	31.0	48.0	\neg			
D+C+0.75*(L+C,)+0.75*L,		2.8		8.8		8.0		8.8			2.8	15,8	24.5				
D+C+0.75*(L+C,)+0.75*S		4.3		14.8		12.5		14.8			4.3	25.5	39.5				
D+0.6*W		1.0		3.0		3.0		3.0			1.0	5.0	8.0				
D-0.6*W	-1.2	-0.8	-1.8	-3.0	-3.0	-1.8	-1.8	-4.2	-1	.2	-0.8	-3.4	-4.0				
(D+0.14*Sds*D)+0.7*(E*p)		1.8		4.1	5.6	9.0	5.6	8.3			1.8	19.7	18.9				
(D-0.14*Sds*D)-0.7*(E*ρ)		0.9		2.6		2.6		2.6			0.9	-9.7	-2.9		1 3 3		
D+C+0.75*0.6*W+0.75*(L+C,)+0.75*L,		2.8		8.8		8.0		8.8			2.8	15.8	24.5		d was not		
D+C-0.75*0.6*W+0.75*(L+C,)+0.75*L,	-0.9	1.4	-1.4	4.3	-2.3	4.4	-1.4	3.4	-0	9	1.4	9.5	15.5		-		
D+C+0.75*0.6*W+0.75*(L+C _t)+0.75*S		4.3		14.8		12.5		14.8			4.3	25.5	39.5				
D+C-0.75*0.6*W+0.75*(L+C,)+0.75*S	-0.9	2.9	-1.4	10.3	-2.3	8.9	-1.4	9.4	-0	.9	2.9	19.2	30.5				
(D+0.105*Sds*D)+0.525*(E*p)+C+0.75*(L+C,)+0.75*L,		3.4		9.6	4.2	12.5	4.2	12.7		1	3.4	26.8	32.7				
(D-0.105*Sds*D)-0.525*(E*p)+C+0.75*(L+C _t)+0.75*L _t		2.6		8.4		7.7		8.4			2.6	4.7	16.3				
(D+0.105*Sds*D)+C+0.525*(E*p)+0.75*(L+C _t)+0.75*S		4.9		15.6	4.2	17.0	4.2	18.7			4.9	36.5	47.7				
(D-0.105*Sds*D)+C-0.525*(E*p)+0.75*(L+C,)+0.75*S		4.1		14.4		12.2		14.4			4.1	14.5	31.3				
0.6D+0.6*W		0.6		1.8		1.8		1.8			0.6	3.0	4.8				
0.6D-0.6*W	-1.2	-1.2	-1.8	-4.2	-3.0	-3.0	-1.8	-5.4	-1	.2	1.2	-5.4	-7.2				
0.6*(D+0.14*Sds*D)+0.7*(E*p)		1.4		2.7	5.6	7.6	5.6	6.9			1.4	17.4	15.2				
0.6*(D-0.14*Sds*D)-0.7*(E*p)		0.5	200	1.6		1.6		1.6			0.5	-11.4	-5.6				

LRFD Combinations		HIII PAINOS						LRFI	Facto	red Reac	tions							
1.4D		1.4		4.2		4.2		4.2			1.4	7.9	0	11.2	1	1	T	
1.2D+1.6(L+C,)+0.5S	(00000	3.7		12.1		10.6		12.1			3.7	21	0	32.6				
1.2D+1.6(L+C,)+0.5L,+C		2.7		8.1		7.6		8.1			2.7	14	5	22.6				
1.2D+1.6*(L,+C)+L+C,		4.4		14.8		13.2		14.8			4.4	26	8	41.6	1	1		
1.2D+1.6(L _r +C)+0.5W		4.4		14.8		13.2		14.8			4.4	26	8	41.6		1		
1.2D+1.6(L,+C)-0.5W	-1.0	2.9	-1.5	9.8	-2.5	9.2	-1.5	8.8		-1.0	2.9	19	8	31,6				
1.2D+1.6(C+S)+(L+C,)		7.6		27.6		22.8		27.6			7.6	47	6	73.6				
1.2D+1.6(C+S)+0.5W		7.6		27.6		22.8		27.6			7.6	47	6	73.6				
1.2D+1.6(C+S)-0.5W	-1.0	6.1	-1.5	22.6	-2.5	18.8	-1.5	21.6		-1.0	6.1	40	6	63.6				
1.2D+1.0W+(L+C,)+0.5L,+C		2.7		8.1		7.6		8.1			2.7	14	.5	22.6			1	
1.2D-1.0W+(L+C _r)+0.5L _r +C	-2.0	-0.3	-3.0	-1.9	-5.0	-0.4	-3.0	-3.9		-2.0	-0.3	0.	5	2.6				
1.2D+1.0W+(L+C,)+0.5S+C		3.7		12.1		10.6		12.1			3.7	21	.0	32.6				
1.2D-1.0W+(L+C,)+0.5S+C	-2.0	0.7	-3.0	2.1	-5.0	2.6	-3.0	0.1		-2.0	0.7	7.	0	12.6				
1.2*(D+0.2*Sds*D)+(E*p)+(L+C,)+0.2S+C		4.0		9.9	8.0	16.3	8.0	15.9			4.0	35	5	38.2				
1.2*(D-0.2*Sds*D)-(E*p)+(L+C,)+0.2S+C		1.6		5.5		4.9		5.5			1.6	-10	.7	0.6		1		
1.2*(D+0.2*Sds*D)+(E*\?o)+(L+C _r)+0.2S+C		5.0		10.9	16.0	24.3	16.0	22.9			5.0	55	.5	52.2				
1.2*(D-0.2*Sds*D)-(E*∏o)+(L+C _i)+0.2S+C		1.6		5.5		4.9		5.5			1.6	-30	.7	-13.4				
0.9D+1.0W		0.9		2.7		2.7		2.7		_	0.9	4.	5	7.2	1		1	
0.9D-1.0W	-2.0	-2.1	-3.0	-7.3	-5.0	-5.3	-3.0	-9.3		-2.0	-2.1	-9.		-12.8				
0.9*(D+0.2*Sds*D)+(E*p)		2.1		4.2	8.0	11.2	8.0	10.2			2.1	25	4	22.6				
0.9*(D-0.2*Sds*D)-(E*p)		0.7		2.2		2.2		2.2			0.7	-16	.4	-8.2				
0.9*(D+0.2*Sds*D)+(E*(?)o)		3.1		5.2	16.0	19.2	16.0	17.2			3.1	45	4	36.6			T	
0.9*(D-0.2*Sds*D)-(E*(?o)		0.7		2.2		2.2		2.2			0.7	-36	.4	-22.2	1		1	

										Footin	g Resul	ts for G	ravity, U	plift, and	Shear									
Bolt Pattern Callout	E. William	remas	10 P.S.	Vertical Day		1.55%	62.54 ATT	10.34		THE REAL PROPERTY.	X244004	*/52 H	5000010	MUNICIPAL PROPERTY.	PATAMET	VOUE BY	Service B	No. 200 h	ALC: U	(28/48)	045.75W	. The second	richt fals	CHI.
Worst Case Shear (ULT)	2.0	Service manufacture	0.0	3.0	Townson.	0.0	16.0		0.0	16.0		0.0	2.0		0:0	55.5		0.0	0.0		0.0	0.0		0.0
Worst Case Uplift (ULT)		-2.1			-7.3			-5.3			-9.3			-2.1	- 11		-22.2	11		0.0			0.0	
Worst Case Shear (ASD)	1.2		0.0	1.8		0.0	5.6		0.0	5.6		0.0	1.2	_	0.0	36.5		0.0	0.0	_	0.0	0.0		0.0
Passive Pressure (pcf)	20,328	300	製物学	10000	300	THE DESIGNATION	4	300	OF ALL SHOP	Comments.	300	and the same of	(Charte)	300	A COLUMN	STANKS	300	wete.	80,150	300	SHESHIE	HALL	300	CENT IAS
Friction Coefficient	FRYLESS.	0.3	Eliament.	SHIPPE	0.3	HEIRE	(ESCH)	0.3	TA GOOD	Marin Mari	0.3),555,655	VINES!	0.3	1000 No. 10	277687	0.3	N-0148	715/46	0.3	1500 FC	弘任 (5)	0.3	SALED EN LO
Sliding Footing Thickness (in)		12.0			12.0			12.0			12.0			12.0			12.0			12.0			12.0	
Soil Depth above Footing (in)		24			24			24			24			24			24			24			24	
Sliding Footing Width (ft)					3						3			3	1		3			3			3	
Friction Resistance (Kip)		0.6			0.9			0.9			0.9			0.6			1.8			*********			*********	
Passive Pressure Resistance (Kip)			4.1			4.1			4.1			4.1			4.1			4.1			4.1			4.1
Total Lateral Resistance (Kip)			4.6			5.0			5.0			5.0			4.6			5.9			######			#####
	Cons	ider Hal	irpins				Cons	ider Ha	irpins				Cons	ider Ha	irpins		on the Clark	A Activities	Con	sider Ha	irpins	Con	sider Ha	Irpins
Worst Case Uplift Force (ASD Kip)		-1.2			-4.2			-3.0			-5.4			-1.2			-7.2			0.0			0.0	
Footing Size (Up) (ft)		1.8			3,4			2.8			3.8			1.8			4.4			0,0			0.0	
Worst Case Down Force (ASD Kip)		5.0			18.0			17.0			18.7			5.0			48.0			0.0			0.0	
Allowable Bearing Pressure	15.0500	2500		15090	2500	Vacuus V	是此间	2500	2000年	A CHARLES	2500	SPANE.	DV-265	2500	EUVALU	No. 18	2500	S FAS	530.93	2500	90320	PATE ST	2500	Palitik.
Footing Size (Down)		1.5			2.8			2.7			2.8			1.5			4.5			0.0			0.0	
Footing Used		F3			F3			F3			F3	170×240		F3			F4.5							

R1 of 6 Version 2018.4.3 (4/8/18)

1050 North Watery Lane Brigham City, UT 84302 Ph: (435) 919-3100 Fax: (435) 919-3101

Page:

R1 of

Date:

6/14/2018

GENERAL INFORMATION FOR COLUMN BASE REACTIONS

O FOR REVIEW

FOR CONSTRUCTION

Project Name: Kimberly Clark - Opt C
NBS Project Number: U18G0576A

Customer: Commercial Service Unlimited

NBG Engineer: Louis Lo

Column base reactions are included in this packet for a building designed by Nucor Buildings Group. These reactions result from frame analysis done by a NBG Engineer for this specific job. They reflect all loading to which the building may be subject, per the appropriate building code and loading information provided to Nucor Buildings Group at the date of design. Reaction packets marked "FOR REVIEW" are subject to change and are usually provided at the request of the customer, although the NBG Engineer believes he/she is working with undefined, incomplete or assumed information.

Reactions are provided by load case in order to aid the foundation engineer in determining the appropriate load factors and combinations to be used with either Working Stress or Ultimate Strength design methods. Wind load cases are given for each primary wind direction.

For ASCE7-10 based building codes, the unfactored load case reactions due to wind are generated using the ultimate design wind speed (Vult).

Sign conventions for computer generated frame reactions are as follows and should be taken in the sense of the frame sketch given on the reactions sheets.

Anchor bolt diameter, grade, location and projection is provided on the Anchor Bolt Plan. Anchor bolt embedment lengths and types are not provided by Nucor Buildings Group. This Information is closely related to the complete foundation design which should be done by a Registered Professional Engineer familiar with the local site conditions and construction practices.

R2 of 6 Version 2018.4.3 (4/8/18)

LL NUCER BUILDING SYSTEMS GROUP

1050 North Watery Lane Brigham City, UT 84302

Ph: (435) 919-3100 Fax: (435) 919-3101

ERECTION DRAWING COVER SHEET LOADS

Information to be verified on Erection Drawing Cover Sheet:

Dualant Name	: Kimberly Clark - Opt C		
Project Name: NBS Project Number:			
Customer:			
	•		
NBG Engineer:			
Date			
	BUILDING LOADS		
DESIGN CODE: IBC 20	15		
ROOF LIVE LOAD:	20.00 PSF	RISK CATEGORY:	
REDUCIBLE AS PER CODE	E.	II - Standard Buildings	
GROUND SNOW LOAD:	43.00 PSF	SNOW EXP. FACTOR, Ce:	1.00
SNOW IMPORTANCE FACTO	OR, I _s : 1.00		
WIND: 115 mph	(Vult) 89 mph (Vasd)		
WIND EXPOSURE: B			
***C & C PRESSURES 22 psf	/ -29 psf		
UL 90? No			
SEISMIC INFORMATION:	Ss: 1.433 S1: 0.596		
Design Sds / Sd1:	0,955/0.596	Site Class:	D
Seismic Imp. Factor, Ie:	1.00	Seismic Design Category:	
Beisine Imp. I actor, Ic.			
Analysis Procedure:	Equiv. Lat. Force Procedure		
Basic SFRS:	Ord. Steel Mom. Frames &		
	Ord. Steel ConcBr. Frames		
NOTES:			

- 1) COLLATERAL DEAD LOADS, UNLESS OTHERWISE NOTED, ARE ASSUMED TO BE UNIFORMLY DISTRIBUTED. WHEN SUSPENDED SPRINKLER SYSTEMS, LIGHTING, HVAC EQUIPMENT, CEILINGS, ETC., ARE SUSPENDED FROM ROOF MEMBERS, CONSULT THE M.B.S. IF THESE CONCENTRATED LOADS EXCEED 500 POUNDS (USING THE WEB MOUNT DETAIL), OR 200 POUNDS (USING THE FLANGE MOUNT DETAIL), OR IF INDIVIDUAL MEMBERS ARE LOADED SIGNIFICANTLY MORE THAN OTHERS.
- 2) THE DESIGN OF STRUCTURAL MEMBERS SUPPORTING GRAVITY LOADS IS CONTROLLED BY THE MORE CRITICAL EFFECT OF ROOF LIVE LOAD OR ROOF SNOW LOAD, AS DETERMINED BY THE APPLICABLE CODE.
- 3) **PM IS BASED ON THE MINIMUM ROOF SNOW LOAD CALCULATED PER BUILDING CODE OR THE CONTRACT-SPECIFIED ROOF SNOW LOAD, WHICHEVER IS GREATER. THIS VALUE, PM, IS ONLY APPLIED IN COMBINATION WITH DEAD AND COLLATERAL LOADS. ROOF SNOW IN OTHER LOADING CONDITIONS IS DETERMINED PER THE SPECIFIED BUILDING CODE.

BUILDING-SPECIFIC LOADING INFORMATION:

	Roof Dead	Collate	ral Dead	Snow Co	efficient	· · · · · · · · · · · · · · · · · · ·		Win	ıd	Seismic			
Bldg	(psf)*	Pri (psf)	Sec (psf)	Ct	Cs	Ps (psf)	**Pm (psf)	Enclosure	GCpi	R	Cs	V (kips)	
A	4.3	5.0	5.0	1.0	1.00	30.10	20.00	Enclosed	± 0.18	3.25	0.294	112.1	
						ļ							
						1						L	

^{*}Primary Structural Not Included

^{***}Design wind pressures to be used for wall exterior component and cladding materials not provided by Nucor Building Systems.

NUCER BUILDING SYSTEMS GROUP

1050 North Watery Lane Brigham City, UT 84302 Ph: (435) 919-3100 Fax: (435) 919-3101

ERECTION DRAWING COVER SHEET NOTES

Special notes to be placed on Erection Drawing Cover Sheet:

CVNOTE21:

Windows and doors that are provided by others are assumed to meet the wind loading requirements of the structure and the openings for these must be impact-resistant or protected by an impact-resistant covering as specified in the building code when a high wind event is anticipated.

CVNOTE27:

For buildings with an Occupancy Category I or II, IBC allows for single story buildings to have no limit for the seismic story drift. Please note that any interior walls, partitions, ceilings, and exterior walls should be detailed (by others) to accommodate this story drift.

JOB NAME: KIMBLEY CLARK - OPT C

JOB NUMBER:

U18G0576A

ENGINEER:

님

(These reactions must be combined with the appropriate longitudinal frame reactions)

/		
/		
	 	→ ?

-			 -	-	-	-	-	-	-
CASE	WIND	SEISMIC							
V (KIPS)	2	14							
H (KIPS)	3	20							
Bay:	2-3, 4-5, 7-8	2-3, 4-5, 7-8							
Line:	A&E	A&E							

frame reactions.
7
nal to horizontal fr
0
+
ital bracing reactions are orthogona
are
reactions
D
bracin
<u></u>
Horizonta
1
*

U18G0576A
NUCOR BUILDINGS GROUP
Frame : FRAME LINE 1 & 11
Job Name: KIMBERLY CLARK - OPT C

Job #: U18G0576A By: BG\louis.lo

Page: Date: 06-14-18 File: E01

*** DESIGN SUMMARY - FRAME REACTIONS BY LOAD CASE ***

Member	X (kips)	Y (kips)	Z (kip-ft)	Member	X (kips)	Y (kips)	Z (kip-ft)	
LOAD CASE	1 - DEAD			LOAD CASE	8 - WIND CA	SE 2 TO LE	FT	
COL01	0	1	0	COLO1	0	-2	0	
COL02	0	3	0	COLO2	0	- 6	0	
COL03	0	3	0	COLO3	0	-4	0	
COL04	0	3	0	COLO4	3	-12	0	
COL05	0	1	0	COL05	0	-2	0	
LOAD CASE	2 - COLLATER	RAL		LOAD CASE			BACK	
COL01	0	1	0	COL01	-1	-3	0	
COL02	0	2	0	COLO2	-3	-10	0	
COL03	0	2 2	0	I COLO3	- 4	-8	0	
COL04	0	2	0	I COLO4	-3	-10	0	
COL05	0	1	0	COLO5	-1	-3	0	
LOAD CASE	3 - ROOF LIV			I LOAD CASE	10 - LONG. W	IND 1 TO F	PONT	
COL01	0		0	COLO1		-3	0	
COL02	0	5	0	COL02	3	_	0	
COLO3	0	4	0	COL02	5		0	
COLO4	0	5	0				3	
	0			COLO4		-10	0	
COL05	0	1	0	COLO5	2	-3	0	
LOAD CASE	4 - SNOW			I LOAD CASE	11 - SEISMIC	TO RIGHT		
COL01	0	3	0	COLO1	0	10 110111	0	
COL02	0	11	0	COLO2	0	1	0	
COL03	0	10	0	COL03	-8	776	0	
COLO4	0	11	0	COLO4	-8			
COL05	0	3	0	COLO5	0	-1	0	
				1 COTO2	·		0	
LOAD CASE				LOAD CASE	12 - SEISMIC	TO LEFT		
COL01	0	-1	0	COLO1	0	-1	0	
COL02	0	-7	0	COLO2	0	-1	0	
COL03	-3	-7	0	COLO3	0	8	0	
COL04	0	-1	0	COLO4	8	-7	0	
COL05	0	-1	0	COLO5	0	1	0	
LOAD CASE	6 - WIND CAS	E 1 TO LEF	T		13 - ALTERNA			
COL01		-1	0	COL01	0	2	0	
COL02	0	-3	0	COLO2	0	13	0	
COL03	0	-2	0	COLO3	0	9	0	
COL04	3	- 9	0	COLO4	0	4	0	
COL05	0	-1	0	COLO5	0	1	0	
LOAD CASE	7 - WIND CAS	F 2 TO PIC	 нт	I IOAD CACE	14 - ALTERNA	TE ENON 3		
COL01			0	COLO1	14 - ALTERNA			
COLUI COLUI	U	-2	0	\$6 10.00000000000000000000000000000000000		1	0	
	U	- 9	U	COL02	0	4	0	
COL03	-3	- 9	U	COLO3	0	9	0	
COL04	0	-3	0	COLO4	0	13	0	
COL05	0	-9 -9 -3 -2	0	COLO5	0	2	0	

LL

R5 of 6

U18G0576A
NUCOR BUILDINGS GROUP
Frame : FRAME LINE 2 - 10
Job Name: KIMBERLY CLARK - OPT C

Job #: U18G0576A By: BG\louis.lo

Page: 06-14-18 File: F01

*** DESIGN SUMMARY - FRAME REACTIONS BY LOAD CASE ***

Member		000 00 TO 00 00	Z kip-ft)	Member		Y (kips)		
	1 - DEAD 5 -5		0	LOAD CASE COLO1 COLO2	-4	-10	0	
COL01	2 - COLLATER 4 -4	RAL 6 6		LOAD CASE COLO1 COLO2	-5	-7		
COL01	3 - ROOF LIV 9 -9	14	0			-18	0	
COL01	4 - SNOW 22 -22			LOAD CASE COL01 COL02	-9	IND 2 TO -15 -18	FRONT 0	
COL01	5 - WIND CAS -11 2	-12	0	LOAD CASE COL01 COL02	-6	TO RIGHT -4 4		
COL01	6 - WIND CAS -2 11	-6	0	LOAD CASE COLO1 COLO2		4	0	
COL01	7 - WIND CAS -14 6	-20	0	LOAD CASE COLO1 COLO2		33	0	
COL01		-14	0	LOAD CASE COLO1 COLO2		19		

This Wall in File: y:\projects 2018\18179 - kimberly clark parts storage building\engineering\calcul

RetainPro (c) 1987-2017, Build 11.17.11.03 License: KW-06051442 License To: ARW ENGINEERS

Cantilevered Retaining Wall

Code: IBC 2015,ACI 318-14,ACI 530-13

=	5.00 ft	District
=	1.00 ft	
=	0.00	
=	18.00 in	
=	0.0 ft	
	=	= 1.00 ft = 0.00 = 18.00 in

Soil Data		Ĭ
Allow Soil Bearing	=	2,500.0 psf
Equivalent Fluid Pressure	e Meth	nod
Active Heel Pressure	=	45.0 psf/ft
	=	
Passive Pressure	=	300.0 psf/ft
Soil Density, Heel	=	110.00 pcf

Soil Density, Toe 0.00 pcf Footing||Soil Friction 0.300 Soil height to ignore for passive pressure 12.00 in

Surcharge Loads

Surcharge Over Heel 100.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe 100.0 Used for Sliding & Overturning

Axial Load Applied to Stem								
Axial Dead Load	=	0.0 lbs						
Axial Live Load	=	0.0 lbs						
Axial Load Eccentricity	=	0.0 in						

Axial Dead Load	=	0.0 lbs
Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Design Summary	WEIGH			Vettora kvisto	
Wall Stability Ratios Overturning Sliding	=		1.66 2.25		
Total Bearing Loadresultant ecc.	= =		2,154 9.96		
Soil Pressure @ Toe Soil Pressure @ Heel Allowable Soil Pressure Less	= = = Th	an	2,500	psf psf	
ACI Factored @ Toe ACI Factored @ Heel	=	all	3,001 0	psf psf	
Footing Shear @ Toe Footing Shear @ Heel Allowable	= = =		0.8 11.0 75.0	psi	
Sliding Calcs Lateral Sliding Force less 100% Passive Force less 100% Friction Force			997.5 1,593.3 646.3	lbs	
Added Force Req'dfor 1.5 Stability	= =		0.0		

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Load Factors	
Building Code	IBC 2015,ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Lateral Load Applied to Stem Lateral Load 0.0 #/ft ...Height to Top = 0.00 ft ...Height to Bottom = 0.00 ft Load Type = Wind (W)

(Service Level) Wind on Exposed Stem = 0.0 psf (Service Level)

Adjacent Footing Load Adjacent Footing Load = 0.0 lbs					
Adjacent Footing Load		0.0 lbs			
Footing Width	=	0.00 ft			
Eccentricity	=	0.00 in			
Wall to Ftg CL Dist	=	0.00 ft			
Footing Type		Line Load			
Base Above/Below Soil at Back of Wall	=	0.0 ft			
Poisson's Ratio	=	0.300			

Stem Construction		Bottom	
		Stem OK	
Design Height Above Ftc		0.00	
Wall Material Above "Ht"	=	Concrete	
Design Method	=	LRFD	
Thickness Rebar Size	=	8.00 # 4	
Rebar Spacing	=	12.00	
Rebar Placed at	=	Center	
Design Data		Center	
fb/FB + fa/Fa	=	0.684	
Total Force @ Section			39
Service Level	lbs =		
Strength Level	lbs =	1,227.3	
MomentActual	100	1,22110	
Service Level	ft-# =		
Strength Level	ft-# =	2,318.2	
MomentAllowable	=	3,387.6	
ShearActual			
Service Level	psi =		
Strength Level	psi =	25.6	
ShearAllowable	psi =	75.0	
Anet (Masonry)	in2 =	70.0	
Rebar Depth 'd'	in =	4.00	
Masonry Data	111 =	4.00	
f'm	psi =		
Fs	psi =		
Solid Grouting	=		
Modular Ratio 'n'	=		
Wall Weight	psf =	100.0	
Short Term Factor	=		
Equiv. Solid Thick.	=		
Masonry Block Type	=	Medium We	ight
Masonry Design Method	=	ASD	
Concrete Data			
fc	psi =	2,500.0	
Fy	psi =	60,000.0	

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title Retaining wall - 3.5' with surcharg Job#: Dsgnr:

Description....

Page 18 8 9 9 2 22 JUN 2018

This Wall in File: y:\projects 2018\18179 - kimberly clark parts storage building\engineering\calcul

RetainPro (c) 1987-2017, Build 11.17.11.03

License : KW-06051442 License To : ARW ENGINEERS

Cantilevered Retaining Wall

Code: IBC 2015, ACI 318-14, ACI 530-13

Concrete Stem Rebar Area Details

Bottom Stem

As (based on applied moment):

0.1399 in2/ft

Vertical Reinforcing

Horizontal Reinforcing

(4/3) * As:

0.1866 in 2/ft

Min Stem T&S Reinf Area 1.152 in2

200bd/fy: 200(12)(4)/60000:

0.16 in 2/ft 0.1728 in 2/ft Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft

0.0018bh: 0.0018(12)(8):

Horizontal Reinforcing Options: One layer of: Two layers of:

#4@ 12.50 in #5@ 19.38 in

#4@ 25.00 in #5@ 38.75 in

Required Area: Provided Area:

0.16 in2/ft 0.2 in2/ft

#6@ 27.50 in

#6@ 55.00 in

Maximum Area:

0.5419 in2/ft

Footing Dimensions & Strengths Toe Width

Heel Width = 2.25 Total Footing Width 3.00 Footing Thickness 12.00 in _ Key Width 12.00 in = Key Depth 0.00 in

Key Distance from Toe 2.00 ft 2,500 psi Fv = 60,000 psi fc = Footing Concrete Density 150.00 pcf

Min. As % 0.0018 2.00 Cover @ Top @ Btm.= 3.00 in

Footing Design Results

		Toe	<u>Heel</u>
Factored Pressure	=	3,001	0 psf
Mu': Upward	=	739	52 ft-#
Mu': Downward	=	151	1,253 ft-#
Mu: Design	=	588	1,201 ft-#
Actual 1-Way Shear	=	0.82	11.00 psi
Allow 1-Way Shear	=	40.00	40.00 psi
Toe Reinforcing	=	#4@16.00 in	
Heel Reinforcing	=	# 4 @ 16.00 in	
Key Reinforcing	=	None Spec'd	

Other Acceptable Sizes & Spacings

Toe: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm Key: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm

Min footing T&S reinf Area Min footing T&S reinf Area per foot 0.78 in2 in2 /ft 0.26

If one layer of horizontal bars:

If two layers of horizontal bars:

#4@ 9.26 in #5@ 14.35 in #6@ 20.37 in #4@ 18.52 in #5@ 28.70 in #6@ 40.74 in

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING	3			RE	SISTING	
Item		Force lbs	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	=	810.0	2.00	1,620.0	Soil Over Heel	=	870.8	2.21	1,923.1
Surcharge over Heel	=	187.5	3.00	562.5	Sloped Soil Over Heel	=			
Surcharge Over Toe	=				Surcharge Over Heel	=	158.3	2.21	349.7
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em =			
Load @ Stem Above So	il =				* Axial Live Load on Ster	n =			
t interespetation 👄 transportation and property in the special contraction	=				Soil Over Toe	=		0.38	
					Surcharge Over Toe	=	75.0	0.38	28.1
Total		007.5		0 400 F	Stem Weight(s)	=	600.0	1.08	650.0
Total		997.5	O.T.M.	2,182.5	Earth @ Stem Transition	ns=			
	=		=		Footing Weight	=	450.0	1.50	675.0
Resisting/Overturning	q Rat	io	=	1.66	Key Weight	=		2.50	
Vertical Loads used for	_		= 2,154	.2 lbs	Vert. Component	=			
					То	tal =	2,154.2	os R.M.=	3,625.9

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Use menu item Settings > Printing & Title Block to set these five lines of information for your program.

Title Retaining wall - 3.5' with surcharg
Job #: Dsgnr:

Description....

charg Page 19 6 9 9: Date: 22 JUN

This Wall in File: y:\projects 2018\18179 - kimberly clark parts storage building\engineering\calcul

RetainPro (c) 1987-2017, Build 11.17.11.03 License : KW-06051442 License To : ARW ENGINEERS

Cantilevered Retaining Wall

Code: IBC 2015,ACI 318-14,ACI 530-13

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus

250.0 pci

Horizontal Defl @ Top of Wall (approximate only)

0.119 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.