STRUCTURAL CALCULATIONS

For

Meehan Cabin POWDER MOUNTAIN EDEN, UTAH

Prepared for

Lloyd Architects 573 E 600 S Salt Lake City, Utah 84102

PLAN REVIEW ACCEPTANCE
FOR COMPLIANCE WITH THE APPLICABLE CONSTRUCTION CODES IDENTIFIED BELOW.
☐BUILDING XSTRUCTURAL
☐ELECTRICAL ☐ENERGY
ACCESSIBILITY FIRE
PLAN REVIEW ACCEPTANCE OF DOCUMENTS DOES NOT AUTHORIZE CONSTRUCTION TO PROCEED IN VIOLATION OF ANY FEDERAL, STATE, OR LOCAL REGULATIONS.
BY: MEM DATE: 04/18/18
WEST COAST CODE CONSULTANTS INC

Ву

634 S. 400 W, Suite 100 Salt Lake City, UT 84101 801-466-1699

JOB TITLE: Meehan Cabin

SUBJECT: Load Sheet

BY: DSM CHECKED:

DATE: 10/4/2017

SHEET:

CODE: 2015 INTERNATIONAL BUILDING CODE

RISK CATEGORY: II

ROOF LOADS

DEAD LOAD: SNOW LOAD: ROOF LIVE LOAD: ROofing = 6.0 psf Pg = 275 psf RLL= 20 psf

Roofing = 6.0 psf Pg = 275 psfSheathing = 3.6 psf Is = 1.0

Framing = 7.0 psf Ce = 1.0

Insulation = 0.3 psf Ct = 1.0 - Typical

Mech./Misc = 3.1 psf = 1.2 - Exterior Decks ------ Pf = 195 psf - Typical

= 20.0 psf Pf = 234 psf - Exterior Decks

FLOOR LOADS

DEAD LOAD:

Wood Floor + Wood Sleepers +3" Topping Steel Floor

Flooring = 1.0 psfFlooring = 1.0 psf3" NW Conc. = 37.5 psfW2 Deck = 2.1 psf= 2.3 psfSheathing 5" NW Conc. = 48.3 psfFraming = 3.5 psfFraming = 6.0 psfSleeper System = 2.8 psfCeiling = 2.8 psfMech./Misc = 2.9 psfMech./Misc = 4.8 psf

= 50.0 psf = 65.0 psf

Steel Floor + Wood Sleepers + 3" Topping

Flooring = 1.0 psf

W2 Deck = 2.1 psf

5" NW Conc. = 48.3 psf Framing = 6.0 psf

Sleeper System = 6.0 psf

3" NW Conc. = 37.5 psf

Mech./Misc = 6.1 psf

= 107.0 psf

LIVE LOAD:

Residential = 40 psf

Deck = 60 psf or snow load

JOB TITLE: Meehan Cabin

SUBJECT: Load Sheet

BY: DSM CHECKED: **DATE:** 10/4/2017

SHEET:

SEISMIC

Sds = 0.551Sd1 = 0.183

Ss = 0.826

S1 = 0.274

Ie = 1.0

Seismic Design Category= D

Site Class = B

Plywood Shear Walls

R = 6.5

Cd = 4.0

 Ω o = 3.0

<u>IMF</u>

R = 4.5

Cd = 4.0

 Ω o = 3.0

Tension Braced Frames

R

= 3.25

Cd = 3.25

Ωο

= 2.0

WIND

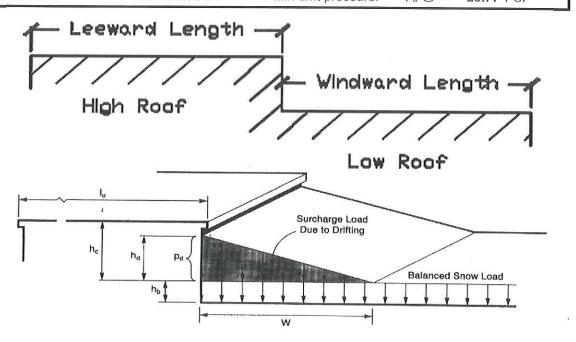
V = 150 mph Exposure Category = C Note: Local code only requires 115 mph. A higher wind load was used due to the location of the structure on top of the ridge of a mountain.

SOILS

Allowable Soil Bearing Pressure = 5000 psf

Frost Depth = 24 in with bedrock

Soils Report per IGES, dated September 16, 2014, Project No. 01628-008

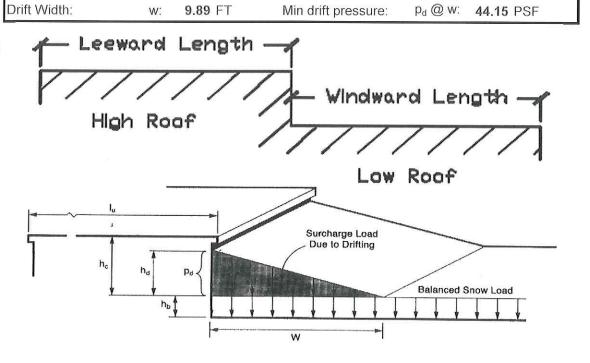


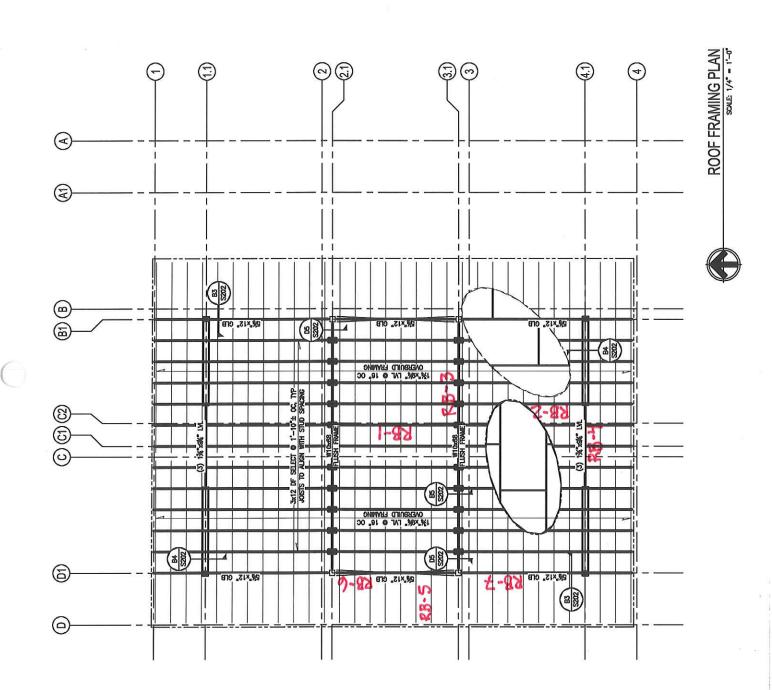
Snow Drift Analysis Design per ASCE 7-10 and IBC 2012

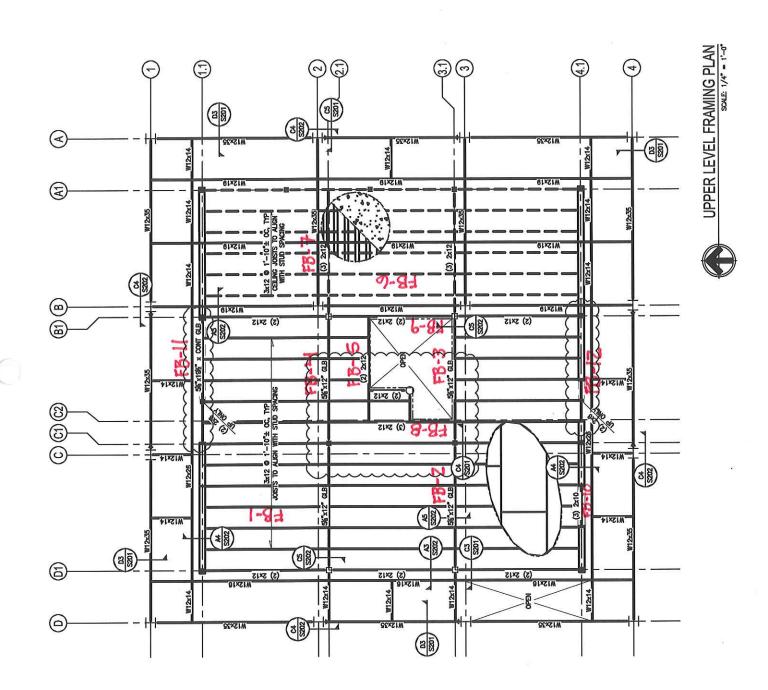
CALDER RICHARDS

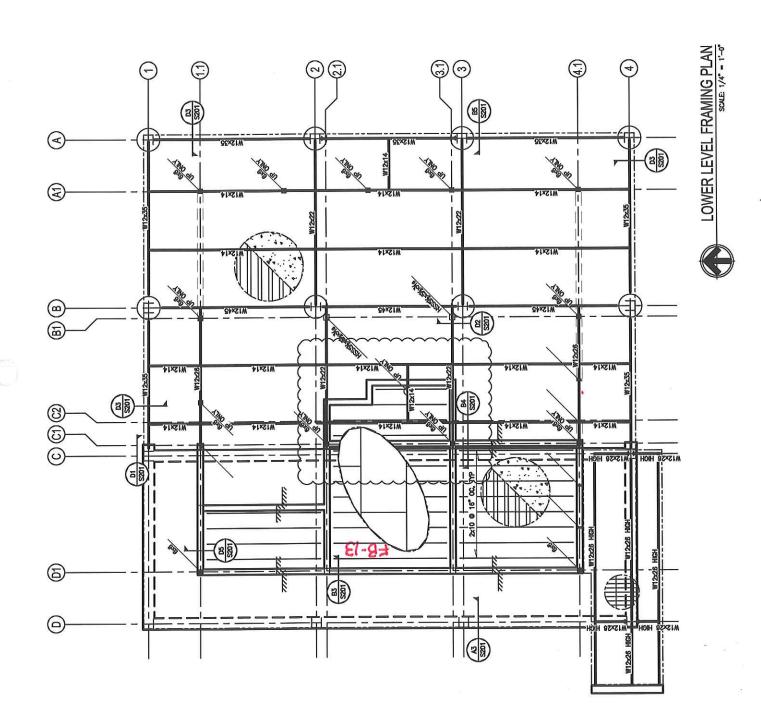
CONSULTING ENGINEERS

Project:	Mee	Meehan Residence							
Date:	10/1	10/17/2017							
Drift Location:	High	Roof to Large E	Balcony						
Ground Snow:	P_g :	275 PSF	Roof Change:	h _r :	11.00 FT				
Flat Roof Snow:	P _f :	234 PSF	Max Drift Width:	W _{dmax} :	15.00 FT				
Windward Length:	L _w :	4.00 FT	Leeward Length:	L _i :	31.00 FT				
Snow density:	D:	30.00 PCF	Must drift be considered? Yes						
Snow base depth:	h _b :	7.80 FT	Effective leeward ler	ngth:	31.00 FT				
Max drift depth:	h _c :	3.20 FT	Effective windward le	ength:	20.00 FT				
Leeward drift:	h _{dl} :	4.05 FT	Drift depth:	h _d :	4.05 FT				
Windward drift:	h _{dw} :	2.47 FT							
Actual drift depth:	h _d :	3.20 FT	Max drift pressure:	p _d :	96.0 PSF				
Drift Width:	W:	20.50 FT	Min drift pressure:	p _d @ w:	25.77 PSF				




Snow Drift Analysis Design per ASCE 7-10 and IBC 2012


CALDER RICHARDS


CONSULTING ENGINEERS

Project:	Mee	Meehan Residence								
Date:	10/1	10/17/2017								
Drift Location:	High	Roof to Small E	Balcony							
MINE WAS	1780	21								
Ground Snow:	P_g :	275 PSF	Roof Change:	h _r :	11.00 FT					
Flat Roof Snow:	P_f :	234 PSF	Max Drift Width:	W_{dmax} :	4.00 FT					
Windward Length:	L _w :	4.00 FT	Leeward Length:	L _I :	0.00 FT					
Snow density:	D:	30.00 PCF	Must drift be conside	red?	Yes					
Snow base depth:	h _b :	7.80 FT	Effective leeward len	gth:	0.00 FT					
Max drift depth:	h _c :	3.20 FT	Effective windward le	ength:	20.00 FT					
Leeward drift:	h _{dl} :	0.00 FT	Drift depth:	h _d :	2.47 FT					
Windward drift:	h _{dw} :	2.47 FT	×							
Actual drift depth:	h _d :	2.47 FT	Max drift pressure:	p _d :	74.2 PSF					
D -: (4) A (: -14)				- 0	and the second second					

JOB TITLE Meehan Cabin
SUBJECT BEAM DESIGN

BY DSM

DATE 10/2017

CHECKED

SHEET

	BEAM MARK	LOADING (SKETCH)	V (K)	M (K-FT)	SIZE	DEFL (IN)
	RB1	Z.ZK 11' Z.ZK W= 1.83'(20+195)	2.2	6.0	3×12 @ 1'-10" Select Structural	$\Delta_{L} = -0.28''$ $\Delta_{T} = -0.31''$
The second secon	RB2	W=1.83'(20+195)	2.5	4.5 -3.1	3×12 @1'-10" Select Structural	$\Delta_{L} = -0.19$ $\Delta_{T} = -0.21$ $\Delta_{L_{C}} = 0.11$ $\Delta_{T_{C}} = 0.12$
×	RB3	W=11'(Z0+195)	26.0	143.1	51/8x 311/2 GLB 63/4x 27 GLB 83/4x 24 GLB 103/4x 221/2 GLB	DT=-0.63"
	RB4	W=9.5'(20+195)	7.7	14,4	(3)13/4×91/4 LVL	$\Delta_{L} = -0.19$ " $\Delta_{T} = -0.21$ "

26K= 2.4K+ 23.6K

7.7 × = 0.8 × + 0.9 ×

JOB TITLE Mechan Cabin BY DSM DATE 10/2017
SUBJECT BEAM DESIGN CHECKED SHEET OF

	BEAM MARK	LOADING (SKETCH)	V (K)	M (K-FT)	SIZE	DEFL (IN)
	RB5	W=1.33'(20+195)	2.6	-2.9	1314 x 7"14 LVL	$\Delta_{L} = (0.02)'$ $\Delta_{T} = 0.02''$ $\Delta_{L_{c}} = -0.20''$ $\Delta_{T_{C}} = -0.22''$
8 ^K = 0.7 ^K + 7.3 ^K	RB6	W=6.75(20+195)	8.0	22.0	51/8×12 GLB	Δ _L = -0.33" Δ _T = -0.36"
6.9 ^K = 0.6 ^K + 6.3 ^K 14.8 = 1,4 ^K +13.4 ^K	RB7	6.75'(20+195)	9,0	16:5 -11.6	51/8×12 GLB	$\Delta_{L} = -0.22^{"}$ $\Delta_{T} = -0.25^{"}$ $\Delta_{L_{C}} = 0.12^{"}$ $\Delta_{T_{C}} = 0.14^{"}$
		7				$\Delta_{L} = \Delta_{T} =$

JOB TITLE Mechan Cabin BY DSM DATE 10/2017
SUBJECT BEAM DESIGN CHECKED SHEET OF

	BEAM MARK	LOADING (SKETCH)	V (K)	M (K-FT)	SIZE	DEFL (IN)
1,7=1.3+0.4	FBI	W=1.83'(50+40)	0.7	1,8	2x12@1-4"0.C.	$ \Delta_{L} = -0.08'' $ $ \Delta_{T} = -0.18'' $
55 ^k =30 ^k +25 ^k	FBZ	W=11'(50+40)	5.5	15.0	(3) ³⁾⁴ x ¹ /4 LVL 5 ¹ /8×1Z GLB	$\Delta_{L} = -0.23$ " $\Delta_{T} = -0.51$ " $\Delta_{L} = -0.11$ " $\Delta_{T} = -0.25$ "
3.8=2.1+1.7 3.0=1.6+1.4	FB3	W=55'(50+40) P=1.3 ^K ≈ 0.7 ^K bl +0.6 ^K LL	3.8	8,8	51/8x 12 GLB	$\Delta_{L} = -0.07$ " $\Delta_{T} = -0.15$ "
5.1 = 2.8 + 2.3 3.9 = 2.1 + 1.8	FBH	W=7.25'(50+40) P=1.8"≈1.0" DL+0.8" LL	5,1	11.8	51/8 x 12 GLB	$\Delta_{L} = -0.09$ $\Delta_{T} = -0.20$

JOB TITLE Meehan Cabin BY DSM DATE 10/2017
SUBJECT BEAM DESIGN CHECKED SHEET OF

BEAM MARK	LOADING (SKETCH)	V (K)	M (K-FT)	SIZE	DEFL (IN)
FB5	$W_1 = 3.5' = 5.5'$ $V_2 = 1.75'(50+40)$ $V_3 = 1.75'(50+40)$	1.2	2.1	(Z)Z×10	$\Delta_{L} = -0.06^{\circ}$ $\Delta_{T} = -0.13^{\circ}$
FΒG	0.2 K W=1.83'(15)	0.2	0.4	2×8	$\Delta_{L} = -0.00$ $\Delta_{T} = -0.10$
FB7	0.9K 11' 0.9K W=11'(15)	0.9	7.5	(3) 2×8 (2) 2×10	$\Delta_{L} = -0.00$ $\Delta_{T} = -0.32$ $\Delta_{L} = 0.00$ $\Delta_{T} = -0.23$
FB8	P_1 P_2 W_2 W_3 S	1,8	5.2	(3)2×12 518×12 GLB	$\Delta_{L} = -0.07$ " $\Delta_{T} = -0.17$ " $\Delta_{L} = 0.03$ " $\Delta_{T} = 0.05$ "

1.8=1.0+0.8

1.3=0.710.6

JOB TITLE Mechan Cabin BY DSM DATE 10/2017
SUBJECT BEAM DESIGN CHECKED SHEET OF

	BEAM MARK	LOADING (SKETCH)	V (K)	M (K-FT)	SIZE	DEFL (IN)
0.4=0.2+0.2 10=0.6+0.4	FB9	P W 7.5' 3.5" 0.4" 11' 1.0" W= 1.83'(50+40) P=0.8"≈ 0.5" bL+0.3" LL	1.0	2.6	(2) 2×1Z	$\Delta_{L} = -0.06^{\circ}$ $\Delta_{T} = -0.16^{\circ}$
47×=1,1×+3.6×	FBIO	W=5.5'(50+40)+10'(15) +9.5'(20+195)	山 、子	ㅂ.1	(3) Z×10	$ \Delta_{L} = -0.07^{11} $ $ \Delta_{T} = -0.03^{11} $
10.1= 2.3+7.8	FBII	W2 10.1K 7.5' 10.1K W=5.5' (50+40) + 9.5(20+195) +10'(15)	10,.1	18.9	(3) 3/4 x 11 ^{7/8} LVL 51/8 x 12 6 LB	$\Delta_{L} = -0.10^{\circ}$ $\Delta_{T} = -0.13^{\circ}$ $\Delta_{L} = -0.11^{\circ}$ $\Delta_{T} = -0.11^{\circ}$ $\Delta_{T} = -0.11^{\circ}$
5.7=1.0+4.7 7.6=1.3+6.3	FBIZ	$\begin{array}{c cccc} P & W_{2} \\ \hline & 1.75' & 1.75' \\ \hline & 5.7' & 3.5' & 7.6'' \\ \hline & W_{1} = 5.5'(50+40) \\ W_{2} = 5.5'(50+40) + 9.5(20+195) \\ & + 10'(15) \\ P = 7.7' \approx 0.8'' DL + 6.9'' LL \\ \end{array}$	7.6	9.2	(3)1314x914LVL 51/8x12 GLB	$\Delta_{L} = ~0.02"$ $\Delta_{T} = ~0.02"$ $\Delta_{L} = ~0.01"$ $\Delta_{T} = ~0.01"$

JOB TITLE Meehan Cabin BY DSM DATE 12/2017
SUBJECT BEAM DESIGN CHECKED SHEET OF

BEAM MARK	LOADING (SKETCH)	V (K)	M (K-FT)	SIZE	DEFL (IN)
Front Entrance Beam	W 13.09 K 14.5 13.09 K W=5.5 (35 psf + 234 psf) +5.5 (59.2 psf)	13.09	47.4	W12x26	Δ _L = -0.27" Δ _T = -0.30"
Front Entrance Bearn	$P = 3.69^{K} = 0.38^{K}DL + 3.31^{K}LL$	3.69	11.07	WIZX Zlo Toversized to match	$\Delta_{L} = -0.00$
Front Entrance Beam	W= 1.5'(35psf + 234 psf) +1.5'(70.1 psf)	369	13.4	W12x260 Oversized to match.	Δ _L = -0.08" Δ _T = -0.09"
,	7				Δ _L = Δ _T =

Floor Map

02/25/18 16:35:22

Steel Code: AISC 360-10 ASD

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Floor Type: 2nd Floor

Beam Designs

Remaining calculations available upon reguls nave been provided beam calculations * Note: Not all steel W12x14 W12x14 WIXI4 WIXIA

W12x35 W12x35 W12x14 W12x14 W1X19 W12×19 W12x19 A 1-285 W12x35 W12x35 W12×19 W12×19 W12×19 W12x14 S-288 M12K16 W12x16 WIZZE 582-3 WIXI4 WIXIA WIXI4 WIXI4 W12x35 W2X1 47 81 × 1W W12K16 W12x16 W12x14 W12x14 W12x14 W12x14 W12x35 W12x35

7.

Steel Code: AISC 360-10 ASD

Floor Map

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

国Benttey Building Code: IBC

Floor Type: 1st Floor

Beam Designs

W12x35 W12x35 W12x14 4-188 WIXIA WIXI4 W12x35 W12x35 W12x22 W12x22 MIXIA MIXIA WIXI4 1-18S WIX45 W12×45 Sixiw Wixiw MIXIA WIXIA WIXIA WIXIA W12x45 W12x45 W12x35 W12x35 WIXI4 WIXI4 WIXIA MIXIA WIXIA $\overline{\Box}$ 7

RAM Steel 15.07.00.17

SB2-1

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/25/18 16:35:22

Steel Code: AISC 360-10 ASD

Floor Type: 2nd	Floor
-----------------	-------

Beam Number = 24

SPAN INFORMATION (ft): I-End (27.42,14.58)

(27.42,14.58) J-End (42.00,14.58)

Beam Size (User Selected)

= W12X35

Fy = 50.0 ksi

Total Beam Length (ft)

= 14.58

Mp (kip-ft)

= 213.33

POINT LOADS (kips):

Dist	DL	RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	PartL
5.500	4.90	0.00	0.0	0.00	0.00	0.0	22.88	Snow	0.00
11.000	4.05	0.00	0.0	0.00	0.00	0.0	17.44	Snow	0.00

SHEAR: Max Va (DL+LL) = 26.68 kips Vn/1.50 = 75.00 kips

MOMENTS:

Span	Cond	LoadCombo	Ma	<u>@</u>	Lb	Cb	Ω	Mn/Ω
			kip-ft	ft	ft			kip-ft
Center	Max +	DL+LL	124.2	5.5	5.5	1.10	1.67	127.74
Controlling		DL+LL	124.2	5.5	5.5	1.10	1.67	127.74

REACTIONS (kips):

	Left	Right
DL reaction	4.05	4.90
Max +LL reaction	18.54	21.78
Max +total reaction	22.58	26.68

Dead load (in)	at	7.29 ft =	-0.098	L/D =	1790
Live load (in)	at	7.22 ft =	-0.443	L/D =	395
Net Total load (in)	at	7.22 ft =	-0.541	L/D =	324

RAM Steel 15.07.00.17

5B2-2

RAM Structural System DataBase: Meehan Cabin 2018-02-19

= 102.92

Bentley Building Code: IBC

02/25/18 16:35:22

Steel Code: AISC 360-10 ASD

Beam Number = 2

SPAN INFORMATION (ft): I-End (27.42,14.58) J-End (27.42,27.42) Beam Size (User Selected)

= W12X19

Total Beam Length (ft)

= 12.83

Fy = 50.0 ksi

POINT LOADS (kips):

Mp (kip-ft)

DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL Dist

LINE LOADS (k/ft):

Load	Dist	DL	LL	Red%	Type	PartL	
1	0.000	0.000	0.000		NonR	0.000	
	12.833	0.000	0.000			0.000	
2	0.000	0.179	0.000		NonR	0.000	
	12.833	0.179	0.000			0.000	
3	0.000	0.000	0.883		Snow	0.000	
	12.833	0.000	0.883			0.000	

SHEAR: Max Va (DL+LL) = 6.81 kips Vn/1.50 = 57.34 kips

MOMENTS:

Span	Cond	LoadCombo	Ma	@	Lb	Cb	Ω	Mn/Ω
			kip-ft	ft	ft			kip-ft
Center	Max +	DL+LL	21.9	6.4	0.0	1.00	1.67	61.63
Controlling		DL+LL	21.9	6.4	0.0	1.00	1.67	61.63

REACTIONS (kips):

	Left	Right
DL reaction	1.15	1.15
Max +LL reaction	5.67	5.67
Max +total reaction	6.81	6.81

Dead load (in)	at	6.42 ft =	-0.029	L/D =	5322
Live load (in)	at	6.42 ft =	-0.143	L/D =	1077
Net Total load (in)	at	6.42 ft =	-0.172	L/D =	896

RAM Steel 15.07.00.17

9B2-3

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/25/18 16:35:22

Steel Code: AISC 360-10 ASD

Fy = 50.0 ksi

171	Tr.	2 1	TOTAL
Floor	Type:	2na	Floor

Beam Number = 58

SPAN INFORMATION (ft): I-End (3.58,3.58)

J-End (27.42,3.58) = W12X26

Beam Size (User Selected) Total Beam Length (ft)

= 23.83

Mp (kip-ft)

= 155.00

POINT LOADS (kips):

							21929	20201 20201 20	
Dist	DL	RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	PartL
5.708	0.64	0.00	0.0	0.00	0.00	0.0	2.94	Snow	0.00
11.000	0.68	0.00	0.0	0.00	0.00	0.0	3.13	Snow	0.00
17.417	0.75	0.00	0.0	0.00	0.00	0.0	3.43	Snow	0.00

LINE LOADS (k/ft):

Load	Dist	DL	LL	Red%	Type	PartL
1	0.000	0.000	0.000		NonR	0.000
	23.833	0.000	0.000			0.000

SHEAR: Max Va (DL+LL) = 5.90 kips Vn/1.50 = 56.12 kips

MOMENTS:

Cond	LoadCombo	Ma	<u>@</u>	Lb	Cb	Ω	Mn/Ω
		kip-ft	ft	ft			kip-ft
Max +	DL+LL	45.9	11.0	6.4	1.09	1.67	92.81
	DL+LL	45.9	11.0	6.4	1.09	1.67	92.81
		Max + DL+LL	Max + DL+LL kip-ft 45.9	kip-ft ft Max + DL+LL 45.9 11.0	kip-ft ft ft Max + DL+LL 45.9 11.0 6.4	kip-ft ft ft Max + DL+LL 45.9 11.0 6.4 1.09	kip-ft ft ft Max + DL+LL 45.9 11.0 6.4 1.09 1.67

REACTIONS (kips):

	Left	Right
DL reaction	1.06	1.01
Max +LL reaction	4.84	4.65
Max +total reaction	5.90	5.66

Dead load (in)	at	11.80 ft =	-0.136	L/D =	2109
Live load (in)	at :	11.80 ft =	-0.622	L/D =	460
Net Total load (in)	at	11.80 ft =	-0.758	L/D =	378

RAM Steel 15.07.00.17

SB1-1

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/25/18 16:35:22

Steel Code: AISC 360-10 ASD

Floor Type: 1s	t Floor
----------------	---------

Beam Number = 19

SPAN INFORMATION (ft): I-End (27.42,14.58) J-End (27.42,27.42) Beam Size (User Selected)

$$= W12X45$$

$$= 12.83$$

Fy = 50.0 ksi

A	/1 .	CA
Mn	(kip-	-++1
IVID	(WID)	-1 t <i>j</i>

$$= 267.50$$

POINT LOADS (kips):

Dist	DL	RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	PartL
0.917	10.58	0.00	0.0	39.46	0.00	0.0	0.00	Snow	0.00
11.917	11.13	0.00	0.0	39.88	0.00	0.0	0.00	Snow	0.00

LINE LOADS (k/ft):

Load	Dist	DL	LL	Red%	Type	PartL
1	0.000	0.353	0.202		NonR	0.000
	12.833	0.353	0.202			0.000

SHEAR: Max Va (DL+LL) = 54.51 kips Vn/1.50 = 81.07 kips

MOMENTS:

						100		
Span	Cond !	LoadCombo	Ma	@	Lb	Cb }	Ω	Mn/Ω
	*		kip-ft	ft	ft			kip-ft
Center	Max +	DL+LL	57.7	6.5	0.0	1.00	1.67	160.18
Controlling		DL+LL	57.7	6.5	0.0	1.00	1.67	160.18

REACTIONS (kips):

	Left	Right
DL reaction	12.88	13.36
Max +LL reaction	40.79	41.15
Max +total reaction	53.67	54.51

Dead load (in)	at	6.42 ft =	-0.056	L/D =	2741
Live load (in)	at	6.42 ft =	-0.140	L/D =	1104
Net Total load (in)	at	6.42 ft =	-0.196	L/D =	787

RAM Steel 15.07.00.17

3B1-Z

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/25/18 16:35:22

Steel Code: AISC 360-10 ASD

Floor Type: 1st Floor	Beam Number = 23
-----------------------	------------------

SPAN INFORMATION (ft): I-End (14.58,15.50) J-End (27.42,15.50)

Beam Size (User Selected)

= W12X35

Fy = 50.0 ksi

Total Beam Length (ft)

= 12.83

= 213.33

POINT LOADS (kips):

Mp (kip-ft)

Dist	DL	RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	PartL
2.750	4.07	0.00	0.0	2.27	0.00	0.0	0.00	Snow	0.00
7.792	4.51	0.00	0.0	2.45	0.00	0.0	0.00	Snow	0.00
0.917	5.10	0.00	0.0	4.20	0.00	0.0	0.00	Snow	0.00
11.917	6.40	0.00	0.0	39.60	0.00	0.0	0.00	Snow	0.00

LINE LOADS (k/ft):

Load	Dist	DL	LL	Red%	Type	PartL
1	0.917	0.350	0.220		NonR	0.000
	6.916	0.350	0.220			0.000
2	0.000	0.600	0.470		NonR	0.000
	0.916	0.600	0.470			0.000

SHEAR: Max Va (DL+LL) = 50.04 kips Vn/1.50 = 75.00 kips

MOMENTS:

Span	Cond	LoadCombo	Ma	(a)	Lb	Cb	Ω	Mn/Ω
P			kip-ft	ft	ft			kip-ft
Center	Max +	DL+LL	62.5	7.8	5.0	1.12	1.67	127.74
Controlling		DL+LL	62.5	7.8	5.0	1.12	1.67	127.74

REACTIONS (kips):

¥	Left	Right
DL reaction	12.15	10.58
Max +LL reaction	10.80	39.46
Max +total reaction	22.96	50.04

Dead load (in)	at	6.35 ft =	-0.099	L/D =	1559
Live load (in)	at	6.67 ft =	-0.129	L/D =	1189
Net Total load (in)	at	6.67 ft =	-0.228	L/D =	675

RAM Steel 15.07.00.17

581-3

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/25/18 16:35:22

Steel Code: AISC 360-10 ASD

Floor Type: 1st Floor	Beam Number $= 24$
-----------------------	--------------------

SPAN INFORMATION (ft): I-End (14.58,4.50) J-End (27.42,4.50)

Beam Size (User Selected) = W12X45 Total Beam Length (ft) = 12.83

Total Beam Length (ft)
Mp (kip-ft) = 267.50

Fy = 50.0 ksi

POINT LOADS (kips):

Dist	DL	RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	PartL
2.750	1.70	0.00	0.0	0.91	0.00	0.0	0.00	Snow	0.00
2.750	0.58	0.00	0.0	0.07	0.00	0.0	2.06	Snow	0.00
7.792	1.94	0.00	0.0	1.11	0.00	0.0	0.00	Snow	0.00
7.792	0.75	0.00	0.0	0.10	0.00	0.0	2.67	Snow	0.00
2.417	1.00	0.00	0.0	4.70	0.00	0.0	0.00	Snow	0.00
5.917	1.30	0.00	0.0	6.30	0.00	0.0	0.00	Snow	0.00
11.917	2.30	0.00	0.0	14.20	0.00	0.0	0.00	Snow	0.00

LINE LOADS (k/ft):

Load	Dist	DL	LL	Red%	Type	PartL
1	5.917	0.770	2.070		NonR	0.000
	11.916	0.770	2.070			0.000
2	11.917	0.290	0.000		NonR	0.000
	12.833	0.290	0.000			0.000
3	0.000	0.850	0.440		NonR	0.000
	2.416	0.850	0.440			0.000

SHEAR: Max Va (DL+LL) = 37.41 kips Vn/1.50 = 81.07 kips

MOMENTS:

Span	Cond	LoadCombo	Ma	@	Lb	Cb	Ω	Mn/Ω
			kip-ft	ft	ft			kip-ft
Center	Max +	DL+LL	96.2	7.0	5.0	1.09	1.67	160.18
Controlling		DL+LL	96.2	7.0	5.0	1.09	1.67	160.18

REACTIONS (kips):

	Left	Right
DL reaction	7.80	8.70
Max +LL reaction	16.90	28.71
Max +total reaction	, 24.70	37.41

Dead load (in)	at i	6.48 ft =	-0.077	L/D =	2002
Live load (in)	at h	6.55 ft =	-0.201	Γ/D =	765
Net Total load (in)	at '	6.55 ft =	-0.278	L/D =	553

RAM Steel 15.07.00.17

SBI-H

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/25/18 16:35:22

Steel Code: AISC 360-10 ASD

Fy = 50.0 ksi

Floor Type: 1st Floor Beam Number = 56

SPAN INFORMATION (ft): I-End (37.50,27.42) J-End (37.50,42.00)

Beam Size (Optimum) = W12X14

Total Beam Length (ft) = 14.58

Mp (kip-ft) = 72.50

POINT LOADS (kips):

Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL

10.083 0.93 2.750 0.40

LINE LOADS (k/ft):

	OADS (MII).						
Load	Dist	DL	LL	Red%	Type	PartL	
1	0.000	0.210	0.120		NonR	0.000	
	10.583	0.210	0.120			0.000	:9
2	10.584	0.310	0.000		NonR	0.000	
	14.583	0.310	0.000			0.000	
3	10.584	0.000	0.777	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Snow	0.000	
3 =	14.583	0.000	0.701			0.000	
4	0.000	0.116	0.000		NonR	0.000	
	10.583	0.116	0.000			0.000	
5	0.000	0.000	0.530	M. C. T.	Snow	0.000	
	10.583	0.000	0.530			0.000	
6	10.584	0.000	0.676		Snow	0.000	
	11.916	0.000	0.666			0.000	
7	11.917	0.000	0.666	r 4	Snow	0.000	
	13.250	0.000	0.648			0.000	
8	13.250	0.000	0.648		Snow	0.000	
	14 583	0.000	0.626	3		0.000	

SHEAR: Max Va (DL+LL) = 10.33 kips Vn/1.67 = 42.75 kips

MOMENTS:

Span	Cond	LoadCombo	Ma	(a)	Lb	Cb	Ω	Mn/Ω
			kip-ft	ft	ft	2		kip-ft
Center	Max +	DL+LL	31.8	7.9	0.0	1.00	1.67	43.41
Controlling		DL+LL	31.8	7.9	0.0	1.00	1.67	43.41

REACTIONS (kips):

		Left	Right
DL reaction	1.0	2.97	3.04
Max +LL reaction		5.16	7.29
Max +total reaction	3 4 M. F. L.	8.13	10.33

Dead load (in)		at	7.36 ft =	-0.170	L/D =	1031
Live load (in)	4	at	7.44 ft =	-0.309	L/D =	566
Net Total load (in)	þ	at	7.44 ft =	-0.479	L/D =	365

JOB TITLE Meehan Cabin BY DSM DATE 01/2018
SUBJECT COLUMN DESIGN CHECKED SHEET OF

	LOAD (KIPS)	KL (ft)	COLUMN	M.
Grid: D1:1.1	10.5	7′	6×6	
(orid: C1: 1.1	0.9	F	3x6	
Grid: CZ:2:1.1	14.9	9'	(0×(D	*
Grid: B1:1.1	19.6	9'	6x8	No.
Grid: D1: 2.1	58.1	7'	HSS51/2x51/2x3/16	
Grid: C1: 2.1	10.6	7	6x6	
Grid: B1: 2.1	47.5	91	HSS51/2x51/2x3/16	
6nd: D1: 3.1	58.1	9'	HSS51/2x51/2x3/16	
Grid: C1: 3.1	9.3	7′	6×6	
Grid: B1: 3.1	46.0	9'	HSS51/2x51/2x3/16	
Grid: D1: 4.1	16.5	7'	ψ _X ψ	
brid: D1.2:4.1	4.7	7'	3x6	
Grid: D1. 6:4.1	9.8	7′	(ex(o	
6nd: CZ: H.)	5.7	7′	3x6	
Grid: CZ.4 4.1	7.6	9'	3×6	
Grid: B1:4.1	16.5	9'	6×6	
Posto W/ Ownega Due to	Discontinuous	Shear 1	Walls + 70=1.0	
Gnd: D1: 1.1	24.91K	T'	6x10	
Grid: D1.6:1.1	18.59 K	7′,	6×8	
Grid: C2.2:1.1	27.30K	7'	(0x10	
Grid: B1: 1.1	24.91 K	7′	6×10	
Grid:DI:H.I	24.91 K	7'	6×10	
6nd: D1.6: H.1	22.46k	7′	6×10	
Gnol: CZ:41.1	10.86K	7'	6x6	
GHd: CZ3:4.1	12.39 K	7′	6×6	
Grid: B1:41.1	24.91K	7'	6×10	
,	4 .			
	8			
,	#			

®	JOB TITLE Meehan	Cabin	BY DSM	DATE OI	2018
CALDER RICHARDS CONSULTING ENGINEERS		70	CHECKED	SHEET	OF
2 3 4 5 6	7 8 9 10 11 12		19 20 21 22 23		27 78
* For ease of a	lesign, column	loads were de	onservative	2 and	
peeds to be	revised for s	ome column	s		
3					
5 Grid C2.2:1					
6 ROOF = 14.8	$K = 1.4 \times DL + 13.$	HKSL			
Floor = 10.1	K = 2.3 × DL + 7.	8 LL			
8 DL+4L=	11.5*				
DL+SL=					
DL+0.75LI	+0.755L = 19.61	0000	8x0		
2					
orid B1:1.1					
Roof = 7.7K	= 0.8 kDL + 6.9 Kg	SL			
5 Foor = 11.0K	= 2.8 K DL+ 8.2 K				
6 DL+LL= 11.	8×				
DL+SL = 10					
DL+075 LL	+ 0755L=14.9K	<u>.°. (</u>	$\times \mathcal{Q}$		
0					
, Grid D1.6:4,1					
2 Roof = 7.7k=	0.8 KDL + 69 K SL				
3 Floor = H.7 "	=1.1 × DL + 3.6 × LL				
DL+ LL= 5.0					
5 DL+SL = 8.	8 ^k				
DL+0.75LL	+ 0.75SL= 9.8K	** O	×Φ		
8					
9					
0					
1					
2					
3					

3 x 6 STUDS 1/5.5" (strong axis)

STUD WALL BEARING CAPACITIES OF DF-South #2 ALLOWABLE STRESSES FROM 2005 NDS; NORMAL TEMP., MOISTURE & NO INCISIONS ALLOWABLE LOADS FROM 2012 NDS, SECTION 3.7 - COLUMN DESIGN

Fce = $(0.822\text{Emin'})(E)/(I/d)^2$ Cp = (1+(Fce/Fc*))/(2c) - $[((1+(\text{Fce/Fc*}))/(2c))^2$ - (Fce/Fc*)/c]^0.5 Pa = (Cp)(Fc*)(width)(depth)

width =	2.5 inches
depth =	5.5 inches
Fcperp =	520 psi
Fc =	1350 psi
E=	1200000 psi
$C_{\rm F}$ =	1.1
$Fc^* = Fc * C_F =$	1485 psi
C=	0.8 for sawn lumber
Emin' =	440000 psi
	1 0000

				1 STUD
L(unb)	I/d	Fce	Ср	Pa
(ft)		(psi)		(lbs)
1	2.18	75977.92	0.9960	20338
2	4.36	18994.48	0.9836	20084
3	6.55	8441.99	0.9609	19621
4	8.73	4748.62	0.9248	18882
5	10.91	3039.12	0.8709	17784
6	13.09	2110.50	0.7967	16268
7	15.27	1550.57	0.7057	14410
8	17.45	1187.15	0.6093	12442
9	19.64	938.00	0.5194	10605
10	21.82	759.78	0.4417	9020
11	24.00	627.92	0.3772	7701
12	26.18	527.62	0.3242	6620
13	28.36	449.57	0.2808	5734
14	30.55	387.64	0.2451	5005
15	32.73	337.68	0.2155	4401
16	34.91	296.79	0.1909	3897
17	37.09	262.90	0.1701	3473
18	39.27	234.50	0.1524	3112
19	41.45	210.47	0.1374	2805
20	43.64	189.94	0.1244	2540
21	45.82	172.29	0.1131	2310
22	48.00	156.98	0.1033	2110
22.9167	50.00	144.67	0.0954	1948

max. load if stud(s) bears on wood = Fcperp*Cb*AREA =

8938	lbs 1 stud
16088	lbs 2 stud
23230	lbs 3 stud

6 x 6 POST 1/5.5"

POST BEARING CAPACITIES OF Doug-Fir South #1 ALLOWABLE STRESSES FROM 2005 NDS; NORMAL TEMP., MOISTURE & NO INCISIONS ALLOWABLE LOADS FROM 2005 NDS, SECTION 3.7 - COLUMN DESIGN

Fce = $(.822)(Emin')/(I/d)^2$ Cp = $(1+(Fce/Fc^*))/2c - [((1+(Fce/Fc^*))/2c)^2 - (Fce/Fc^*)/c]^0.5$ Pa = $(Cp)(Fc^*)(width)(depth)$

width =	5.5	inches
depth =	5.5	inches
Fcperp =	520	psi
Fc =	925	psi
E =	1200000	psi
$C_{\rm F}$ =	1	
$Fc^* = Fc * C_F =$	925	psi
c=	0.8	for sawn lumber
Fmin' =	440000	psi

I/d Fce Cp Pa

L(unb) (ft)	l/d	Fce (psi)	Ср	Pa (lbs)
1	2.18	75977.92	0.9975	27913
2	4.36	18994.48	0.9900	27701
3	6.55	8441.99	0.9766	27326
4	8.73	4748.62	0.9562	26756
5	10.91	3039.12	0.9271	25942
6	13.09	2110.50	0.8871	24823
7	15.27	1550.57	0.8345	23351
8	17.45	1187.15	0.7695	21532
9	19.64	938.00	0.6958	19469
10	21.82	759.78	0.6196	17336
11	24.00	627.92	0.5468	15301
12	26.18	527.62	0.4812	13463
13	28.36	449.57	0.4237	11856
14	30.55	387.64	0.3743	10473
15	32.73	337.68	0.3320	9291
16	34.91	296.79	0.2960	8282
17	37.09	262.90	0.2651	7418
. 18	39.27	234.50	0.2386	6675
19	41.45	210.47	0.2157	6035
20	43.64	189.94	0.1958	5479
21	45.82	172.29	0.1785	4995
22	48.00	156.98	0.1633	4570
22.917	50.00	144.67	0.1510	4226

max. load if post bears on wood = Fcperp*Cb*AREA =

Controls for all heights in this home.

6 x 8 POST 1/5.5" (weak axis)

POST BEARING CAPACITIES OF Doug-Fir South #1 ALLOWABLE STRESSES FROM 2005 NDS; NORMAL TEMP., MOISTURE & NO INCISIONS ALLOWABLE LOADS FROM 2005 NDS, SECTION 3.7 - COLUMN DESIGN

Fce = $(.822)(Emin')/(I/d)^2$ Cp = $(1+(Fce/Fc^*))/2c - [((1+(Fce/Fc^*))/2c)^2 - (Fce/Fc^*)/c]^0.5$ Pa = $(Cp)(Fc^*)(width)(depth)$

width =	7.5	inches
depth =	5.5	inches
Fcperp =	520	psi
Fc =	925	psi
E =	1200000	psi
$C_F =$	1	
$Fc^* = Fc * C_F =$	925	psi
c=	0.8	for sawn lumber
Emin' =	440000	psi

L(unb)	I/d	Fce (psi)	Ср	Pa (lbs)
(ft)	2.18	75977.92	0.9975	38063
2	4.36	18994.48	0.9900	37774
3		8441.99	0.9766	37263
	6.55		0.9760	36486
4	8.73	4748.62		
5	10.91	3039.12	0.9271	35375
6	13.09	2110.50	0.8871	33849
7	15.27	1550.57	0.8345	31842
8	17.45	1187.15	0.7695	29362
9	19.64	938.00	0.6958	26548
10	21.82	759.78	0.6196	23641
11	24.00	627.92	0.5468	20866
12	26.18	527.62	0.4812	18359
13	28.36	449.57	0.4237	16167
14	30.55	387.64	0.3743	14282
15	32.73	337.68	0.3320	12670
16	34.91	296.79	0.2960	11293
17	37.09	262.90	0.2651	10115
18	39.27	234.50	0.2386	9103
19	41.45	210.47	0.2157	8229
20	43.64	189.94	0.1958	7471
21	45.82	172.29	0.1785	6811
22	48.00	156.98	0.1633	6232
22.917	50.00	144.67	0.1510	5763

max. load if post bears on wood = Fcperp*Cb*AREA =

Controls for all heights in this home

6 x 10 POST 1/5.5" Weak Axis

POST BEARING CAPACITIES OF Doug-Fir South #1 ALLOWABLE STRESSES FROM 2005 NDS; NORMAL TEMP., MOISTURE & NO INCISIONS ALLOWABLE LOADS FROM 2005 NDS, SECTION 3.7 - COLUMN DESIGN

width =	9.5	inches
depth =	5.5	inches
Fcperp =	520	psi
Fc =	925	psi
E =	1200000	psi
$C_F =$	1	
$Fc^* = Fc * C_F =$	925	psi
C=	8.0	for sawn lumber
Emin' =	440000	psi

L(unb) (ft)	I/d	Fce (psi)	Ср	Pa (lbs)
1	2.18	75977.92	0.9975	48213
2	4.36	18994.48	0.9900	47847
3	6.55	8441.99	0.9766	47200
4	8.73	4748.62	0.9562	46215
5	10.91	3039.12	0.9271	44808
6	13.09	2110.50	0.8871	42876
7	15.27	1550.57	0.8345	40334
8	17.45	1187.15	0.7695	37192
9	19.64	938.00	0.6958	33628
10	21.82	759.78	0.6196	29945
11	24.00	627.92	0.5468	26430
12	26.18	527.62	0.4812	23255
13	28.36	449.57	0.4237	20479
14	30.55	387.64	0.3743	18090
15	32.73	337.68	0.3320	16048
16	34.91	296.79	0.2960	14305
17	37.09	262.90	0.2651	12812
18	39.27	234.50	0.2386	11530
19	41.45	210.47	0.2157	10424
20	43.64	189.94	0.1958	9464
21	45.82	172.29	0.1785	8627
22	48.00	156.98	0.1633	7894
23	50.18	143.63	0.1500	7249
24	52.36	131.91	0.1382	6678
25	54.55	121.56	0.1277	6171
26	56.73	112.39	0.1183	5719
27	58.91	104.22	0.1100	5314

max. load if post bears on wood = Fcperp*Cb*AREA =

27170 lbs
CONTROLS

7.88 26.0 1.82 LRFD Pn/Dc Och HSS5×5× $F_y = 46 \text{ ksi}$ 0.465 28.4 84.1 ASD LRFD Pn/Dc ocPn 2.46 11.8 2.19 0.116 9.01 18.2 16.9 15.7 14.6 1/8 19.7 ASD Axial Compression, kips $^{\circ}$ Shape is slender for compression with $F_{y} = 46$ ksi. Available Strength in LRFD Pn/12c ocPn 3.63 17.0 2.16 0.174 3/16 13.3 58.8 Table 4-4 (continued) 94.9 50.2 43.3 Square HSS 77.0 70.1 64.2 58.9 54.3 98.9 91.4 84.1 HSS51/2×51/2× Pn/Qc pcPn LRFD Properties 4.77 21.7 2.13 0.233 17.3 31.0 28.8 1/4 ASD Pn/Oc pcPn LRFD 168 158 148 5.85 25.9 2.11 5/16 0.291 21.2 43.5 40.2 ASD 69.1 64.1 59.6 55.5 96.5 74.7 LRFD OB O - W Pn/Oc OcPn 263 255 247 247 238 228 6.88 29.7 2.08 LRFD 0.349 24.9 3/8 99.2 ASD 190 HSS51/2-HSS5 Ca + C A_g , in.² $I_x = I_y$, in.⁴ $r_x = r_y$, in. ASD fdesign, in. Design Shape lb/ft Effective length, KL (ft), with respect to least radius of gyration, $t_{
m y}$

Available Strength in Axial Compression, kips

Square HSS HSS5-

oliapo	3/8	8,	2	5/16	1,	1/4	3/16	16	-	3°
fdesign, in.	0.349	49	0.291	91	0.233	33	0.174	74	0.	16
lb/ft	22	22.4	19.1	1	15	15.6	12	12.0	80	91
6.5	P_n/Ω_c	$\phi_c P_n$	P_{p}/Ω_{c}	$\phi_{c}P_{l}$						
nesigni	ASD	LRFD	ASD	LRFD	ASD	CHRFD	ASD	LRFD	ASD	LRF
0	170	256	145	218	118	178	90.3	136	56.4	84.7
	170	255	144	217	118	178	90.1	135	56.4	84.
2	168	253	143	215	117	176	89.4	134	56.1	84
3	166	250	141	213	116	174	88.3	133	55.7	83
4	163	245	139	209	114	171	86.8	130	55.1	82.
ις	159	239	135	204	ĮĮ.	167	84.8	127	54.3	57.
9	154	232	132	198	108	162	82.5	124	53.4	80.3
7	149	223	127	191	104	157	79.8	120	52.3	78.
8	143	214	122	183	100	151	6.97	1.16	51.0	76.
6	136	204	117	175	95.9	144	73.7	111	40.5	74.
10	129	194	Ŧ	167	91.3	137	70.2	106	47.8	7.
H.	122	183	105	157	86.5	130	9.99	100	45.7	
12	114	172	98.5	148	81.4	122	62.8	94.4	43.2	64.
13	107	1111	92.1	138	76.3	115	59.0	88.7	(40.6	.1.9
14	98.9	/2	85.6	129	71.1	107	55.1	82.8	38.0	57.
15	91.3	137	79.2	119	0.99	99.2	51.2	77.0	35.4	53.7
16	83.8	126	72.9	110	6.09	91.5	47.4	71.2	32.8	49.
17	76.4	1.15	2.99	100	55.9	84.0	43.6	65.5	30.3	45.
18	69.4	104	60.7	91.3	51.0	7.97	39.9	0.09	27.8	41.1
19	62.5	93.9	54.9	82.5	46.3	9.69	36.4	54.6	25.4	38.
20	56.4	84.8	49.6	74.5	41.8	62.8	32.9	49.4	2.3.0	34.(
21	51.2	76.9	44.9	9.79	37.9	57.0	29.8	44.8	20.9	31.
22	46.6	70.0	41.0	61.5	34.5	51.9	27.2	40.8	19.0	28.
23	42.6	64.1	37.5	56.3	31.6	47.5	24.9	37.4	17.4	26.7
24	39.2	58.9	34.4	51.7	29.0	43.6	22.8	34.3	16.0	24.
25	36.1	54.2	31.7	47.7	26.7	40.2	21.0	31.6	1.1.7	22.7
26	33.4	50.2		44.1	24.7	37.2	19.5	29.2	13.6	20.0
27	30.9	46.5	-	40.9	22.9	34.5	18.0	27.1	12.6	19.0
28	28.8	43.2	25.3	38.0	21.3	32.1	16.8	25.2	11.8	17.7

2 23 8 30 1 39

3.28 12.6 1.96

4.30 16.0 1.93

5.26 19.0 1.90

6.18 21.7 1.87

 $x = I_{y}$ in.⁴

Properties

Note: Heavy line indicates KL/ry equal to or greater than 2000.

 $\phi_c = 0.90$

 $\Omega_c = 1.67$

LRFD

 $f_x = f_y$, in.

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/27/18 13:01:57

Steel Code: AISC 360-10 ASD

Story level 2nd, Q	Column Line D-4,	Column # 1
--------------------	------------------	------------

Fy (ksi) = 50.00 Orientation (deg.) = 90.0 Column Size

= W10X33

INPUT DESIGN PARAMETERS:

		X-AXIS	Y-AXIS
Lu (ft)		9.00	9.00
K		1	1
Braced Against Joint Translat	ion	Yes	Yes
Column Eccentricity (in)	Top	7.36	6.48
* * *	Bottom	0.00	0.00

CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 1:

					Dead	Live	K001	
Axial (kip)	P				2.82	0.00	12.66	
DEMAND	CAPAC	TTY RATIO): (DL + RF)					
Pa (kip)	=	15.48	Pnx/1.67 (kip)	=	276.98	Pa/(Pnx/1.67)	=	0.056
			Pny/1.67 (kip)	=	231.85	Pa/(Pny/1.67)	=	0.067
			Pn/1.67 (kip)	=	231.85	Pa/(Pn/1.67)	=	0.067

CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 1:

		Dead	Live	Roof
Axial (kip)		2.82	0.00	12.66
Moments	Top Mx (kip-ft)	0.52	0.00	2.30
	My (kip-ft)	1.06	0.00	4.82
	Bot Mx (kip-ft)	0.00	0.00	0.00
	My (kip-ft)	0.00	0.00	0.00

Single curvature about X-Axis Single curvature about Y-Axis

CALCULATED PARAMETERS: (DL + RF)

Pa (kip)	=	15.48	Pn/1.67 (kip)	=	231.85
Max (kip-ft)	=	2.82	Mnx/1.67 (kip-ft)	=	96.81
May (kip-ft)	=	5.88	Mny/1.67 (kip-ft)	=	34.93
Rm		1.00			
Cbx	=	1.67			
Cmx	=	0.60	Cmy	=	0.60
Pex (kip)	=	4196.10	Pey (kip)	=	898.11
R1v	===	1.00	Blv		1.00

INTERACTION EQUATION

Pa/(Pn/1.67)) = 0.067

Eq H1-1b: 0.033 + 0.029 + 0.168 = 0.231

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 2/2 02/27/18 13:02:15

Steel Code: AISC 360-10 ASD

Roof

Story level 1st, Co	lumn Line A-1,	Column # 4
---------------------	----------------	------------

Fy (ksi)

Orientation (deg.)

= 50.00= 90.0 Column Size

= W10X49

Live

INPUT DESIGN PARAMETERS:

		X-AXIS	Y-AXIS
Lu (ft)		10.67	10.67
К		1	1
Braced Against Joint Translat	tion	Yes	Yes
Column Eccentricity (in)	Тор	7.50	7.50
→ X ≥	Bottom	0.00	0.00

CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 1:

Axial (kip)				<u>-</u>	7.82	0.00	26.22	
DEMAND	CAPA	CITY RATIO	: (DL + RF)					
Pa (kip)	=	34.05	Pnx/1.67 (kip)	=	404.63	Pa/(Pnx/1.67)	=	0.084
			Pny/1.67 (kip)	=	358.39	Pa/(Pny/1.67)	=	0.095
			Pn/1.67 (kip)		358.39	Pa/(Pn/1.67)	=	0.095

Dead

CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 1:

		Dead	Live	K001
Axial (kip)		7.82	0.00	26.22
Moments	Top Mx (kip-ft)	-0.30	0.00	-1.34
	My (kip-ft)		0.00	-1.85
	Bot Mx (kip-ft)	0.00	0.00	0.00
	My (kip-ft)	0.00	0.00	0.00

Single curvature about X-Axis Single curvature about Y-Axis

CALCULATED PARAMETERS: (DL + RF)

CHILOUDIAL		**********	()		
Pa (kip)	=	34.05	Pn/1.67 (kip)	=	358.39
Max (kip-ft)	=	-1.64	Mnx/1.67 (kip	-ft) =	150.70
May (kip-ft)	=	-2.80	Mny/1.67 (kip	-ft) =	70.61
Rm	=	1.00			
Cbx	=	1.67			
Cmx	=	0.60	Cmy	=	0.60
Pex (kip)	=	4748.71	Pey (kip)	=	1630.62
R1v	=	1.00	B1v	=	1.00

INTERACTION EQUATION

Pa/(Pn/1.67)) = 0.095

Eq H1-1b: 0.047 + 0.011 + 0.040 = 0.098

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/27/18 13:02:39

Steel Code: AISC 360-10 ASD

Story level 2nd,	Column Line D-1,	Column # 4
------------------	------------------	------------

Fy (ksi) = 50.00 Orientation (deg.) = 90.0 Column Size

= W10X33

INPUT DESIGN PARAMETERS:

		X-Axis	Y-Axis
Lu (ft)		9.00	9.00
K		1	1
Braced Against Joint Transla	tion	Yes	Yes
Column Eccentricity (in)	Тор	7.36	6.48
	Bottom	0.00	0.00

CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 1:

Axial (kip))			_	2.82	0.00	12.66	
DEMAND	CAPAC	TTY RATIO	$\mathbf{D:} (\mathbf{DL} + \mathbf{RF})$					
Pa (kip)	=	15.48	Pnx/1.67 (kip)	=	276.98	Pa/(Pnx/1.67)	=	0.056
			Pny/1.67 (kip)	=	231.85	Pa/(Pny/1.67)	=	0.067
			Pn/1.67 (kip)	=	231.85	Pa/(Pn/1.67)	=	0.067

CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 1:

		Dead	Live	Roof
Axial (kip)		2.82	0.00	12.66
Moments	Top Mx (kip-ft)	-0.52	0.00	-2.30
	My (kip-ft)	1.06	0.00	4.82
	Bot Mx (kip-ft)		0.00	-0.00
	My (kip-ft)	0.00	0.00	0.00

Single curvature about X-Axis Single curvature about Y-Axis

CALCULATED PARAMETERS: (DL + RF)

CHECOLHIL	I I I I I I I	TAITE LEILE.	(DL · ICI)		
Pa (kip)	=	15.48	Pn/1.67 (kip)	=	231.85
Max (kip-ft)	=	-2.82	Mnx/1.67 (kip-ft)	=	96.81
May (kip-ft)		5.88	Mny/1.67 (kip-ft)	=	34.93
Rm	=	1.00			
Cbx	=	1.67			
Cmx	-	0.60	Cmy	=	0.60
Pex (kip)	=	4196.10	Pey (kip)	=	898.11
B1x	=	1.00	Bly	=	1.00

INTERACTION EQUATION

Pa/(Pn/1.67)) = 0.067

Eq H1-1b: 0.033 + 0.029 + 0.168 = 0.231

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 2/2 02/27/18 13:01:35

Roof

Steel Code: AISC 360-10 ASD

Story level 1st, Column Line A-4, Column # 5

Fy (ksi)
Orientation (deg.)

= 50.00= 90.0 Column Size

= W10X49

Live

INPUT DESIGN PARAMETERS:

		X-Axis	Y-Axis
Lu (ft)		10.67	10.67
K		1	1
Braced Against Joint Transla	tion	Yes	Yes
Column Eccentricity (in)	Тор	7.50	7.50
• • •	Bottom	0.00	0.00

CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 1:

					Detta	Erre	11001	
Axial (kip)				<u>=</u> :	7.77	0.00	26.22	
DEMAND	CAPAC	CITY RATIO:	(DL + RF)					
Pa (kip)	=	33.99	Pnx/1.67 (kip)	=	404.63	Pa/(Pnx/1.67)	=	0.084
			Pny/1.67 (kip)	=	358.39	Pa/(Pny/1.67)	=	0.095
			Pn/1.67 (kip)	=	358.39	Pa/(Pn/1.67)	=	0.095

Dead

CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 1:

		Dead	Live	K001
Axial (kip)		7.77	0.00	26.22
Moments	Top Mx (kip-ft)	0.30	0.00	1.34
	My (kip-ft)		0.00	-1.85
	Bot Mx (kip-ft)	0.00	0.00	0.00
	My (kip-ft)	722 (2202)	0.00	0.00

Single curvature about X-Axis Single curvature about Y-Axis

CALCIILATED PARAMETERS: (DL+RF)

CALCULAI.	LD PAK	AMETERS:	(DL T Kr)		
Pa (kip)	=	33.99	Pn/1.67 (kip)	=	358.39
Max (kip-ft)	=	1.64	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	-2.79	Mny/1.67 (kip-ft)	=	70.61
Rm	=	1.00			
Cbx	=	1.67			
Cmx	=	0.60	Cmy	=	0.60
Pex (kip)	=	4748.71	Pey (kip)	=	1630.62
Blx	=	1.00	B1y	=	1.00

INTERACTION EQUATION

Pa/(Pn/1.67)) = 0.095

Eq H1-1b: 0.047 + 0.011 + 0.039 = 0.098

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/27/18 13:02:15

Steel Code: AISC 360-10 ASD

Story level 2nd, Column Line A-1, Column #7

Fy (ksi) = 50.00Orientation (deg.) = 90.0 Column Size

= W10X49

INPUT DESIGN PARAMETERS:

		A-AXIS	Y-AXIS
Lu (ft)		9.00	9.00
K		1	1
Braced Against Joint Transla	tion	Yes	Yes
Column Eccentricity (in)	Тор	7.50	7.50
	Bottom	7.50	7.50

CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 1:

					Dead	Live	Roof	
Axial (kip)	-				3.46	0.00	15.06	
DEMAND	CAPAC	CITY RATIO	: (DL + RF)					
Pa (kip)	=	18.51	Pnx/1.67 (kip)	=	412.10	Pa/(Pnx/1.67)	=	0.045
30 3 5			Pny/1.67 (kip)	=	378.02	Pa/(Pny/1.67)	=	0.049
			Pn/1.67 (kip)	=	378.02	Pa/(Pn/1.67)	=	0.049

CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 1:

		Dead	Live	Roof
Axial (kip)		3.46	0.00	15.06
Moments	Top Mx (kip-ft)	-0.53	0.00	-2.17
	My (kip-ft)	-1.63	0.00	-7.24
	Bot Mx (kip-ft)	-0.36	0.00	-1.59
	My (kip-ft)	-1.12	0.00	-2.20

Reverse curvature about X-Axis

Reverse curvature about Y-Axis

CALCULATED PARAMETERS: (DL + RF)

			1		
Pa (kip)	==	18.51	Pn/1.67 (kip)	=	378.02
Max (kip-ft)	=	-2.70	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	-8.87	Mny/1.67 (kip-ft)	=	70.61
Rm	=	1.00			
Cbx	=	2.22			
Cmx	=	0.31	Cmy	===	0.45
Pex (kip)	=	6674.51	Pey (kip)	=	2291.91
B1x	=	1.00	B1v	=	1.00

INTERACTION EQUATION

Pa/(Pn/1.67)) = 0.049

Eq H1-1b: 0.024 + 0.018 + 0.126 = 0.168

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/27/18 13:01:35

Roof

Live

Steel Code: AISC 360-10 ASD

Story level 2nd,	Column Line A-4,	Column # 10
------------------	------------------	-------------

Fy (ksi)	= 50.00	Column Size	= W10X49

Orientation (deg.) = 90.0

INPUT DESIGN PARAMETERS:

		X-Axis	Y-Axis
Lu (ft)		9.00	9.00
K	,	1	1
Braced Against Joint Translati	on	Yes	Yes
Column Eccentricity (in)	Тор	7.50	7.50
	Bottom	7.50	7.50

CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 1:

Axial (kip)	Vii.				3.46	0.00	15.06	
2 2 2		TTV DATIO): (DL + RF)					
Pa (kip)	= =	18.51	Pnx/1.67 (kip)	=	412.10	Pa/(Pnx/1.67)	=	0.045
(-1)			Pny/1.67 (kip)	=	378.02	Pa/(Pny/1.67)	=	0.049
			Pn/1.67 (kip)		378.02	Pa/(Pn/1.67)	=	0.049

Dead

CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 1:

		Dead	Live	K001
Axial (kip)		3.46	0.00	15.06
Moments	Top Mx (kip-ft)	0.53	0.00	2.17
	My (kip-ft)		0.00	-7.24
	Bot Mx (kip-ft)	0.36	0.00	1.59
	My (kip-ft)		0.00	-2.20

Reverse curvature about X-Axis Reverse curvature about Y-Axis

CALCILLATED PARAMETERS: (DL + RF)

CALCULATEL	IA	WHILL I FIND.	(DL KL)		
Pa (kip)	=	18.51	Pn/1.67 (kip)	=	378.02
Max (kip-ft)	=	2.70	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	-8.87	Mny/1.67 (kip-ft)	=	70.61
Rm	=	1.00			
Cbx	=	2.22			
Cmx	=	0.31	Cmy	=	0.45
Pex (kip)	=	6674.51	Pey (kip)	=)	2291.91
B1x	=	1.00	Bly	=	1.00

INTERACTION EQUATION

Pa/(Pn/1.67)) = 0.049

Eq H1-1b: 0.024 + 0.018 + 0.126 = 0.168

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/27/18 13:01:12 Steel Code: AISC 360-10 ASD

Story level 2nd, Column Line B-2, Column # 13

Fy (ksi) = 50.00 Column Size = W10X33

Orientation (deg.) = 90.0

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu (ft)	9.00	9.00
К	1	1
Braced Against Joint Translation	Yes	Yes
Column Eccentricity (in) Top _	7.36	6.48
Bottom	7.36	6.48

CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 1:

Axial (kip)					6.84	0.00	32.21	
): (DL + RF)					
Pa (kip)	=	39.05	Pnx/1.67 (kip)	=:	276.98	Pa/(Pnx/1.67)	=	0.141
1,			Pny/1.67 (kip)	=	231.85	Pa/(Pny/1.67)	=	0.168
			Pn/1.67 (kip)	=	231.85	Pa/(Pn/1.67)	=	0.168

CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 3:

		Dead	Live	Roof
Axial (kip)		6.84	0.00	32.21
Moments	Top Mx (kip-ft)	0.31	0.00	1.43
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	My (kip-ft)	051 (5984)	0.00	10.01
	Bot Mx (kip-ft)		-13.70	0.00
	My (kip-ft)	1.49	0.65	0.86

Single curvature about X-Axis

Reverse curvature about Y-Axis

CALCULATED PARAMETERS: (DL + 0.75LL + 0.75RF)

Pa (kip)	=	30.99	Pn/1.67 (kip)		231.85
Max (kip-ft)	=	-12.98	Mnx/1.67 (kip-ft)	=	96.81
May (kip-ft)	=	9.69	Mny/1.67 (kip-ft)	=	34.93
Rm	=	1.00			
Cbx	=	1.56			
Cmx	=	0.64	Cmy	=	0.49
Pex (kip)	=	4196.10	Pey (kip)	=	898.11
B1x	=	1.00	Bly	=	1.00

INTERACTION EQUATION

Pa/(Pn/1.67)) = 0.134

Eq H1-1b: 0.067 + 0.134 + 0.277 = 0.478

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 2/2

02/27/18 13:01:12

Steel Code: AISC 360-10 ASD

Roof

Story level 1st, Column Line B-2, Column # 13

Fy (ksi) Orientation (deg.) = 50.00= 90.0 Column Size

= W10X33

Live

INPUT DESIGN PARAMETERS:

		X-Axis	Y-Axis
Lu (ft)		10.67	10.67
K		1	1
Braced Against Joint Translation	on	Yes	Yes
Column Eccentricity (in)	Top	7.36	6.48
• ,	Bottom	0.00	0.00

CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 1:

Axial (kip)					30.52	52.94	36.60	
DEMAND	CAPA	CITY RATIO:	(DL + 0.75LL +	- 0.75RF)			
Pa (kip)	=	97.68	Pnx/1.67 (kip)	=	271.59	Pa/(Pnx/1.67)	=	0.360
			Pny/1.67 (kip)	=	211.52	Pa/(Pny/1.67)	=	0.462
			Pn/1.67 (kip)	=	211.52	Pa/(Pn/1.67)	=	0.462

Dead

CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 1:

		Dead	Live	Roof
Axial (kip)		30.52	52.94	36.60
Moments	Top Mx (kip-ft)	-2.28	-8.87	0.41
	My (kip-ft)	1.26	0.55	0.72
	Bot Mx (kip-ft)	0.00	0.00	0.00
	My (kip-ft)	0.00	0.00	0.00

Single curvature about X-Axis Single curvature about Y-Axis

CALCULATED PARAMETERS: (DL + 0.75LL + 0.75RF)

CHICOLINA		I ALIAM A LIZEN	(22 022		
Pa (kip)	=	97.68	Pn/1.67 (kip)	=	211.52
Max (kip-ft)	=	-8.63	Mnx/1.67 (kip-ft)	=	96.81
May (kip-ft)	=	2.22	Mny/1.67 (kip-ft)	=	34.93
Rm	=	1.00			
Cbx	=	1.67			
Cmx	=	0.60	Cmy	=	0.60
Pex (kip)	=	2985.40	Pey (kip)	=	638.98
B1x	=	1.00	Bly	=	1.00

INTERACTION EQUATION

Pa/(Pn/1.67)) = 0.462

Eq H1-1a: 0.462 + 0.079 + 0.056 = 0.597

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/27/18 13:00:46

Steel Code: AISC 360-10 ASD

Story level 2nd, Column Line B-3, Column # 14

Fy (ksi) = 50.00 Column Size = W10X33

Orientation (deg.) = 90.0

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu (ft)	9.00	9.00
K	1	1
Braced Against Joint Translation	Yes	Yes
Column Eccentricity (in) Top _	7.36	6.48
Bottom	7.36	6.48

CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 1:

					Dead	Live	11001	
Axial (kip)	192			_	6.84	0.00	32.21	
DEMAND	CAPAC	CITY RATIO:	(DL + RF)					
Pa (kip)	=	39.05	Pnx/1.67 (kip)	:==	276.98	Pa/(Pnx/1.67)	=	0.141
			Pny/1.67 (kip)	=	231.85	Pa/(Pny/1.67)	=	0.168
			Pn/1.67 (kip)	=	231.85	Pa/(Pn/1.67)	=	0.168

CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 2:

		Dead	Live	Roof
Axial (kip)		6.84	0.00	32.21
Moments	Top Mx (kip-ft)	-0.31	0.00	-1.43
	My (kip-ft)	2.19	0.00	10.01
	Bot Mx (kip-ft)	2.47	13.58	0.00
	My (kip-ft)	1.49	0.65	0.86

Single curvature about X-Axis

Reverse curvature about Y-Axis

CALCULATED PARAMETERS: (DL + 0.75LL + 0.75RF)

CALCULATI	ID I TILL	AIIII I LIND.	(DII (0.75III (0.75III)		
Pa (kip)	=	30.99	Pn/1.67 (kip)	=	231.85
Max (kip-ft)	=	12.65	Mnx/1.67 (kip-ft)	=	96.81
May (kip-ft)	s =	9.69	Mny/1.67 (kip-ft)	\equiv	34.93
Rm	=	1.00			
Cbx	=	1.55			
Cmx		0.64	Cmy	=	0.49
Pex (kip)	=	4196.10	Pey (kip)	=	898.11
R1v	=	1.00	R1v	=	1.00

INTERACTION EQUATION

Pa/(Pn/1.67)) = 0.134

Eq H1-1b: 0.067 + 0.131 + 0.277 = 0.475

RAM Steel 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 2/2

02/27/18 13:00:46

Steel Code: AISC 360-10 ASD

Roof

Story level 1st,	Column Line B-3,	Column # 14
------------------	------------------	-------------

Fy (ksi) = 50.00

Orientation (deg.) = 90.0

Column Size = W10X33

Dead

Live

INPUT DESIGN PARAMETERS:

		X-Axis	Y-AXIS
Lu (ft)		10.67	10.67
K		1	1
Braced Against Joint Translation _		Yes	Yes
Column Eccentricity (in)	Гор	7.36	6.48
	Bottom	0.00	0.00

CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 1:

Axial (kip)					30.26		52.59	36.60	
DEMAND	CAPA	CITY RATIO:	(DL + 0.75LL)	+ 0.75RF)					
Pa (kip)	=	97.16	Pnx/1.67 (kip)	===0	271.59	38	Pa/(Pnx/1.67)	=	0.358
			Pny/1.67 (kip)	=	211.52		Pa/(Pny/1.67)	=	0.459
			Pn/1.67 (kip)	=	211.52		Pa/(Pn/1.67)	=	0.459

CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 1:

		Dead	Live	Roof
Axial (kip)		30.26	52.59	36.60
Moments	Top Mx (kip-ft)	2.08	8.76	-0.41
	My (kip-ft)	1.25	0.55	0.72
	Bot Mx (kip-ft)		0.00	0.00
	My (kip-ft)	0.00	0.00	0.00

Single curvature about X-Axis

Single curvature about Y-Axis

CALCULATED PARAMETERS: (DL + 0.75LL + 0.75RF)

Pa (kip)	=	97.16	Pn/1.67 (Kip)	=	211.52
Max (kip-ft)	=	8.35	Mnx/1.67 (kip-ft)	=	96.81
May (kip-ft)		2.21	Mny/1.67 (kip-ft)	=	34.93
Rm	=	1.00			
Cbx	=	1.67			
Cmx	=	0.60	Cmy	=	0.60
Pex (kip)		2985.40	Pey (kip)	=	638.98
B1x	=	1.00	Bly	=	1.00

INTERACTION EQUATION

Pa/(Pn/1.67)) = 0.459

Eq H1-1a: 0.459 + 0.077 + 0.056 = 0.592

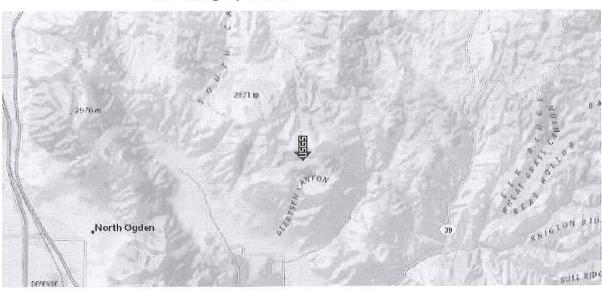
Design Maps Summary Report

User-Specified Input

Report Title Meehan Cabin

Tue February 27, 2018 17:54:36 UTC

Building Code Reference Document 2012/2015 International Building Code


(which utilizes USGS hazard data available in 2008)

Design Maps Summary Report

Site Coordinates 41.3696°N, 111.7579°W

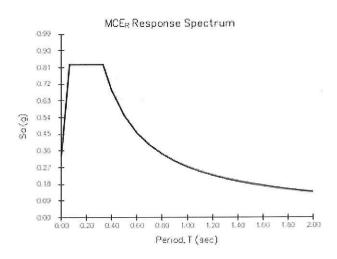
Site Soil Classification Site Class B - "Rock"

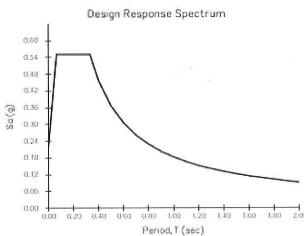
Risk Category I/II/III

USGS-Provided Output

$$S_s = 0.826 g$$

$$S_{MS} = 0.826 g$$


$$S_{DS} = 0.551 g$$


$$S_1 = 0.274 g$$

$$S_{M1} = 0.274 g$$

$$S_{D1} = 0.183 g$$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

®	JOB TITLE Meehan Cabin	BY DSM	DATE 10/	2017
CALDER RICHARDS CONSULTING ENGINEERS	subject Lateral	CHECKED	SHEET	OF
Lateral Loads	7 8 9 10 11 12 13 14 15 16 17	18 19 20 21 22 23	24 25 26	27 28
Seismic:				
$C_S = S_{DS} / (R)$	$= 0.551/(\frac{3.25}{1.0}) = 0.1695$	Csmax = 0.183	= 0.16	l controls
% Snow = 0.20-	0.025 (8.81-5) = 0.30			
Weights:				
	1/x 20psf) + (32/x 42/x 195 psfx 1/2 x 15 psf = 7.76 Kip		Kip	
	Sno (H2'-23.5'x34')x(65+70.2) + 23.5'x34	w Weight = 170	H2 Kin	
	1.67+9/2 × 15 psf = $1.6.9$ 7k ′			
	43'-34'x34'>x65p6f + 34'x34'x		Kip	
, Walls = 136' × 10	.67/2×15 psf + 118/x 6,5/2 x 150 ps	st = 68.41 Kip		
1/- 300 (5 K)	0.161 × 0.7 = 33.88 Kip			
				4
Wind:	cal code requires 115 mph. The rosure C, h=27, 0=0.00°, 2=1	hi	gher load	was
Psao A = 35.7 pof				
P580c = 237 psf	- V			
7	× 35.7 psf × 0.6 = 29.99 psf × 23.7 psf × 0-6 = 19.91 psf			
α = 0,10 × 2H =		1×34'= 3.4' < Co	ntrois	20-27
0,H0×27'=	10.8)×27'= 10.8'		
0.04x24/=	0.96 0.04 $3 \leftarrow Controls$	× 34' = 1.36' = 3'		
4				
5				
5				

®	JOBTITLE Meehan Cabin	BY DSM	DATE 10/2017
CALDER RICHARDS CONSULTING ENGINEERS	SUBJECT Lateral	CHECKED	SHEET OF
1 2 3 4 5 6	8 9 10 11 12 13 14 15 16 17	18 19 20 21 22 23	24 25 26 27 28
2004			
	2 × 19.91 psf) + (6/×9//2 × 29.99 ps	P) = 3.32 Kip	
Vsnort= (21'x9'	12 x 19.91 psf) + (3'x 91/2 x 29.99 ps	f) = 2.29 Kip	
2ND Floor			
Viona = (28 ×(1	0.67+91/2 × 19.91 p=1) + (6' × (10.67	+97/2 × 29.99 DSF)	= 7, 25 Kip
VsHort = (21'x (1	0.67+9) 12 × 19.91 pst> + (3'x (10.67'	+91/2 × 29.99 psf)	
+ (10'x	10.67/2 x 19.91 psf) = 6.06 Kip		
IST FLOOR			
Viona = (28 × 10	.67/2×19.91 psf) + (6×10.6712×29.	99 psf) = 3.93 Kin	>
Vshort = (31/x11	0.67/2×19.91 psf) + (3'×10.67/2×29	199 pst)= 3.77 Ki	P
Z V LONG= 3.3	2+7-25 = 10.57 Kip		
VSUAPT = 27	9+6.06 = 8.35 Kip		
Y SHORT CA	3.30 7.00		
	Salarata () y and die de l'an	in both directi	OMS
	Seismic Governs the design	IN DOWN CITECH	0113
Vertical Distribu	tion of Seismic Loads		
Verified Total De			
.º. See Next S	sheet.		
			==
		3	

Seismic Force Vertical Distribution

Project Designer Date	1	Meehan Cabin DSM 10/5/2017					
	SDS = SD1 = S1 = I = R = Ct = Hn = x =		0.551 0.183 0.274 1.00 3.3 0.020 45.00 0.75	(ft)			
	T = k= Cs =	Ct * Hn^x = SDS/(R/I) = SD1/(T(R/I)) = 0.044*I*SDS = 0.5*S1/(R/I) =	0.024	sec need not exceed not less than not less than			
	Cs =		0.1620				
	Vbase =	Cs * Wtot * 0.7 =	34.64	(kips) ASD			
	Level	Wx (kips)	Hx (ft)	Wx * Hx^k (kip-feet)		Story Force Fx ASD (kips)	Story Shear Vx ASD (kips)
	Roof 2nd	113.20 192.17	19.67 10.67	2226.6 2050.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5 0.48 0 0.00	8 16.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 18.03 34.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	Totals	305.37	9	4277.1	1 1.0	0 34.64	
Diaphrag	gm Force Level	Fpx Formula Wx*sum(F)/sum(W) ASD (kips)	Fpx max 0.4*SDS*I*Wx ASD (kips)	Fpx mir 0.2*SDS*I*W ASD (kips	x	Fpx ASD (kips)	
	Roof 2nd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18.03 21.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00	17.46 29.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17.46 21.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00	

(R)	JOBTITLE Mechan Cabin	BY DSM	DATE 10/201-
CONSULTING ENGINEERS	SUBJECT	CHECKED	SHEET OF
1 2 3 4 5 6	7 8 9 10 11 12 13 14 15 16 17	18 19 20 21 22 23	24 25 26 27 28
Lateral System	ns.		
Roof:			
E/W Direct	Tion		
	ar Walls R= 6.5 P		
1/5 10	12 VI ASD X /325 X 1/3 =	1172 Vin ASD	
V = 10.0	$3 \times 10^{\circ} \text{ ASD} \times \left(\frac{3.25}{6.5}\right) \times 1.3 = 1$	LILE KIP NOO	
5.86 Kip-	7.5' 7.5'		
	11' 3 4 11'		
	(2)		
5.86 Kip	7.5′ 7.5′		
	11.72 Kip 11.72 Kip		
V = 5.8	6 Kip/ (7.5+7.5') = 391 PIR <	490 plf	
14.5	1 (1.5 7 7.5)		
	.°. 15/32" u	1 8d @ 3 " O.C.	
		v 2 - 1 -	
N/S Direct	ion		
Cable Ter	ision Braces R= 3.25		
	3 Kip ASD		
V = 1	8.03 Kip/ × 1.3 = 11.72 Kip	ASD	
V ₃₊₁ = 1	$8.03 \text{ Kip/2} \times 1.3 = 11.72 \text{ Kip}$		
			2 - 0

33

Nominal Unit Shear Capacities for Wood-Frame Shear Walls^{1,3,6,7} 4.3A Table

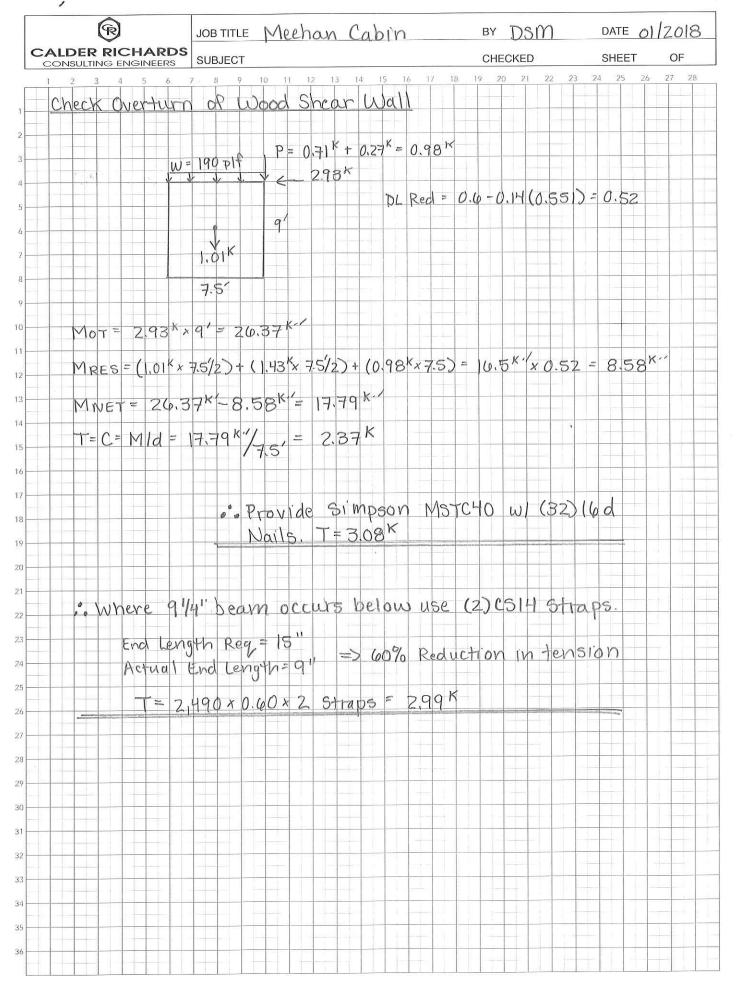
Wood-based Panels⁴

		Minimun	41					U)	A SEISMIC	()						B WIND	9	
Sheathing	Minimum Nominal Panal	Fastener Penetration	Fastener Time & circ				Pane	Panel Edge Fastener Spacing (in.)	astenei	Spacir	(in.)	341			Pan	Panel Edge Fastener Spacing (in.)	Faster g (in.)	ler
Material	Thickness	Memberor	azic w adkı		9			4			3		2		9	4	3	2
	(in.)			s'	<u>ທ</u>		>	ග්	_	s'	ຶ້ນ	s'	U	ຶ້	>3	^	*	*
		(in.)		(plf)	(kips/in.)		(plf)	(kips/in.)		(plf) ((kips/in.)	(plf)	(kip	(kips/in.)	(JId)	(plf)	(plf)	(plf)
			Nail (common or galvanized box)		OSB	PLY		OSB PL	PLY	ő	OSB PLY		OSB	PLY				
Wood	5/16	1-1/4	99	400	13	10	009	18 1	13 78	780 2	23 16	1020	35	22	560	840	1090	1430
Panels -	3/8²	North Control	200 mm	460	19	4	720						43	24	645	1010	1290	1710
Structural 14.5	7/16	1-3/8	P8	510	16	13	790					1340	40	24	715	1105	1415	1875
	15/32			260	14	1.	860	18	14 11	1100 2	24 17	1460	37	23	785	1205	1540	2045
	. 15/32	1-1/2	10d	680	22	16	1020	29 2	20 13	1330 3	6 22	1740	51	28	950	1430	1860	2435
	5/16	1-1/4	- Bd	360	13	9.5	540	18	12 70		24 14	H	37	18	505	755	980	1260
Wood	3/8		}	400	11	8.5	009				13	1020	32	17	260	.840	1090	1430
Structural	3/84			440	17	12	640	25 1					45	20	615	895	1150	1485
Panels -	7/16-	1-3/8	P8	480	15	7	700 25		14	900/2	17		42	21	670	980	1260	1640
Sheathing ^{4,5}	- 15/32			520	13	10	760					1280	39	20	730 /	1065	1370	1790
1	15/32	1-1/2	707	620	22	4	920	30 1		1200 37	19 19	1540	52	23	870	1290	1680	2155
	19/32			680	19	13	1020		16 13			1740	48	22	950	1430	1860	2435
Plywood			Nail (galvanized casing)						-									
Siding	9/16	1-1/4	900	280	13		420	16	(C)	550	17	720		21	390	290	770	1010
	3/8	1-3/8	8d	320	16		480	18	.6	50	20	820	W	7.5	450	029	870	1150
Particleboard			Nail (common or galvanized box)								- 5					ď		
(M-S "Exterior	3/8		p9	240	15		360	17	4	460	19	600	CA	22	335	505	645	840
Glue" and	3/8		. p8	260	18	- 90	380	20	4	30	21	630	.4	23	365	530	029	880
M-2 "Exterior	1/2			280	18		420	20	ά	40	22	700	, N	4.	390	290	755	980
Gine")	1/2		10d	370	21		550	23	7.	720	24	920	CA	35	520	077	1010	1290
A CONTRACTOR OF THE PERSON NAMED IN COLUMN NAM	5/8			400	21		610	23	7	90	24	1040	**	26	260	855	1105	1455
Structural Fiberboard	1/2	ı	Nail (galvanized roofing) 11 ga. galv. roofing nail (0.120" x 1-1/2" long x 7/16" head)			-35	340	4.0	-4	460	5.0	520	2	5.5	8	475	645	730
Sheathing	25/32		11 ga. galv. roofing nail (0.120" x 1-3/4" long x 3/8" head)	2) 			340	4.0	4	460	5.0	520	5	5.5		475	645	730
			The state of the s	<u>.</u>		1												

. Nominal unit shear values shall be adjusted in accordance with 4.3.3 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4,3.6. For

specific requirements, see 4.3.7.1 for wood structural panel shear walls, 4.3.7.2 for particleboard shear walls, and 4.3.7.3 for fiberboard shear walls. See Appendix A for common and box nail dimensions. Shears are permitted to be increased to values shown for 15/32 inch sheathing with same nailing provided (a) studs are spaced a maximum of 16 inches on center, or (b) panels are applied with long dimension across studs

3. For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 11.3.2A). The Specific Gravity Adjustment Factor shall not be greater than 1.


4. Apparent shear stiffness values G., are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for shear walls constructed with either OSB

or 3-ply plywood panels. When 4-ply or 5-ply plywood panels or composite panels are used, Ga values shall be permitted to be increased by 1.2. 5. Where moisture content of the framing is greater than 19% at time of fabrication, Ga values shall be multiplied by 0.5.

6. Where panels are applied on both faces of a shear wall and nail spacing is less than 6" on center on either side, panel joints shall be offset to fall on different framing members. Alternatively, the width of the nailed face of framing members shall be 3" nominal or greater at adjoining panel edges and nails at all panel edges shall be staggered. 7. Galvanized nails shall be hot-dipped or tumbled.

2.0 for ASD : Values By LATERAL FORCE-RESISTING SYSTEMS

®	JOB TITLE Meehan Cabin	BY DSM	DATE 01/2018
CALDER RICHARDS CONSULTING ENGINEERS	SUBJECT Lateral	CHECKED	SHEET OF
1 2 3 4 5 6	7 8 9 10 11 12 13 14 15 16 17	18 19 20 21 22 23	24 25 26 27 28
Check Diaphray	ms of Roof level		
V= (17.46 Kip 1	$A5D \times (3.25) = 8.88 \text{K}/= 4.1$	14K/23/= 193 pt-	f < 240 plt
TELEVILLE P	AEN/ = 873K/. , = 208	3 LIS < 320 DIF	
N - 1111 14 1717	15D/z sides = 8.73 1/42/ = 208	7017	
		3/4" Sheath	ning w/
		10d e. 6"	0,0,
Check Diaphrogr	ns of Upper Level 25%	1. Increase For Ir	regularity
V= 21.00/2×12.8	= 850 plf x1.25 = 1062 p	511	
42 gauge, WZ,	5" N.W. Concrete, Span = 6-0", :	3013 7 9 4132	PIT
	• 776	1112 3/112 [1110
		sauge WZ, 34/3 U	Jelas
	w/	BP@30"O.C.	Section of the Principle P
	phroum of upper level		
N=5180K			
10.9×	10.9 K = X $21' (21'-45')$	x = 856 K	
	21' (21'-45		
4.5		V= 8.56K/	= 245 pH = 240
	10.9 ^K	/35	I I
21		. 3/4" Sheathing	w/
		10 d @ 6" o.c.	

Table 4.20 Nominal Unit Shear Capacities for Wood-Frame Diaphragms

Unblocked Wood Structural Panel Diaphragms 1,2,3,4

	2	ě.	Sheathing Grade		7t			Structural	On deciding in	ondomai	on de car	a Car	CHUCKIO	CHOCKET	4 Chacker	CHOCKETO	Chacker	Sheathing and	Sheathing an Single-Floor	Sheathing Single-Flo	Sheathing Single-Flo	Sheathing Single-Flo	Sheathing Single-Flo	Sheathing Single-Flo
		Ē.	g Grade		(i)		I	_										and.	or and	or and	or	or and	or or	or or
			Common Nail Size		8 E		6d	8d	10d			-	<u>ත</u>	6d	6d	6	Ø	88. 69.	<u>o</u> <u>o</u>	<u>&</u> <u>&</u>	<u>&</u> &	<u>&</u> & & & & & & & & & & & & & & & & & &	10d 8d 6d	10d 8d 6d
		Minimum	Fastener Penetration in Framing	(J. III)			1-1/4	1-3/8	1-1/2			2	1-1/4	1-1/4	1-1/4	1-1/4	1-1/4	1-1/4	1-1/4	1-1/4	1-1/4	1-1/4		1-1/4
		Minimum	Nominal Panel Thickness	(Lin)			5/16	3/8	15/32			5/16	5/16	5/16	5/16 3/8	5/16 3/8	5/16 3/8 3/8	5/16 3/8 3/8	5/16 3/8 3/8 7/16	5/16 3/8 3/8 7/16	5/16 3/8 3/8 7/16	5/16 3/8 3/8 7/16 7/16	5/16 3/8 3/8 7/16 15/32	5/16 3/8 3/8 7/16 7/16 15/32
		Minimum Nominal Width	of Nailed Face at Supported Edges and	(in.)			3 2	ω Ν	2		ω	ν ω	ωνω	Νωνω	ωνωνω	Νωνωνω	ωνωνωνω	Νωνωνωω	ωνωνωνω	Νωνωνωνω	ωνωνωνωνω	Νωνωνωνω	ωνωνωνωνωνω	N W N W N W N W N W N W
		6 in			(plf)		330	480	570	640	0	300	300	300 340 330	300 340 330 370	300 340 330 370	300 340 330 330 430 480	300 340 330 330 480 480	300 340 330 330 480 480 510	300 340 340 330 480 480	300 340 340 370 480 480 530	300 340 340 330 330 480 480 510	300 340 340 370 480 480 510 510	300 340 340 330 330 330 480 480 510 510 580
		6 in. Nail Spacing at diaphragm boundaries and supporting members	Case 1		G _a (kips/in.)	OSB	9.0 7.0	7.5	- 14		12	9.0	9.0 7.0	9.0 7.0 7.5	12 9.0 7.0 7.5 6.0	12 9.0 7.0 7.5 6.0 9.0	12 9.0 7.0 7.5 6.0 9.0 7.5	12 9.0 7.0 7.5 6.0 9.0 9.0 7.5	7.5 6.0 9.0 7.5 8.5 7.5	12 9.0 7.0 7.5 6.0 9.0 9.0 7.5 8.5 7.0	9.0 7.0 7.5 6.0 9.0 7.5 7.5 7.5	9.0 7.0 7.5 6.0 9.0 9.0 7.5 8.5 7.5	7.0 7.0 7.5 6.0 9.0 7.5 8.5 7.5 7.5 7.5 7.5	12 9.0 7.0 7.5 6.0 9.0 9.0 7.5 8.5 7.0 7.5 6.5 7.0 15
	SEI	Spacing at diaphragm bo and supporting members			/in.)	PLY	7.0 6.0	7.0	i	10	9.0	9.0	9.0 5.5	9.0 6.5 5.5	5.5 5.5 4.5	9.0 9.0 5.5 5.5 5.5 6.5	5.5.5 5	5.5 5.5 5.5 6.6 6.6	0.00 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.	9.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8. 8. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Þ	SEISMIC	diaphrag ting men	Ca		v _s (plf)		250 280	360	430	480		220	220 250	220 250 250	220 250 250 280	220 250 250 280 320	220 250 250 280 320 360	220 250 250 280 320 360 340	220 250 250 280 320 340 340	220 250 250 220 280 320 360 380	220 250 250 250 280 320 340 340 340	220 250 250 250 280 320 340 340 340 380	220 250 250 250 280 320 320 340 340 340 340 340 340 340	220 250 250 250 250 280 320 320 340 340 340 340 340 340 340
		ງm boun າbers	Cases 2,3,4,5,6		(kip	OSB	6.0 4.5	5.0	9.5	8.0	6.0	57	-	5.0	5.0	5.0	5.0 4.0 6.0	5.0 4.0 6.0 5.5	5.0 4.0 6.0 5.5	5.0 6.0 5.5 5.5	5.0 5.5 5.5 4.5	5.0 5.5 5.0	5.0 6.0 5.5 4.5 4.5 4.5 7\58.0	5.0 5.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
	-	daries	1,5,6		G _a (kips/in.)	PLY	4.5	4.5	7.0	6.0	The second secon	4.0	4.0 3.5	4.0 4.0	4.0 4.0 3.5 3.0	4.0 4.0 3.5 4.5	3.5 4.0 3.5 3.5	4.0 4.0 3.5 4.0 4.5	3.5	4.0	3.5 4.0 3.5 3.5 3.5 3.5	3.5 3.5 4.0 3.5 3.5 5.0	3.5 4.0 3.5 4.0 3.5 5.5	5.5
	W	6 in. Nail a diaphragm and support	Case 1		(plf)	S	460 520	670	800	895		420	420 475	420 475 460	420 475 460 520	420 475 460 520 600	420 475 460 520 600 670	420 475 460 520 600 670 645	420 475 460 520 600 670 645 715	420 475 460 520 600 670 645 715	420 475 460 520 600 670 645 715 670	420 475 460 520 600 670 645 715 670 740	420 475 460 520 600 670 645 715 670 740	420 475 460 520 600 670 645 715 670 740 810
В	WIND	6 in. Nail Spacing at diaphragm boundaries and supporting members	Cases 2,3,4,5,6		v _w (plf)	*	350	505	600	670	310		350	350	350 350 390	350 350 390 450	350 350 390 450 505	350 350 390 450 505	350 350 390 450 505	350 350 390 450 505 530	350 350 390 450 505 505 560	350 350 390 450 505 505 560 530	350 350 390 450 505 530 530 530	350 350 390 450 505 505 530 530 600

1. Nominal unit shear capacities shall be adjusted in accordance with 4.2.3 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.2.6. For specific requirements, see 4.2.7.1 for wood structural panel diaphragms. See Appendix A for common nail dimensions. For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the

3. Apparent shear stiffness values G,, are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for diaphragms constructed with either Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 11.3.2A). The Specific Gravity Adjustment Factor shall not be greater than 1.

OSB or 3-ply plywood panels. When 4-ply or 5-ply plywood panels or composite panels are used, G, values shall be permitted to be increased by 1.2.

4. Where moisture content of the framing is greater than 19% at time of fabrication, G, values shall be multiplied by 0.5

253

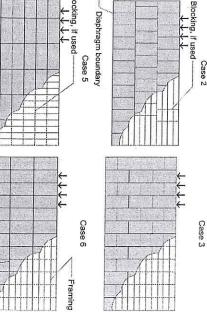
Table 4.2A Nominal Unit Shear Capacities for Wood-Frame Diaphragms

1.2 For ASD

Blocked Wood Structural Panel Diaphragms^{1,2,3,4}

Г	-	-				S	a	S	-	_	_			T			S	-		T		-		•		
						Single-Floor	and	Sheathing									Structural I					Cidad	Grade	Sheathing		
		10d					80					60			10d		8d		66			Trail Office	Nail Size	Common		
	j	1-1/2					1-3/8	×				1-1/4			1-1/2		1-3/8		1-1/4	(111.)	Blocking	Member or	Framing	Penetration in	Minimum	
	19/32		15/32		15/32		7/16		3/8		3/8		5/16		15/32	95	3/8		5/16		(in.)	Thickness	Panel	Nominal	•	The second secon
ω	2	ω	2	ω	N	ω	N	ω	2	ω	2	ω	2	ω	2	ယ	2	ω	2	(in.)	Boundaries	ranei Edges	at Adjoining	of Nailed Face	Nominal Width	
720	640	650	580	600	540	570	510	540	480	420	370	380	340	720	640	600	540	420	370		(plf)	<				
17	21	21	25	10	13	1	14	12	15	10	13	12	5	20	24	12	14	12	15	OSB	(kips	G.	6		o	
12	14	14	15	8.5	9.5	9.0	10	9.5	1	8.0	9.5	9.0	10	15	17	10	⇉	9.5	12	PLY	(kips/in.)	ď				
960	850	860	770	800	720	760	680	720	640	560	500	500	450	960	850	800	720	560	500		(plf)	*		Nail Spacing		
7	٠,	<u> </u>		<u>o</u>	7.	7.	8	7.	9.	5	7.	7.	9	_	_	7.	9.	7.	œ	õ				cing	_	-

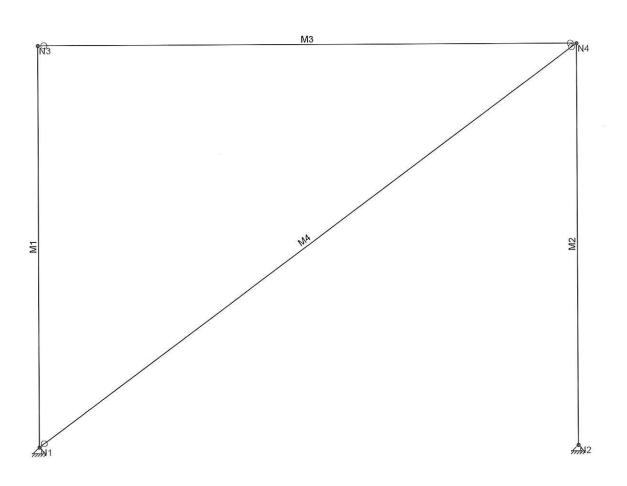
Nail Spacing (in.) at diaphragm boundaries (all cases), at continuous panel edges (Cases 1, 2, 3, 8, 4) Nail Spacing (in.) at diaphragm boundaries (all cases), at continuous panel edges (Cases 5 & 6) Nail Spacing (in.) at diaphragm boundaries (all cases), at continuous panel edges (Cases 5 & 6) Nail Spacing (in.) at diaphragm boundaries (all cases), at continuous panel edges (Cases 1, 2, 3, 8, 4)	2 For ASD		Minimum	D	g Common Framing	Member or	Blocking (in.)	(in.)	,,	6d 1-1/4 5/16		Structural 1 8d 1-3/8 3/8		10d 1-1/2 15/32			3/8	<u>c</u>	3/8	athing	and 8d 1-3/8 7/16 Single-Floor	15/32	Actions			10d 1-1/2 15/32 19/32	1-1/2	1. Nominal unit shear capacities shall be adjusted in accordance with 4.2.3 to determine	10d 1-1/2 15/32 3 650 21 650 2
SEISMIC SEISMIC			Minimum	of Nailed Face	at Adjoining	Panel Edges	and	Boundaries	(in.)	2	۵) N	ی د	۱ د	0	ယ	2	ω	0 00	ى د	ω ν	0 0	0	ωι	2	ω		ccordance with 4	ccordance with 4 lored unit resista
		Nail				<	(plf)	(110)		370	420	540	000	1 0	340	380	370	420	480	540	570	(540)	580	650	640	720		l.2.3 to d	.2.3 to d
		Spacing	၈		6	- 1	(kins	(KIDS	OSB	15	12	4 6	2	4 6	170	3	13	10	3	12	<u> </u>	13	3 -	21	21	17		letermine	etermine or genera
		(in.) at d		z			/in.)	(in.)	PLY	12	9.5	3 =	10	; =	30	۰ و ۲	9.5	8.0	1	9.5	9.0	9.5	3.0	7 5	14	12		CV	e Load
		iaphragn (Cases		ail Spaci		<	(plf)	(pir)		500	560	720	800	000	950	700	500	560	640	720	760	720	008	860	850	960			ad
		n boundar	4	no (in) at	6	ה	(kine/in	(Kips/in	w																			Case	Case 1
	SEIS	ies (all c	- 4. 4.1	other na	_	1	2	1:1	مال	7.5	6.0	7.5	6.5		+		t		-	\vdash		6.5	5.5	9 <u>-</u>	9.5	8.0	2		1
	A SMIC	ases), at	Saller con	nel edge			<u>}</u> «	(plf)		750	840	1060	1200	0871	1440	760	750	840	960	1080	1010	1060	1200	1300	1280	1440			Framing
		continuo	2-1/2	sesection.	4	4	(king	(kips	OSB	12	9.5	3	10	20	16	òō	100	8.5	13	1	1 12	1	9.0	17	18	14	1		
		us panel	0000	2 2 2	1, 19 0, 0			/in.)	PLY	10	8.5	10	9.0	15	13	9 0	20.0	7.0	9.5	8.5	2 9 2 5	8.5	7.5	4 6	12	1			ting, if used
		edges pa		3	1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(plf)		840	950	1200	1350	1460	1640	200	840	950	1090	1220	1150	1200	1350	1310	1460	1640		Case 2	Case 2
		rallel to	2		3	1	G	(kips	OSB	20	17	21	18	31	26		10	1 6	21	18	20	19	15	у Ж	28	24			8
WIND Nail Spacing (in.) at diaphragm boundaries (all cases), at continuous panel edges parallel to load (Gases 3 & 4), and at all panel edges (Cases 5 & 6) 6		load						(in.)	PLY	15	<u>1</u>	15	3	2	18	<u>.</u>	12	<u></u>	3	12	វ ដ	13	1	, œ	17	15			
WIND		Nail S boundar panel edg	4), and at	Nail Space	,	o	, <	(pif)		520	590	755	840	895	1010	4/5	530	590	670	755	715	755	840	810	895	1010			
B INID: INID	¥.	Spacing (in ies (all ca jes paralle	all panel	zing (in.) a	L'ases I	6	٧ ٧	(plf)		700	785	1010	1120	1190	1345	630	700	785	895	1010	950	1010	1120	1080	1190	1345		Case	Case 3
hragm withous (Cases 3 & 6) sees 5 & 6) 2 2 1175 1330 1680 1890 1525 1710 1805 1680 1890 1890 1890 1895 1065 1295 1895 1895 1895 1895 1895 1895 1895 18	ND B	n.) at diap ses), at co	edges (Ca	it other pa	, 4, 3, 04	4	٧*	(plf)		1050	1175	1485	1680	1790	2015	940	1065	1175	1345	1510	1415	1485	1680	1610	1700	2015			
		hragm ntinuous Cases 3 &	1ses 5 & 6)	nel edges			٧w	(plf)		1175	1330	1680	1890	2045	2295	1065	1205	1320	1525	1710	1610	1680	1890	1835	2000	2295			


4.	in
to be increased by 1.2. 4. Where moisture content of the framing is greater than 19% at time of fabrication, G _a values shall be multiplied by 0.5.	[1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 11.3.2A). The Specific Gravity Adjustment Factor shall not be greater than 1. 3. Apparent shear stiffness values, G _n are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for diaphragms constructed with either OSB or 3-ply plywood panels. When 4-ply or 5-ply plywood panels or composite panels are used, G _n values shall be permitted
	Case 4

For species and grades of framing other than Douglas-Fir-Larch or Southern Pine,

structural panel diaphragms. See Appendix A for common nail dimensions.

reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor =


Continuous panel joints-Blocking, if used Diaphragm boundary Case 5

Continuous panel joints—

. 4

| SK - 1 | Jan 17, 2018 at 5:08 PM | Braced Frame.r2d

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design R	A [in2]	I (90,27	.I (0,180
1		HSS5.5x	Column	SquareTube	A500 Gr.B Rect	Typical	3.63	17	17
2	Brace	1" Bar	None	None	A36 Gr.36	Typical	.785	.049	.049

Wood Section Sets

		Label	Shape	Type	Design List	Material	Design Rules	A [in2]	I (90,270)I (0,180) [i
Γ	1	Beam	5.125X12FS	Beam	None	24F-1.8E D	Typical	61.5	134.611 738

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Temp [F]
1	N1	Ö	Ö	0
2	N2	11	0	0
3	N3	0	8.167	0
4	N4	11	8.167	0

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lb-out[ft]	Lb-in[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	. K-out	K-in	Cb	Function
1	M1	Columns										Lateral
2	M2	Columns	8.167									Lateral
3	M4	Brace	13.7									Lateral

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	TOM	Inactive
1	M1						Yes		
2	M2						Yes		
3	М3	PIN	PIN				Yes		
4	M4	PIN	PIN				Yes		

Member Primary Data

	Label	I Joint	J Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N3	, ,	Columns	Column	SquareTube	A500 Gr.B	Typical
2	M2	N2	N4		Columns	Column	SquareTube	A500 Gr.B	Typical
3	M3	N3	N4		Beam	Beam	None	24F-1.8E D	Typical
4	M4	N1	N4		Brace	None	None	A36 Gr.36	Typical

Joint Loads and Enforced Displacements (BLC 1 : DL)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft, k*s^2*ft)]
1	N3	L	Y	-3
2	N4		Υ	-3

Joint Loads and Enforced Displacements (BLC 2 : SL)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft, k*s^2*ft)]
1	N3	L	Y	-29.9
2	N4		Υ	-29.9

Member Distributed Loads (BLC 1 : DL)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M3	Y	135	135	0	0

Member Distributed Loads (BLC 2 : SL)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M3	Y	-1.316	-1.316	0	0

Member Distributed Loads (BLC 3 : EL)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M3	X	1.065	1.065	0	0

Basic Load Cases

	BLC Description	Category	X Gravity Y Gravity	Joint	Point	Distribut
1	DL	DL		2		1 1
2	SL	SL		2		1
3	FL	EL				1

Load Combinations

	Description	S	PDelta	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	DL	Yes	Υ		DL	1																		
2	DL + SL	Yes	Υ		DL	1	SL	1	l di i															
3	DL + 0.7EL	Yes	Υ		DL	1	EL	1												1				
4	DL + 0.525EL + 0.75	.Yes	Y		DL	1	EL	.75	SL	.75														
5	0.6DL + 0.7EL	Yes	Υ		DL	.6	EL	1																

Envelope Joint Reactions

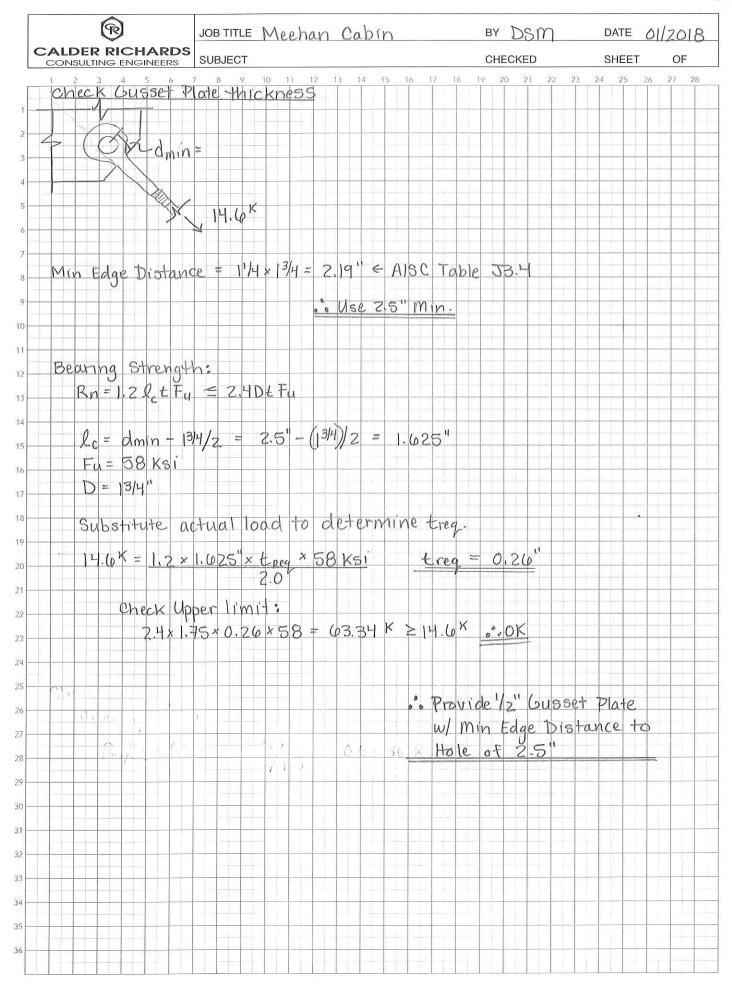
	Joint		X [k]	LC	Y [k]	LC	Moment [k-ft]	LC
1	N1	max	0	1	40.846	2	0	11
2		min	-11.756	3	-6.465	5	0	1
3	N2	max	.099	4	40.918	2	0	1_
4		min	0	1	3.743	1	0	1
5	Totals:	max	0	2	81.764	2		
6	Totalo.	min	-11.72	5	4.491	5		

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Rotation [rad]	LC
1	N1	max	0	3	Ò	5	-3.306e-5	11
2		min	0	1	0	2	-1.865e-3	3
3	N2	max	Ō	1	0	1	-3.305e-5	1
4	INZ	min	Ŏ	4	0	2	-1.789e-3	3
5	N3	max	.183	3	003	5	-3.306e-5	1
6	110	min	.003	1	048	2	-1.865e-3	3
7	N4	max	.175	3	004	1	-3.305e-5	1
8		min	.003	1 1	048	2	-1.789e-3	3

Jan 17, 2018 5:13 PM Checked By:_

Envelope AISC 14th(360-10): ASD Steel Code Checks


	Member	Shape	Code Check	Loc[.	.LC	Shea	Loc[.			Pnt/om			
1	M1	HSS5.5x5	.469	0	2	.000	0	1	87.103	99.988	16.347	1 1	11-1a
2	M2	HSS5.5x5	.470 🐔	0	2	.000	0	1	87,103	99.988	16.347	1 1	H1-1a
3	M4	1" Bar	.865	0	3	.000	0	1	.273	16.931	.282	1	H1-1a

LC10 :OK

Envelope Wood Code Checks

	Member	Shape	Code Check /	Loc[ft]	LC	Shear C	Loc[ft]	LC	Fc'[ksi]	Ft'[ksi]	Fb'[ksi]	Fv'[ksi]	Egn	
1	M3	5.125X12FS	783	5.5		639		2	.947	1.265	2.733	.305	3.9-3	

(8)	JOB TITLE Meehan Cabin	BY DSM	DATE 01/2018		
CONSULTING ENGINEERS	SUBJECT	CHECKED	SHEET	OF	
	wood Beam to Joint 1/2 /3) 1 "Thru Bolts in do			27 2 1+es	
NDS: (1)	" Bolt => Z = 5510 lbs				
$Z' = Z \times C_D \times C_D \times C_D = 1.6$ $C_D = 1.6$	Cm x Cex Cg x Cax Ceg x Cdi	× C+n			
Ct = 1.0 Cg = 1.0 CD = Sec B	Below				
Ceg = 1.0 Cai = 1.0 C+n = 1.0					
Min Spaciv	ng Btwn Rows + 1.50 = 1.5"		72K		
7 = 5510	x1,6x0.5 = 4,408 lbs x 3		721		
X =	1.5° I 0	1			
	Nate to Top Plate	* 5 " o	f 3/16" Weld		
	ate to Gusset Plate				
Check Clevise Axial Load on	Rod = 14.0 K D = 1"	#3 Clevis R	equired		

Drift

RAM Structural System 15.07.00.17 RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/23/18 16:32:41 Steel Code: IBC

CRITERIA:

Rigid End Zones: Ignore Effects Member Force Output: At Face of Joint

P-Delta:

Yes

Scale Factor:

1.00

Ground Level:

1st

LOAD CASE DEFINITIONS:

D	DeadLoad	RAMUSER
Lp	PosLiveLoad	RAMUSER
Sp	PosSnowLoad	RAMUSER
E1	Seismic	EQ_ASCE710_X_+E_F
E2	Seismic	EQ_ASCE710_XE_F
E3	Seismic	EQ_ASCE710_Y_+E_F
E4	Seismic	EQ_ASCE710_YE_F

RESULTS:

Location (ft): (19.830, 21.000)

Story	LdC	Disp	olacement			\mathbf{D}	Drift Ratio	
•		X	\mathbf{Y}	X	\mathbf{Y}	X	Y	
		in	in	in	in			
2nd	D	0.0014	0.0000	0.0014	0.0000	0.0000	0.0000	
	Lp	0.0024	-0.0000	0.0024	-0.0000	0.0000	0.0000	
	Sp	0.0017	-0.0001	0.0017	-0.0001	0.0000	0.0000	
	ĒĪ	0.3710	0.0009	0.3710	0.0009	0.0034	0.0000	
	E2	0.3710	-0.0009	0.3710	-0.0009	0.0034	0.0000	
	E3	-0.0000	0.4189	-0.0000	0.4189	0.0000	0.0039	
	E4	0.0000	0.4207	0.0000	0.4207	0.0000	0.0039	
					5			
1st	D	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	Lp	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
_ (8	Sp	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	E1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	E2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	E3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	E4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

Location (ft): (0.000, 42.000)

Story	LdC	Displacement		S	Story Drift		Drift Ratio	
		X	\mathbf{Y}	X	Y	X	Y	
		in	in	in	in			
2nd	D	0.0014	-0.0000	0.0014	-0.0000	0.0000	0.0000	

Drift

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 2/3 02/23/18 16:32:41

Steel Code: IBC

Story	LdC	Disp	olacement	S	tory Drift	D	rift Ratio	
Salar Salarata 📭	Lp	0.0024	-0.0000	0.0024	-0.0000	0.0000	0.0000	
	Sp	0.0016	-0.0001	0.0016	-0.0001	0.0000	0.0000	
	E1	0.3904	0.0192	0.3904	0.0192	0.0036	0.0002	
	E2	0.3516	-0.0192	0.3516	-0.0192	0.0033	0.0002	2
	E3	-0.0106	0.4089	-0.0106	0.4089	0.0001	0.0038	
	E4	0.0282	0.4473	0.0282	0.4473	0.0003	0.0041	
1st	D	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	Lp	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	Sp	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	E1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	E2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	E3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	E4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

Location (ft): (42.000, 42.000)

Story	LdC	Displacement		S	Story Drift		Drift Ratio		
		X	Y	X	Y	X	Y		
		in	in	in	in				
2nd	D	0.0014	0.0000	0.0014	0.0000	0.0000	0.0000		
	Lp	0.0024	0.0000	0.0024	0.0000	0.0000	0.0000		
	Sp	0.0016	-0.0001	0.0016	-0.0001	0.0000	0.0000		
	E1	0.3904	-0.0196	0.3904	-0.0196	0.0036	0.0002		
	E2	0.3516	0.0196	0.3516	0.0196	0.0033	0.0002		
	E3	-0.0106	0.4301	-0.0106	0.4301	0.0001	0.0040		
	E4	0.0282	0.3909	0.0282	0.3909	0.0003	0.0036		
1st	D	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	Lp	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	Sp_{\cdot}	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	E1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	E2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	E3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	E4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

Location (ft): (0.000, 0.000)

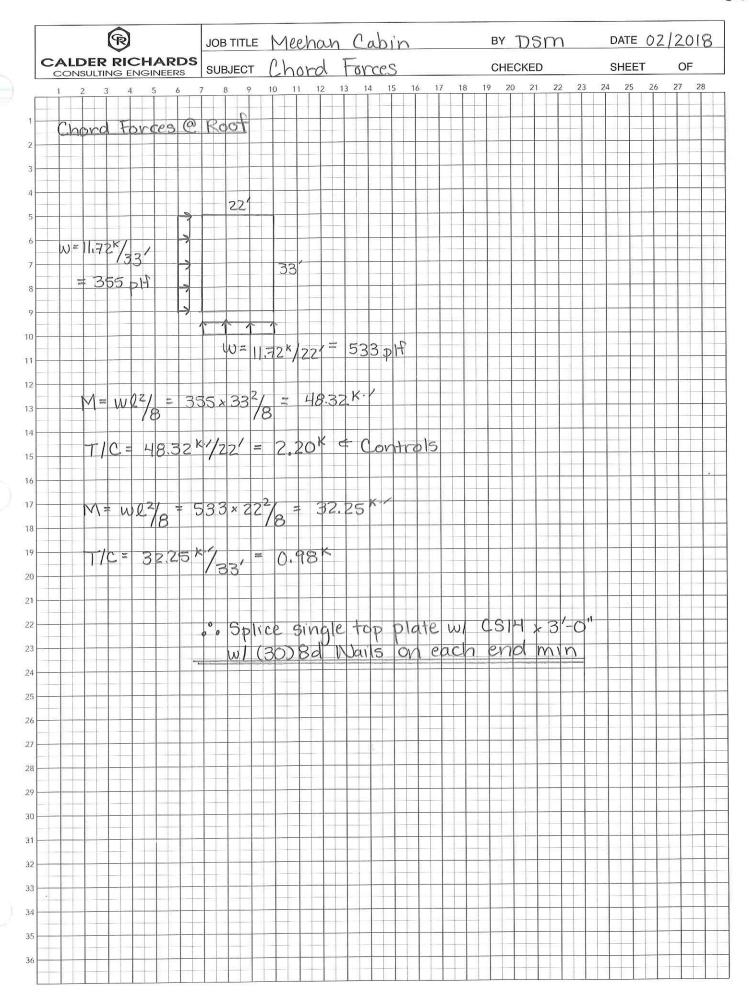
Story	LdC	Displacement		Story Drift		Drift Ratio	
		X	\mathbf{Y}	X	Y	X	\mathbf{Y}
		in	in	in	in		
2nd	D	0.0014	-0.0000	0.0014	-0.0000	0.0000	0.0000
	Lp	0.0024	-0.0000	0.0024	-0.0000	0.0000	0.0000
	Sp	0.0017	-0.0001	0.0017	-0.0001	0.0000	0.0000
	E1	0.3516	0.0192	0.3516	0.0192	0.0033	0.0002

Drift

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 3/3 02/23/18 16:32:41


Steel Code: IBC

Story	LdC	Disp	olacement	S	tory Drift	D	rift Ratio
	E2	0.3904	-0.0192	0.3904	-0.0192	0.0036	0.0002
	E3	0.0106	0.4089	0.0106	0.4089	0.0001	0.0038
	E4	-0.0282	0.4473	-0.0282	0.4473	0.0003	0.0041
1st	D	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lp	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Sp	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	E1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	E2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	E3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	E4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Location (ft): (42.000, 0.000)

Story	LdC	Disp	lacement	S	tory Drift	\mathbf{D}_{1}	rift Ratio
		X	Y	X	\mathbf{Y}	X	Y
		in	in	in	in		
2nd	D	0.0014	0.0000	0.0014	0.0000	0.0000	0.0000
	Lp	0.0024	0.0000	0.0024	0.0000	0.0000	0.0000
	Sp	0.0017	-0.0001	0.0017	-0.0001	0.0000	0.0000
	E1	0.3516	-0.0196	0.3516	-0.0196	0.0033	0.0002
	E2	0.3904	0.0196	0.3904	0.0196	0.0036	0.0002
	E3	0.0106	0.4301	0.0106	0.4301	0.0001	0.0040
	E4	-0.0282	0.3909	-0.0282	0.3909	0.0003	0.0036
1st	D	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lp	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Sp	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	E1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	E2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
er er	E3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	E4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

®	JOBTITLE Meehan Cabin	BY DSM	DATE 02/2018
CALDER RICHARDS CONSULTING ENGINEERS		CHECKED	SHEET OF
1 2 3 4 5 6 Drift	$7 8 9 10 11 12 13 14 15 16 17$ $0 \times 9 \times 12 \times 1.0 = 0.5 \times 14 \times 12 \times 1.0 \times 14 \times 14 \times 15 \times 16 \times 16 \times 16 \times 16 \times 16 \times 16 \times 16$	7 18 19 20 21 22 23 Story Dnift of 1	
Fram	t case Cd = 4.0 from Inte e used while R = 325 f used.	ermediate mon	race.
Corner 1 = 0.0 Corner 2 = 42 Corner 3 = 0.0	s = 19.83, 21.00, 19.67 00, 42.00, 19.67 200, 42.00, 19.67 00, 0.00, 19.67 .00, 0.00, 19.67 .Drift Okay	Axmax = 0.3710 Axmax = 0.3904 Axmax = 0.3904 Axmax = 0.3904 Axmax = 0.3904	Aymax = 0.42 Aymax = 0.44 Aymax = 0.43 Aymax = 0.44 Aymax = 0.43
Check Torsion Amax = 0.4473 AAVERAGE = 0.44	73 + 0.4301 = 0.4387 × 1.2 = 2.4387	0.5264" > 0.447 to Torsion in 4 D Inspection no- Direction	pirection.
• Increas	Out-of-plane Offset live e diaphragm collector for lements supporting disc	rces 25%	2-0

RAM Structural System RAM Frame 15.07.00.17

Bentley DataBase: Meehan Cabin 2018-02-19

02/27/18 11:58:39

CRITERIA:

Rigid End Zones:

Ignore Effects

Member Force Output:

At Face of Joint Scale Factor:

P-Delta:

Yes

1.00

Ground Level:

Base

Mesh Criteria:

Max. Distance Between Nodes on Mesh Line (ft): 4.00

Merge Node Tolerance (in): 0.0100

Geometry Tolerance (in): 0.0100

Walls Out-of-plane Stiffness Not Included in Analysis.

Sign considered for Dynamic Load Case Results.

Rigid Links Included at Fixed Beam-to-Wall Locations

Eigenvalue Analysis: Eigen Vectors (Subspace Iteration)

DeadLoad RAMUSER

Frame #1

Load Case: D

Load Case: D	DeadLoad RAM	IUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1st	0.00	0.00	-0.03	-0.03
Load Case: Lp	PosLiveLoad R	AMUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1st	0.00	0.00	0.03	0.03
Load Case: Sp	PosSnowLoad F	AMUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
Level		9		
	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1st	0.00	0.00	0.45	0.45
Load Case: E1	Seismic EQ_AS	CE710_X_+E_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	1.49	1.49
1st	0.01	0.01	4.18	2.69
Load Case: E2	Seismic EQ AS	CE710_XE_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	-1.49	-1.49
		1500 E 170 E 1		

RAM Structural System

RAM Structural System RAM Frame 15.07.00.17

Bentley DataBase: Meehan Cabin 2018-02-19

Page 2/6 02/27/18 11:58:39

Bentley DataB	ase: Meehan Cabin 201	8-02-19		
1st	0.01	0.01	-4.23	-2.74
Load Case: E3	Seismic EQ ASC	E710_Y_+E_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	31.80	31.80
1st	0.00	0.00	9.48	-22.32
Load Case: E4	Seismic EQ ASC	E710_YE_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	34.78	34.78
1st	0.00	0.00	17.90	-16.89
Frame #2				
Load Case: D	DeadLoad RAMU	JSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1st	-0.01	-0.01	0.00	0.00
Load Case: Lp	PosLiveLoad RA	MUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1st	0.01	0.01	0.00	0.00
Load Case: Sp	PosSnowLoad RA	AMUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.01	0.01	0.00	0.00
1st	0.16	0.15	0.00	0.00
Load Case: E1	Seismic EQ_ASC	EF710_X_+E_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	30.48	30.48	0.00	0.00
1st	40.20	9.73	0.00	0.00
Load Case: E2	Seismic EQ_ASC	E710_XE_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips

Page 3/6

02/27/18 11:58:39

Frame Story Shears

RAM Structural System RAM F				
Bentley DataBa	ase: Meehan Cabin 201	8-02-19		
2nd	33.85	33.85	0.00	0.00
1st	46.47	12.62	0.00	0.00
Load Case: E3	Seismic EQ_ASC	CE710_Y_+E_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.93	0.93	0.00	0.00
1st	25.08	24.15	0.00	0.00
Load Case: E4	Seismic EQ_ASC	E710_YE_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	-2.44	-2.44	0.00	0.00
1st	18.82	21.26	0.01	0.01
Frame #3				
Load Case: D	DeadLoad RAMU	JSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1st	0.00	0.00	0.00	0.00
Load Case: Lp	PosLiveLoad RA	MUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1st	0.00	0.00	0.00	0.00
Load Case: Sp	PosSnowLoad RA	AMUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1 st	0.00	0.00	0.00	0.00
Load Case: E1	Seismic EQ ASC	E710 X +E F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	-1.49	-1.49
1st	0.00	0.00	0.40	1.89
Load Case: E2	Seismic EQ ASC	E710_XE_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y

RAM Structural System

RAM Structural System RAM Frame 15.07.00.17

Bentley DataBase: Meehan Cabin 2018-02-19

Page 4/6 02/27/18 11:58:39

Bentley DataBa	ase: Meehan Cabin 201	8-02-19		
***************************************	kips	kips	kips	kips
2nd	0.00	0.00	1.49	1.49
1st	0.00	0.00	-0.40	-1.89
Load Case: E3	Seismic EQ_ASC	E710_Y_+E_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	32.69	32.69
1st	0.00	0.00	-9.27	-41.96
Load Case: E4	Seismic EQ ASC	E710_YE_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	29.72	29.72
1st	0.00	0.00	-8.47	-38.19
Frame #4				
Load Case: D	DeadLoad RAMU	JSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1st	0.01	0.01	0.00	0.00
Load Case: Lp	PosLiveLoad RA	MUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
27,41	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1st	-0.01	-0.01	0.00	0.00
Load Case: Sp	PosSnowLoad RA	MUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
Level	kips	kips	kips	kips
2nd	0.00	0.00	0.00	0.00
1st	-0.16	-0.16	0.00	0.00
2000 66 S220-93 SHIRANGAR				
Load Case: E1		E710_X_+E_F	A.	220
Level	Shear-X	Change-X	Shear-Y	Change-Y
- w	kips	kips	kips	kips
2nd	33.85	33.85	0.00	0.00
1st	46.43	12.59	0.00	0.00

RAM Structural System

RAM Structural System RAM Frame 15.07.00.17

Bentley DataBase: Meehan Cabin 2018-02-19

Page 5/6 02/27/18 11:58:39

Load Case: E2	Seismic EQ_ASC			
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	30.48	30.48	0.00	0.00
1st	40.17	9.69	0.00	0.00
Load Case: E3	Seismic EQ_ASC	E710 Y +E F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	-0.93	-0.93	0.00	0.00
1st	-25.08	-24.15	0.00	0.00
Load Case: E4	Seismic EQ_ASC	E710_YE_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
2nd	2.44	2.44	0.00	0.00
1st	-18.82	-21.26	0.01	0.01
Frame #5				
Load Case: D	DeadLoad RAMU	JSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
1st	0.00	0.00	0.03	0.03
Load Case: Lp	PosLiveLoad RA	MUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
1st	0.00	0.00	-0.03	-0.03
Load Case: Sp	PosSnowLoad RA	AMUSER		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
1st	0.00	0.00	-0.45	-0.45
Load Case: E1	Seismic EQ ASC	E710_X_+E_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
1st	0.01	0.01	-4.59	-4.59
Load Case: E2	Seismic EQ ASC	E710_XE_F		
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
			0.756. 3 5666	-

RAM Structural System

RAM Structural System RAM Frame 15.07.00.17

Page 6/6 2/27/18 11:58:39

Bentley DataB	ase: Meehan Cabin 201	02/27/18 11:58:			
1st	0.01	0.01	4.63	4.63	
Load Case: E3	Seismic EQ_ASC	CE710_Y_+E_F			
Level	Shear-X	Change-X	Shear-Y	Change-Y	
	kips	kips	kips	kips	
1st	0.00	0.00	86.42	86.42	
Load Case: E4	Seismic EQ_ASC	E710_YE_F			
Level	Shear-X	Change-X	Shear-Y	Change-Y	
	kips	kips	kips	kips	
1st	0.00	0.00	77.21	77.21	

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

COLUMN INFORMATION:

Story Level = 2nd

Frame Number = 1

Column Number = 2

Fy (ksi)

= 50.00

Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-Axis	Y-AXIS
Lu for Axial (ft)	9.00	9.00
Lu for Bending (ft)	9.00	9.00
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D - 0.910 E4

Shear	Тор	Vmajor (kip)	-16.04
		Vminor (kip)	-0.00
Shear	Bot.	Vmajor (kip)	-16.04
		Vminor (kip)	-0.00

SHEAR CHECK:

Vax (kip)	=	-16.04	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50) =	= 0.	.236
Vay (kip)	=	-0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67) =	= 0.	.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Sp - 0.683 E4

AXIAL CHECK:

Pa (kip)	=	16.27	Pnx/1.67 (kip)	=	412.10	Pa/(Pnx/1.67)	=	0.039
			Pny/1.67 (kip)	=	378.02	Pa/(Pny/1.67)	=	0.043
			Pn/1.67 (kip)	=	378.02	Pa/(Pn/1.67)	=	0.043

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.077 D - 0.910 E4

Axial		Load (kip)	12.23
Moment	Top	Mmajor (kip-ft)	57.87
		Mminor (kip-ft)	0.00
Moment	Bot.	Mmajor (kip-ft)	-78.16
		Mminor (kip-ft)	0.00

CALCULATED PARAMETERS:

Pa (kip)	=	12.23	Pnx/1.67 (kip)	=	412.10
S 50.20			Pny/1.67 (kip)	=	378.02
Max (kip-ft)	=	-78.16	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx		24.85	KL/Ry	=	42.41
			Mcx (kip-ft)	=	150.69
~1			7		

Cbx 2.22

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.030

Eq H1-2: 0.048 + 0.055 = 0.103

Eq H1-1b Per H1.3: 0.015 + 0.519 + 0.000 = 0.533

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 2/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

COLUMN INFORMATION:

Story Level = 2nd

Fy (ksi)

= 50.00

Column Size = W10X49

Frame Number = 1 Column Number = 3

INPUT DESIGN PARAMETERS:

	X-Axis	Y-AXIS
Lu for Axial (ft)	9.00	9.00
Lu for Bending (ft)	9.00	9.00
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D + 0.910 E4

Shear	Top	Vmajor (kip)	16.04
	•	Vminor (kip)	-0.00
Shear	Bot.	Vmajor (kip)	16.04
		Vminor (kip)	-0.00

SHEAR CHECK:

Vax (kip)	=	16.04	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50)	=	0.236
Vay (kip)	=	-0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67)	=	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 0.683 E4

AXIAL CHECK:

Pa (kip)	=	16.28	Pnx/1.67 (kip)	=	412.10	Pa/(Pnx/1.67)	=	0.039
3 * 2			Pny/1.67 (kip)	=	378.02	Pa/(Pny/1.67)	=	0.043
			Pn/1.67 (kip)	=	378.02	Pa/(Pn/1.67)	=	0.043

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.077 D + 0.910 E4

Axial		Load (kip)	12.23
Moment	Top	Mmajor (kip-ft)	-57.87
	2 .4 5	Mminor (kip-ft)	0.00
Moment	Bot.	Mmajor (kip-ft)	78.15
		Mminor (kin-ft)	0.00

CALCULATED PARAMETERS:

Pa (kip)	=	12.23	Pnx/1.67 (kip)	-	412.10
			Pny/1.67 (kip)	=	378.02
Max (kip-ft)	=	78.15	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	24.85	KL/Ry	=	42.41
			Mcx (kip-ft)	=	150.69
Cbx	=	2.22			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.030

Eq H1-2: 0.048 + 0.055 = 0.103

Eq H1-1b Per H1.3: 0.015 + 0.519 + 0.000 = 0.533

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 3/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

BEAM INFORMATION:

Story Level = 2nd

Frame Number = 1

Beam Number = 12

Fy (ksi)

= 50.00

Beam Size = W12X35

Left Connection - Reduced Beam Section

Right Connnection - Reduced Beam Section

a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

INPUT DESIGN PARAMETERS:

	A-AXIS	I -AAIS
Lu for Axial (ft)	12.83	0.92
Lu for Bending (ft)	12.83	0.92
K	1.00	1.00
Top Flange Continuously Braced	No	
Bottom Flange Continuously Braced	No	

CONTROLLING BEAM SEGMENT FORCES - SHEAR

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 0.683 E4

Segment distance (ft) i - end _____ 11.92 j - end _____ 12.83

SHEAR CHECK:

Vax (kip)	=	-12.34	Vnx/1.50 (kip)	=	75.00	Vax/(Vnx/1.50) =	0.165
Vav (kin)	=	0.00	Vnv/1.67 (kip)	=	122.56	Vav/(Vnv/1.67) =	0.000

CONTROLLING BEAM SEGMENT FORCES - AXIAL

Load Combination: 1.000 D

Segment distance (ft) i - end	0.92
i - end	6.50

AXIAL CHECK:

Pa (kip)	=	0.00	Pnx/1.67 (kip)	=	308.38	Pa/(Pnx/1.67)	=	0.000
			Pny/1.67 (kip)	=	308.38	Pa/(Pny/1.67)	=	0.000
			Pn/1.67 (kip)	=	308.38	Pa/(Pn/1.67)	=	0.000

CONTROLLING BEAM SEGMENT FORCES - FLEXURE

Load Combination: 1.077 D - 0.910 E4

Segment distance (ft) i - end	0.00
j - end	0.92

CALCULATED PARAMETERS:

Pa (kip)	=	0.00	Pn/1.67 (kip)	=	308.38
Max (kip-ft)	=	-61.51	Mnx/1.67 (kip-ft)	=	127.74
May (kip-ft)	\equiv	0.00	Mny/1.67 (kip-ft)	=	28.69
Cbx	=	1.04			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.000

Eq H1-1b: 0.000 + 0.481 + 0.000 = 0.481

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 4/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

COLUMN INFORMATION:

Story Level = 2nd

Frame Number = 2

Column Number = 11

Fy (ksi)

= 50.00

Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu for Axial (ft)	9.00	9.00
Lu for Bending (ft)	9.00	9.00
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D + 0.910 E2

Shear	Top	Vmajor (kip)	13.41
	100	Vminor (kip)	0.00
Shear	Bot.	Vmajor (kip)	13.41
		Vminor (kip)	0.00

SHEAR CHECK:

Vax (kip)		13.41	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50) =	0.197
Vay (kip)	=	0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67) =	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Sp + 0.683 E2

AXIAL CHECK:

Pa (kip)	=	30.70	Pnx/1.67 (kip)	=	412.10	Pa/(Pnx/1.67)	==	0.074
			Pny/1.67 (kip)	=	378.02	Pa/(Pny/1.67)	=	0.081
			Pn/1.67 (kip)	=	378.02	Pa/(Pn/1.67)	=	0.081

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.077 D + 0.910 E2

Axial		Load (kip)	14.87
Moment	Top	Mmajor (kip-ft)	-50.66
	30	Mminor (kip-ft)	
Moment	Bot.	Mmajor (kip-ft)	_ 56.09
		Mminor (kip-ft)	0.00

CALCULATED PARAMETERS:

Pa (kip)	=	14.87	Pnx/1.67 (kip)	=	412.10
-			Pny/1.67 (kip)	=	378.02
Max (kip-ft)	=	56.09	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	24.85	KL/Ry	=	42.41
			Mcx (kip-ft)	=	150.69
Chy	_	2 25			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.036

Eq H1-2: 0.058 + 0.027 = 0.086

Eq H1-1b Per H1.3: 0.018 + 0.372 + 0.000 = 0.390

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 5/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

COLUMN INFORMATION:

Story Level = 2nd

Frame Number = 2

Column Number = 12

Fy (ksi)

= 50.00

Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu for Axial (ft)	9.00	9.00
Lu for Bending (ft)	9.00	9.00
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D - 0.910 E2

Shear	Top	Vmajor (kip)	-17.69
		Vminor (kip)	0.00
Shear	Bot.	Vmajor (kip)	
		Vminor (kip)	0.00

SHEAR CHECK:

Vax (kip)	8==	-17.69	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50)	=	0.260
Vay (kip)	=	0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67)	=	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp - 0.683 E2

AXIAL CHECK:

Pa (kip)	=	15.99	Pnx/1.67 (kip)	=	412.10	Pa/(Pnx/1.67)	=	0.039
			Pny/1.67 (kip)	=	378.02	Pa/(Pny/1.67)	=	0.042
			Pn/1.67 (kip)	=	378.02	Pa/(Pn/1.67)	=	0.042

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.077 D - 0.910 E2

Axial		Load (kip)	11.46
Moment	Top	Mmajor (kip-ft)	53.64
	•	Mminor (kip-ft)	-0.00
Moment	Bot.	Mmajor (kip-ft)	
		Mminor (kip-ft)	0.00

CALCULATED PARAMETERS:

Pa (kip)	=	11.46	Pnx/1.67 (kip)	=	412.10
			Pny/1.67 (kip)	=	378.02
Max (kip-ft)	H	-87.17	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=:	0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	24.85	KL/Ry	=	42.41
			Mcx (kip-ft)	=	150.69
Cbx	=	2.20			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.028

Eq H1-2: 0.045 + 0.069 = 0.114

Eq H1-1b Per H1.3: 0.014 + 0.578 + 0.000 = 0.592

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 6/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

BEAM IN	VFORMA	TION:
---------	--------	-------

0.	T	
Story	level	
Otol ,	LOTOI	

Frame Number = 2

Beam Number = 9

Fy (ksi)

2nd = 50.00

Beam Size = W12X35

Left Connection - Reduced Beam Section

Right Connnection - Reduced Beam Section

a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

INPUT DESIGN PARAMETERS:

	X-AXIS	Y-AXIS
Lu for Axial (ft)	12.83	6.42
Lu for Bending (ft)	12.83	6.42
K	1.00	1.00
Top Flange Continuously Braced	No	
Bottom Flange Continuously Braced	No	

CONTROLLING BEAM SEGMENT FORCES - SHEAR

Load Combination: 1.077 D - 0.910 E2

Segment distance (ft) i - end	0.00
j - end	6.42

SHEAR CHECK:

Vax (kip)	=	9.68	Vnx/1.50 (kip)	\equiv	75.00	Vax/(Vnx/1.50)	=	0.129
Vav (kip)	=	-0.00	Vnv/1.67 (kip)	=	122.56	Vay/(Vny/1.67)	=	0.000

CONTROLLING BEAM SEGMENT FORCES - AXIAL

Load Combination: 1.000 D

Segment distance (ft) i - end	0.00
j - end	6.42

AXIAL CHECK:

Pa (kip)	=	0.00	Pnx/1.67 (kip)	=	308.38	Pa/(Pnx/1.67)	=	0.000
3. *2			Pny/1.67 (kip)	=	308.38	Pa/(Pny/1.67)	=	0.000
			Pn/1 67 (kin)	=	308 38	Pa/(Pn/1.67)	=	0.000

CONTROLLING BEAM SEGMENT FORCES - FLEXURE

Load Combination: 1.077 D - 0.910 E2

Segment distance (ft) i - end	0.00
j - end	6.42

CALCULATED PARAMETERS:

Pa (kip)	=	0.00	Pn/1.67 (kip)	=	308.38
Max (kip-ft)	=	-58.81	Mnx/1.67 (kip-ft)	=	127.74
May (kip-ft)	=	-0.00	Mny/1.67 (kip-ft)	=	28.69
Cbx	=	1.65			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.000

Eq H1-1b: 0.000 + 0.460 + 0.000 = 0.460

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 7/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

COLUMN INFORMATION:

Story Level = 1st

Frame Number = 2

Column Number = 6

Fy (ksi)

= 50.00

Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-AXIS	Y-AXIS
Lu for Axial (ft)	10.67	10.67
Lu for Bending (ft)	10.67	10.67
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D - 0.910 E2

Shear	Тор	Vmajor (kip)	4.38
	1.5	Vminor (kip)	-0.00
Shear	Bot.	Vmajor (kip)	4.38
		Vminor (kip)	-0.00

SHEAR CHECK:

Vax (kip)	=	4.38	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50) =	0.064
Vay (kip)	=	-0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67) =	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 0.683 E2

AXIAL CHECK:

Pa (kip)	=	71.91	Pnx/1.67 (kip)	=	404.63	Pa/(Pnx/1.67)	=	0.178
			Pny/1.67 (kip)	=	358.39	Pa/(Pny/1.67)	=	0.201
			Pn/1.67 (kip)	=	358.39	Pa/(Pn/1.67)	=	0.201

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 0.683 E2

Axial		Load (kip)	71.91
Moment	Top	Mmajor (kip-ft)	21.99
		Mminor (kip-ft)	0.00
Moment	Bot.	Mmajor (kip-ft)	9.87
		Mminor (kip-ft)	

CALCULATED PARAMETERS:

Pa (kip)	=	71.91	Pnx/1.67 (kip)	=	404.63
100 1 2 000			Pny/1.67 (kip)	=	358.39
Max (kip-ft)	=	21.99	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	29.46	KL/Ry	=	50.28
			Mcx (kip-ft)	=	146.60
Chy	=	2 16			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.201

Eq H1-1b Per H1.3: 0.089 + 0.146 + 0.000 = 0.235

Eq H1-2: 0.281 + 0.005 = 0.286

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 8/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

BEAM INFORMATION	N	0	T	T	A	1	N	R	0	F	V	I	VI	1	A	E	B	
------------------	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	---	--

Story Level = 1st

Frame Number = 2

Beam Number = 7

Fy (ksi)

= 50.00

Beam Size

= W12X35

Right Connnection - Reduced Beam Section

a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

INPUT DESIGN PARAMETERS:

	A-AXIS	Y-AXIS
Lu for Axial (ft)	12.83	5.04
Lu for Bending (ft)	12.83	5.04
K	1.00	1.00
Top Flange Continuously Braced	No	
Bottom Flange Continuously Braced	No	

CONTROLLING BEAM SEGMENT FORCES - SHEAR

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp - 0.683 E2

Segment distance (ft) i - end	0.00
j - end	2.75

SHEAR CHECK:

Vax (kip)	=	6.32	Vnx/1.50 (kip)	=	75.00	Vax/(Vnx/1.50) =	0.084
Vay (kip)	=	0.00	Vnv/1.67 (kip)	=	122.56	Vav/(Vnv/1.67) =	0.000

CONTROLLING BEAM SEGMENT FORCES - AXIAL

Load Combination: 1.000 D

Segment distance (ft) i - end	2.75
j - end	7.79

AXIAL CHECK:

Pa (kip)	=	0.00	Pnx/1.67 (kip)		308.38	Pa/(Pnx/1.67)	=	0.000
			Pny/1.67 (kip)	=	308.38	Pa/(Pny/1.67)	=	0.000
			Pn/1.67 (kip)	=	308.38	Pa/(Pn/1.67)	=	0.000

CONTROLLING BEAM SEGMENT FORCES - FLEXURE

Load Combination: 1.077 D + 0.910 E2

Segment distance (ft) i - end	7.79
j - end	12.83

CALCULATED PARAMETERS:

Pa (kip)	=	0.00	Pn/1.67 (kip)	=	308.38
Max (kip-ft)	=	-28.90	Mnx/1.67 (kip-ft)	=	127.74
May (kip-ft)	=	-0.00	Mny/1.67 (kip-ft)	=	28.69
Cbx	=	1.33			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.000

Eq H1-1b: 0.000 + 0.226 + 0.000 = 0.226

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 9/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

COLUMN INFORMATION:

Story Level = 2nd

Frame Number = 3 Column Number = 8

Fy (ksi)

= 50.00

Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu for Axial (ft)	9.00	9.00
Lu for Bending (ft)	9.00	9.00
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D + 0.910 E3

Shear	Top	Vmajor (kip)	15.15
	1000	Vminor (kip)	0.00
Shear	Bot.	Vmajor (kip)	15.15
		Vminor (kip)	0.00

SHEAR CHECK:

Vax (kip)	=	15.15	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50) =	0.223
Vay (kip)	=	0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67) =	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 0.683 E3

AXIAL CHECK:

Pa (kip)	=	35.28	Pnx/1.67 (kip)	=	412.10	Pa/(Pnx/1.67)	=	0.086
			Pny/1.67 (kip)	=	378.02	Pa/(Pny/1.67)	=	0.093
			Pn/1 67 (kin)	=	378 02	Pa/(Pn/1 67)	=	0.093

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.077 D + 0.910 E3

Axial		Load (kip)	16.57
Moment	Top	Mmajor (kip-ft)	-54.81
		Mminor (kip-ft)	-0.00
Moment	Bot.	Mmajor (kip-ft)	65.74
		Mminor (kip-ff)	0.00

CALCULATED PARAMETERS:

CILLOCLIA			♥.		
Pa (kip)	=	16.57	Pnx/1.67 (kip)	= .	412.10
			Pny/1.67 (kip)	=	378.02
Max (kip-ft)	=	65.74	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	24.85	KL/Ry	=	42.41
			Mcx (kip-ft)	=	150.69
Cbx	=	2.24			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.040

Eq H1-2: 0.065 + 0.038 = 0.103

Eq H1-1b Per H1.3: 0.020 + 0.436 + 0.000 = 0.456

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 10/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

COLUMN INFORMATION:

Story Level = 2nd

Frame Number = 3

Column Number = 9

Fy (ksi)

= 50.00

Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu for Axial (ft)	9.00	9.00
Lu for Bending (ft)	9.00	9.00
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D - 0.910 E3

Shear	Тор	Vmajor (kip)	-15.15
		Vminor (kip)	0.00
Shear	Bot.	Vmajor (kip)	-15.15
		Vminor (kip)	0.00

SHEAR CHECK:

Vax (kip)	=	-15.15	Vnx/1.50 (kip)	\equiv	68.00	Vax/(Vnx/1.50)	= 0	0.223
Vay (kip)	=	0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67)	== 1	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Sp - 0.683 E3

AXIAL CHECK:

Pa (kip)	=	35.28	Pnx/1.67 (kip)	=	412.10	Pa/(Pnx/1.67)	=	0.086
			Pny/1.67 (kip)	=	378.02	Pa/(Pny/1.67)	=	0.093
			Pn/1.67 (kip)	=	378.02	Pa/(Pn/1.67)	=	0.093

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.077 D - 0.910 E3

Axial		Load (kip)	16.57
Moment	Top	Mmajor (kip-ft)	54.81
	•	Mminor (kip-ft)	-0.00
Moment	Bot.	Mmajor (kip-ft)	-65.73
		Mminor (kip-ft)	0.00

CALCIII.ATED PARAMETERS:

CALCULATE	DIAM		D.		
Pa (kip)	=	16.57	Pnx/1.67 (kip)	=	412.10
			Pny/1.67 (kip)	=	378.02
Max (kip-ft)	=	-65.73	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	24.85	KL/Ry	=	42.41
			Mcx (kip-ft)	=	150.69
Cbx	=	2.24			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.040

Eq H1-2: 0.065 + 0.038 = 0.103

Eq H1-1b Per H1.3: 0.020 + 0.436 + 0.000 = 0.456

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 11/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

DEAM INFORMATION	BEAM	INFORMATION:
------------------	------	--------------

Story Level = 2nd

Frame Number = 3

Beam Number = 6

Fy (ksi)

= 50.00

Beam Size = W12X35

Left Connection - Reduced Beam Section

Right Connnection - Reduced Beam Section

a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu for Axial (ft)	12.83	6.33
Lu for Bending (ft)	12.83	6.33
K	1.00	1.00
Top Flange Continuously Braced	No	
Bottom Flange Continuously Braced	No	

CONTROLLING BEAM SEGMENT FORCES - SHEAR

Load Combination: 1.077 D + 0.910 E3

Segment distance (ft) i - end 6.50 12.83 j - end _____

SHEAR CHECK:

Vax (kip)	=	-10.32	Vnx/1.50 (kip)	=	75.00	Vax/(Vnx/1.50) =	= 0.138
Vay (kip)	=	-0.00	Vny/1.67 (kip)	=	122.56	Vay/(Vny/1.67) =	0.000

CONTROLLING BEAM SEGMENT FORCES - AXIAL

Load Combination: 1.000 D

Segment distance (ft) i - end	0.00
i - end	6.50

AXIAL CHECK:

Pa (kip)	=	0.00	Pnx/1.67 (kip)	=	308.38	Pa/(Pnx/1.67)	=	0.000
			Pny/1.67 (kip)	=	308.38	Pa/(Pny/1.67)	=	0.000
			Pn/1.67 (kip)	=	308.38	Pa/(Pn/1.67)	=	0.000

CONTROLLING BEAM SEGMENT FORCES - FLEXURE

Load Combination: 1.077 D + 0.910 E3

Segment distance (ft) i - end	6.50
j - end	=	12.83

CALCULATED PARAMETERS:

Pa (kip)	=	0.00	Pn/1.67 (kip)	=	308.38
Max (kip-ft)	=	-58.37	Mnx/1.67 (kip-ft)	=	127.74
May (kip-ft)	=	-0.00	Mny/1.67 (kip-ft)	=	28.69
Cbx	=	1.69			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.000

Eq H1-1b: 0.000 + 0.457 + 0.000 = 0.457

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 12/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

COLUMN INFORMATION:

Story Level = 1st

Frame Number = 3

Column Number = 11

Fy (ksi)

= 50.00

Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-AXIS	Y-AXIS
Lu for Axial (ft)	10.67	10.67
Lu for Bending (ft)	10.67	10.67
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D - 0.910 E3

Shear	Тор	Vmajor (kip)	4.31
		Vminor (kip)	-0.00
Shear	Bot.	Vmajor (kip)	4.31
		Vminor (kip)	-0.00

SHEAR CHECK:

Vax (kip)	=	4.31	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50)	=	0.063
Vay (kip)	=	-0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67)	=	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 0.683 E3

AXIAL CHECK:

Pa (kip)	=	60.32	Pnx/1.67 (kip)	=	404.63	Pa/(Pnx/1.67)	=	0.149
			Pny/1.67 (kip)	=	358.39	Pa/(Pny/1.67)	=	0.168
			Pn/1.67 (kip)	=	358.39	Pa/(Pn/1.67)	=	0.168

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.077 D + 0.910 E3

Axial		Load (kip)	31.00
Moment	Тор	Mmajor (kip-ft)	28.92
		Mminor (kip-ft)	-0.00
Moment	Bot.	Mmajor (kip-ft)	-13.00
		Mminor (kip-ft)	0.00

CALCULATED PARAMETERS:

Pa (kip)	=	31.00	Pnx/1.67 (kip)	=	404.63
			Pny/1.67 (kip)	=	358.39
Max (kip-ft)	=	28.92	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	-0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	29.46	KL/Ry	=	50.28
			Mcx (kip-ft)	=	146.60
CI.		0.16	71.50 III.		

Cbx 2.16

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.077

Eq H1-2: 0.126 + 0.008 = 0.134

Eq H1-1b Per H1.3: 0.038 + 0.192 + 0.000 = 0.230

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 13/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

COLUMN INFORMATION:

Story Level

= 1st

Frame Number = 3

Column Number = 12

Fy (ksi)

= 50.00

Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-AXIS	Y-AXIS
Lu for Axial (ft)	10.67	10.67
Lu for Bending (ft)	10.67	10.67
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D + 0.910 E3

Shear	Top	Vmajor (kip)	-4.31
	-	Vminor (kip)	-0.00
Shear	Bot.	Vmajor (kip)	-4.31
		Vminor (kip)	-0.00

SHEAR CHECK:

Vax (kip)	=	-4.31	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50)	=	0.063
Vay (kip)	=	-0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67)	= 0.01	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp - 0.683 E3

AXIAL CHECK:

Pa (kip)	=	60.25	Pnx/1.67 (kip)	=	404.63	Pa/(Pnx/1.67)	=	0.149
2.00			Pny/1.67 (kip)	=	358.39	Pa/(Pny/1.67)	=	0.168
			Pn/1.67 (kip)	=	358.39	Pa/(Pn/1.67)	=	0.168

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.077 D - 0.910 E3

Axial		Load (kip)	30.93
Moment	Top	Mmajor (kip-ft)	-28.91
		Mminor (kip-ft)	-0.00
Moment	Bot.	Mmajor (kip-ft)	13.00
		Mminor (kip-ft)	0.00

CALCULATED PARAMETERS:

Pa (kip)	=	30.93	Pnx/1.67 (kip)	=	404.63
8 (2002)			Pny/1.67 (kip)	=	358.39
Max (kip-ft)	=	-28.91	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	-0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	29.46	KL/Ry	=	50.28
			Mcx (kip-ft)	=	146.60
Cbx	=	2.16			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.076

Eq H1-2: 0.126 + 0.008 = 0.134

Eq H1-1b Per H1.3: 0.038 + 0.192 + 0.000 = 0.230

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 14/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

BEAM INI	FORMA	ATIC	N:
G. Y			

Story Level = 1st Frame Number = 3

Beam Number = 16

Fy (ksi)

= 50.00

Beam Size = W12X35

Left Connection - Reduced Beam Section

Right Connnection - Reduced Beam Section

a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

INPUT DESIGN PARAMETERS:

	A-AXIS	I-AXIS
Lu for Axial (ft)	12.83	6.33
Lu for Bending (ft)	12.83	6.33
K	1.00	1.00
Top Flange Continuously Braced	No	
Bottom Flange Continuously Braced	No	

CONTROLLING BEAM SEGMENT FORCES - SHEAR

Load Combination: 1.058 D + 0.750 Sp - 0.683 E3	
Segment distance (ft) i - end	0.00
i - end	6.50

SHEAR CHECK:

Vax (kip)	=	8.57	Vnx/1.50 (kip)	=	75.00	Vax/(Vnx/1.50) =	0.114
Vay (kip)	=	-0.00	Vny/1.67 (kip)	=	122.56	Vay/(Vny/1.67) =	0.000

CONTROLLING BEAM SEGMENT FORCES - AXIAL

Load Combination: 1.000 D

Segment distance (ft) i - end	0.00
j - end	6.50

AXIAL CHECK:

Pa (kip)	=	0.00	Pnx/1.67 (kip)	=	308.38	Pa/(Pnx/1.67)	=	0.000
22 2 21			Pny/1.67 (kip)	=	308.38	Pa/(Pny/1.67)	=	0.000
			Pn/1.67 (kip)	=	308.38	Pa/(Pn/1.67)	=	0.000

CONTROLLING BEAM SEGMENT FORCES - FLEXURE

Load Combination: 1.077 D + 0.910 E3

Segment distance (ft) i - end	6.50
i - end	12.83

CALCULATED PARAMETERS:

Pa (kip)	=	0.00	Pn/1.67 (kip)	\equiv	308.38
Max (kip-ft)		-39.50	Mnx/1.67 (kip-ft)	=	127.74
May (kip-ft)	=	-0.00	Mny/1.67 (kip-ft)	=	28.69
Cbx	=	1.73			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.000

Eq H1-1b: 0.000 + 0.309 + 0.000 = 0.309

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 15/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

COLUMN INFORMATION:

Story Level = 2nd

Frame Number = 4

Column Number = 5

Fy (ksi)

= 50.00

Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu for Axial (ft)	9.00	9.00
Lu for Bending (ft)	9.00	9.00
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D - 0.910 E1

Shear	Top	Vmajor (kip)	17.69
	*	Vminor (kip)	-0.00
Shear	Bot.	Vmajor (kip)	-17.69
		Vminor (kip)	-0.00

SHEAR CHECK:

Vax (kip)	=	-17.69	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50) =	0.260
Vay (kip)	=	-0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67) =	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp - 0.683 E1

AXIAL CHECK:

Pa (kip)	=	15.99	Pnx/1.67 (kip)	=	412.10	Pa/(Pnx/1.67)	=	0.039
			Pny/1.67 (kip)	=	378.02	Pa/(Pny/1.67)	=	0.042
			Pn/1.67 (kip)	=	378.02	Pa/(Pn/1.67)	=	0.042

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.077 D - 0.910 E1

Axial		Load (kip)	11.46
Moment	Top	Mmajor (kip-ft)	53.64
		Mminor (kip-ft)	0.00
Moment	Bot.	Mmajor (kip-ft)	-87.17
		Mminor (kip-ft)	0.00

CALCULATED PARAMETERS:

Pa (kip)	=	11.46	Pnx/1.67 (kip)	=	412.10
			Pny/1.67 (kip)	=	378.02
Max (kip-ft)	=	-87.17	Mnx/1.67 (kip-ft)	1	150.70
May (kip-ft)	=	0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	24.85	KL/Ry	=	42.41
			Mcx (kip-ft)	=	150.69
Cbx	=	2.20			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.028

Eq H1-2: 0.045 + 0.069 = 0.114

Eq H1-1b Per H1.3: 0.014 + 0.578 + 0.000 = 0.592

Frame Number = 4

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 16/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Column Number = 6

COLUMN INFORMATION:

Story Level = 2nd

= 50.00

Fy (ksi) Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu for Axial (ft)	9.00	9.00
Lu for Bending (ft)	9.00	9.00
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D + 0.910 E1

Shear	Top	Vmajor (kip)	13.42
		Vminor (kip)	-0.00
Shear	Bot.	Vmajor (kip)	13.42
		Vminor (kip)	-0.00

SHEAR CHECK:

Vax (kip)	=	13.42	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50)	=	0.197
Vay (kip)	=	-0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67)	=	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Sp + 0.683 E1

AXIAL CHECK:

Pa (kip)	=	30.70	Pnx/1.67 (kip)	=	412.10	Pa/(Pnx/1.67)	=	0.074
			Pny/1.67 (kip)	=	378.02	Pa/(Pny/1.67)	=	0.081
			Pn/1.67 (kip)	=	378.02	Pa/(Pn/1.67)	=	0.081

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.077 D + 0.910 E1

Axial		Load (kip)	14.87
Moment	Top	Mmajor (kip-ft)	-50.67
		Mminor (kip-ft)	0.00
Moment	Bot.	Mmajor (kip-ft)	56.09
		Mminor (kip-ft)	0.00

CALCULATED PARAMETERS:

Pa (kip)		14.87	Pnx/1.67 (kip)	=	412.10
			Pny/1.67 (kip)	=	378.02
Max (kip-ft)	=	56.09	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	24.85	KL/Ry	=	42.41
			Mcx (kip-ft)	=	150.69
Cbx	=	2.25			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.036

Eq H1-2: 0.058 + 0.027 = 0.086

Eq H1-1b Per H1.3: 0.018 + 0.372 + 0.000 = 0.390

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 17/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

BEAM INFORMATION:

Story Level = 2nd

Frame Number = 4

Beam Number = 15

Fy (ksi)

= 50.00

Beam Size = W12X35

Left Connection - Reduced Beam Section

Right Connnection - Reduced Beam Section

a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

INPUT DESIGN PARAMETERS:

	X-AXIS	Y-AXIS
Lu for Axial (ft)	12.83	6.42
Lu for Bending (ft)	12.83	6.42
K	1.00	1.00
Top Flange Continuously Braced	No	
Bottom Flange Continuously Braced	No	

CONTROLLING BEAM SEGMENT FORCES - SHEAR

Load Combination: 1.077 D - 0.910 E1

Segment distance (ft) i - end	0.00
j - end	6.42

SHEAR CHECK:

Vax (kip)	=	9.68	Vnx/1.50 (kip)	=	75.00	Vax/(Vnx/1.50) =	0.129
Vay (kip)	=	0.00	Vny/1.67 (kip)	=	122.56	Vay/(Vny/1.67) =	0.000

CONTROLLING BEAM SEGMENT FORCES - AXIAL

Load Combination: 1.000 D

Segment distance ((ft) 1 - end	0.00
i - end	S 120	6.42

AXIAL CHECK:

Pa (kip)	=	0.00	Pnx/1.67 (kip)	=	308.38	Pa/(Pnx/1.67)	===	0.000
10 70 70			Pny/1.67 (kip)	=	308.38	Pa/(Pny/1.67)	=	0.000
			Pn/1.67 (kip)	=	308.38	Pa/(Pn/1.67)	=	0.000

CONTROLLING BEAM SEGMENT FORCES - FLEXURE

Load Combination: 1.077 D - 0.910 E1

Segment distance (ft) i - end	0.00
j - end	6.42

CALCULATED PARAMETERS:

Pa (kip)	=	0.00	Pn/1.67 (kip)	=	308.38
Max (kip-ft)	=	-58.80	Mnx/1.67 (kip-ft)	=	127.74
May (kip-ft)	=	0.00	Mny/1.67 (kip-ft)	=	28.69
Cbx	=	1.65			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.000

Eq H1-1b: 0.000 + 0.460 + 0.000 = 0.460

Frame Number = 4

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 18/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Column Number = 3

COLUMN INFORMATION:

Story Level = 1st

Fy (ksi)

= 50.00

Column Size = W10X49

INPUT DESIGN PARAMETERS:

	X-AXIS	Y-AXIS
Lu for Axial (ft)	10.67	10.67
Lu for Bending (ft)	10.67	10.67
K	1.00	1.00

CONTROLLING COLUMN FORCES - SHEAR

Load Combination: 1.077 D - 0.910 E1

Shear	Тор	Vmajor (kip)	4.38
		Vminor (kip)	0.00
Shear	Bot.	Vmajor (kip)	4.38
		Vminor (kip)	0.00

SHEAR CHECK:

Vax (kip)	=	4.38	Vnx/1.50 (kip)	=	68.00	Vax/(Vnx/1.50) =	0.064
Vay (kip)	=	0.00	Vny/1.67 (kip)	=	201.20	Vay/(Vny/1.67) =	0.000

CONTROLLING COLUMN FORCES - AXIAL

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 0.683 E1

AXIAL CHECK:

Pa (kip)	=	71.33	Pnx/1.67 (kip)	=	404.63	Pa/(Pnx/1.67)	=	0.176
			Pny/1.67 (kip)	=	358.39	Pa/(Pny/1.67)		0.199
			Pn/1.67 (kip)	=	358.39	Pa/(Pn/1.67)	=	0.199

CONTROLLING COLUMN FORCES - FLEXURE

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 0.683 E1

Axial		Load (kip)	71.33
Moment	Top	Mmajor (kip-ft)	21.97
	•	Mminor (kip-ft)	-0.00
Moment	Bot.	Mmajor (kip-ft)	-9.86
		Mminor (kip-ft)	0.00

CALCULATED PARAMETERS:

Pa (kip)		71.33	Pn/1.67 (kip)	=	358.39
Max (kip-ft)	=	21.97	Mnx/1.67 (kip-ft)	=	150.70
May (kip-ft)	=	-0.00	Mny/1.67 (kip-ft)	=	70.61
KL/Rx	=	29.46	KL/Ry	=	50.28
Cbx	=	2.16	*		

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.199

Eq H1-1b: 0.100 + 0.146 + 0.000 = 0.245

RAM Frame 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 19/19

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

BEAM INFORMATION:

Story Level = 1st

Frame Number = 4

Beam Number = 2

Fy (ksi)

= 50.00

Beam Size = W12X35

Right Connnection - Reduced Beam Section

a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu for Axial (ft)	12.83	5.04
Lu for Bending (ft)	12.83	5.04
K	1.00	1.00
Top Flange Continuously Braced	No	
Bottom Flange Continuously Braced	No	

CONTROLLING BEAM SEGMENT FORCES - SHEAR

Load Combination: 1.058 D + 0.750 Lp + 0.750 Sp - 0.683 E1

Segment distance (ft) i - end	0.00
i - end	2.75

SHEAR CHECK:

Vax (kip)	=	6.32	Vnx/1.50 (kip)	=	75.00	Vax/(Vnx/1.50)	=	0.084
Vay (kip)	=	-0.00	Vny/1.67 (kip)	=	122.56	Vay/(Vny/1.67)	=	0.000

CONTROLLING BEAM SEGMENT FORCES - AXIAL

Load Combination: 1.000 D

Segment distance (ft) 1 - end	2.75
j - end	7.79

AXIAL CHECK:

Pa (kip)	=	0.00	Pnx/1.67 (kip)	=	308.38	Pa/(Pnx/1.67)	=	0.000
30 80			Pny/1.67 (kip)	=	308.38	Pa/(Pny/1.67)	=	0.000
			Pn/1.67 (kip)	=	308.38	Pa/(Pn/1.67)	=	0.000

CONTROLLING BEAM SEGMENT FORCES - FLEXURE

Load Combination: 1.077 D + 0.910 E1

Segment distance (ft) i - end	7.79
j - end	12.83

CALCULATED PARAMETERS:

Pa (kip)	=:	0.00	Pn/1.67 (kip)	=	308.38
Max (kip-ft)	=	-28.92	Mnx/1.67 (kip-ft)	=	127.74
May (kip-ft)	=	-0.00	Mny/1.67 (kip-ft)	=	28.69
Chy	-	1 33			

INTERACTION EQUATION:

Pa/(Pn/1.67)),=,0.000

Eq H1-1b: 0.000 + 0.226 + 0.000 = 0.226

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 17/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Story Number: 1

Joint Number: 16

Final Design

No Web Plate Required

No Top Flange Stiffener Required

No Bot Flange Stiffener Required

Joint Data and Material Properties

Web Plate Nom	ninal Yield (ksi)	36.00		
Stiffener Nomin	nal Yield (ksi) _	36.00		
	Size	Plan Angle	Elev Angle	Yield(ksi)
Col. At Jnt:	W10X49	0.00		50.00
Beam SideB:	W12X35	180.00	0.00	50.00

Criteria

Force on column flange is from beam moment, axial and shear forces. Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

<u>Side</u>	<u>Moment</u>	<u>Axial</u>	<u>Shear</u>	Load	Combination
	(kip-ft)	(kip)	(kip)		
В	-28.93	0.00	-3.85	1.077	D + 0.910 E1
Shear For	ce In Column Ab	=	13.42		
Controllin	g Shear Force (k	=	33.31		
Column V	Veb Capacity w/o	Web Plate	(kip)	=	74.60

Compression			Side A	47		Side B	*	
	<u>Flange</u>	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	<u>Force</u>	<u>LCo</u>	Cap.	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top				28.0	41	66.0	NO
	Bot				29.0	5	66.0	NO
Web Crippling	Тор				28.0	41	76.7	NO
	Bot				29.0	5	76.7	NO
Tension			Side A	9	-	Side B		
Tension	<u>Flange</u>	Force	Side A <u>LCo</u>	<u>Сар.</u>	Force	Side B <u>LCo</u>	<u>Сар.</u>	Stiffen
Tension	Flange			<u>Cap.</u> (kip)	Force (kip)		<u>Cap.</u> (kip)	Stiffen
Tension Local Web Yld	<u>Flange</u> Top	Force						Stiffen NO
		Force		(kip)	(kip)	<u>LCo</u>	(kip)	
	Тор	Force		(kip) 	(kip) 29.0	LCo 5	(kip) 66.0	NO

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

YES

Frame #1:

Story Number: 2

Joint Number: 1

Final Design

No Web Plate Required

Top SideA Stiffener LxWxT (in): 4.500 x 3.125 x 0.375 Bot SideA Stiffener LxWxT (in): 4.500 x 3.125 x 0.375

Joint Data and Material Properties

Web Plate Nominal Yield (ksi) ______ 36.00
Stiffener Nominal Yield (ksi) _____ 36.00
Size Plan Angle Ele

 Size
 Plan Angle
 Elev Angle
 Yield(ksi)

 Col. At Jnt:
 W10X49
 90.00
 -- 50.00

 Beam SideA:
 W12X35
 90.00
 0.00
 50.00

Criteria

Force on column flange is from beam moment, axial and shear forces.

Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

<u>Side</u>	<u>Moment</u>	<u>Axial</u>	Shear	Load Combination
	(kip-ft)	(kip)	(kip)	
A	-61.52	-0.00	11.26	1.077 D - 0.910 E4
Controlli	ng Shear Force (k	= 45.58		
Column	Web Capacity w/o	= 74.60		

Stiffener Required Area

<u>Side</u>	<u>Flange</u>	Ast Reqd (two s	o stiffeners)		
		(in2)			
SideA	Тор	1.00	OK		
SideA	Bot	0.05	OK		

Bot

60.2

40

Compression			Side A			Side B		
7	Flange	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top	60.2	40	35.9				YES
	Bot	61.6	12	66.0				NO
Web Crippling	Top	60.2	40	38.4				YES
	Bot	61.6	12	76.7				NO
					13			
Tension			Side A		•	Side B		
	<u>Flange</u>	Force	<u>LCo</u>	Cap.	Force	<u>LCo</u>	<u>Cap.</u>	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top	61.6	12	35.9				YES
	Bot	60.2	40	66.0			-	NO
Flange Bend.	Top	61.6	12	29.3				YES

58.7

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

Page 2/18

02/27/18 11:56:28

Bentley Building Code: IBC

Steel Code: AISC360-10 ASD

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 3/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Story Number: 2

Joint Number: 2

Final Design

No Web Plate Required

Top SideB Stiffener LxWxT (in): 4.500 x 3.125 x 0.375 Bot SideB Stiffener LxWxT (in): 4.500 x 3.125 x 0.375

Joint Data and Material Properties

Web Plate Nominal Yield (ksi)36.00Stiffener Nominal Yield (ksi)36.00

 Size
 Plan Angle
 Elev Angle
 Yield(ksi)

 Col. At Jnt:
 W10X49
 90.00
 -- 50.00

 Beam SideB:
 W12X35
 270.00
 0.00
 50.00

Criteria

Force on column flange is from beam moment, axial and shear forces. Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

<u>Side</u>	<u>Moment</u>	<u>Axial</u>	Shear Shear	Load Combination
	(kip-ft)	(kip)	(kip)	
В	-61.52	0.00	-11.26	1.077 D + 0.910 E4
Controlli	ng Shear Force (k	= 45.58		
Column V	Web Capacity w/o	= 74.60		

Stiffener Required Area

Side	<u>Flange</u>	Ast Reqd (two s	tiffeners)
		(in2)	
SideB	Тор	1.00	OK
SideB'	Bot	0.05	OK

Compression			Side A			Side B	-	
	<u>Flange</u>	Force	<u>LCo</u>	<u>Cap.</u>	<u>Force</u>	<u>LCo</u>	Cap.	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top				60.2	44	35.9	YES
	Bot				61.6	8	66.0	NO
Web Crippling	Тор				60.2	44	38.4	YES
	Bot				61.6	8	76.7	NO
Tension			Side A		•	Side B		

nsion	——— Side A ———				·			
	<u>Flange</u>	Force	<u>LCo</u>	Cap.	Force	<u>LCo</u>	Cap.	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top				61.6	8	35.9	YES
	Bot				60.2	44	66.0	NO
Flange Bend.	Top				61.6	8	29.3	YES
	Bot				60.2	44	58.7	YES

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 4/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 5/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Frame #2:

Story Number: 2

Col. At Jnt:

Joint Number: 5

Final Design

No Web Plate Required

Top SideB Stiffener LxWxT (in):

4.500 3.125 0.375

No Bot Flange Stiffener Required

Joint Data and Material Properties

36.00 Web Plate Nominal Yield (ksi)

Stiffener Nominal Yield (ksi) 36.00

Yield(ksi) Size Plan Angle Elev Angle 0.00 50.00 W10X49

0.0050.00 Beam SideB: W12X35 180.00

Criteria

Force on column flange is from beam moment, axial and shear forces.

Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

Load Combination Side Axial **Shear** Moment (kip-ft) (kip) (kip) -0.00-9.62 1.077 D + 0.910 E2 В -53.64 Controlling Shear Force (kip) 40.32

Column Web Capacity w/o Web Plate (kip)

74.60

42

52.9

58.7

NO

Stiffener Required Area

Flange Ast Reqd (two stiffeners) Side (in2)

Bot

SideB Top 0.75 OK

Compression			Side A		-	Side B		
	Flange	Force	LCo	Cap.	Force	<u>LCo</u>	<u>Cap.</u>	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top	5 5555 555	And And And		52.9	42	35.9	YES
	Bot				53.7	6	66.0	NO
Web Crippling	Top				52.9	42	38.4	YES
	Bot		(T.T.)		53.7	6	76.7	NO
Tension			Side A		-	Side B		
	<u>Flange</u>	Force	LCo	Cap.	Force	<u>LCo</u>	Cap.	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Тор				53.7	6	35.9	YES
	Bot				52.9	42	66.0	NO
Flange Bend.	Top				53.7	6	29.3	YES

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

Page 6/18 02/27/18 11:56:28

Bentley Building Code: IBC

Steel Code: AISC360-10 ASD

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 7/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Story Number: 2

Joint Number: 3

Final Design

No Web Plate Required

Top SideA Stiffener LxWxT (in):

4.500 3.125 0.375

No Bot Flange Stiffener Required

Joint Data and Material Properties

Web Plate Nominal Yield (ksi) 36.00

36.00 Stiffener Nominal Yield (ksi) _

Plan Angle Yield(ksi) Size Elev Angle 50.00 Col. At Jnt: W10X49 0.00 0.00 Beam SideA: W12X35 0.00 50.00

Criteria

Force on column flange is from beam moment, axial and shear forces.

Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

<u>Side</u>	Moment	<u>Axial</u>	Shear	Load Combination
	(kip-ft)	(kip)	(kip)	
A	-58.82	0.00	9.68	1.077 D - 0.910 E2
Controlli	ng Shear Force (k	= 41.23		
Column 7	Web Capacity w/o	Web Plate	(kip)	= 74.60

Stiffener Required Area

Ast Reqd (two stiffeners) Side Flange (in2) 0.91 SideA Top OK

****	Side A		8	Side B		
ange Force	<u>LCo</u>	<u>Cap.</u>	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	Stiffen
(kip)		(kip)	(kip)		(kip)	
op 57.5	38	35.9				YES
ot 58.9	10	66.0			-	NO
op 57.5	38	38.4				YES
ot 58.9	10	76.7				NO
	(kip) op 57.5 ot 58.9 op 57.5	ange Force (kip) op 57.5 38 ot 58.9 10 op 57.5 38	ange Force LCo Cap. (kip) (kip) op 57.5 38 35.9 ot 58.9 10 66.0 op 57.5 38 38.4	ange Force (kip) LCo (kip) Cap. (kip) Force (kip) op 57.5 38 35.9 ot 58.9 10 66.0 op 57.5 38 38.4	ange Force (kip) LCo (kip) Cap. (kip) Force (kip) op 57.5 38 35.9 ot 58.9 10 66.0 op 57.5 38 38.4	ange Force LCo Cap. Force LCo Cap. (kip) (kip) (kip) (kip) (kip) op 57.5 38 35.9 ot 58.9 10 66.0 op 57.5 38 38.4

Tension			Side A			Side B		
	<u>Flange</u>	Force	<u>LCo</u>	Cap.	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top	58.9	10	35.9				YES
	Bot	57.5	38	66.0				NO
Flange Bend.	Top	58.9	10	29.3				YES
	Rot	57.5	38	58.7				NO

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 8/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Story Number: 1

Joint Number: 15

Final Design

No Web Plate Required

No Top Flange Stiffener Required

No Bot Flange Stiffener Required

Joint Data and Material Properties

Web Plate Nominal Yield (ksi)	36.00
Stiffener Nominal Yield (ksi)	36.00

	Size	Plan Angle	Elev Angle	Yield(ksi)
Col. At Jnt:	W10X49	0.00		50.00
Beam SideB:	W12X35	180.00	0.00	50.00

Criteria

Force on column flange is from beam moment, axial and shear forces. Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

<u>Side</u>	<u>Moment</u>	<u>Axial</u>	<u>Shear</u>	Load	Combination
	(kip-ft)	(kip)	(kip)		
В	-28.91	0.00	-3.85	1.077	D + 0.910 E2
Shear Ford	ce In Column Ab	ove Joint(ki	p)	=	13.41
Controllin	g Shear Force (k	ip)		=	33.29
Column W	eb Capacity w/c	Web Plate	(kip)	=	74.60

Compression		-	Side A		:	Side B	250	
	<u>Flange</u>	Force	<u>LCo</u>	Cap.	Force	LCo	<u>Cap.</u>	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top				28.0	42	66.0	NO
	Bot				29.0	6	66.0	NO
Web Crippling	Top				28.0	42	76.7	NO
***. III	Bot				29.0	6	76.7	NO
Tension		+	Side A		-	Side B	8———8	
	774							
	<u>Flange</u>	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	<u>Force</u>	<u>LCo</u>	Cap.	<u>Stiffen</u>
	<u>Flange</u>	Force (kip)	<u>LCo</u>	<u>Cap.</u> (kip)	Force (kip)	<u>LCo</u>	<u>Cap.</u> (kip)	Stiffen
Local Web Yld	Flange Top		<u>LCo</u>	0.00		<u>LCo</u> 6		Stiffen NO
Local Web Yld			<u>LCo</u>	0.00	(kip)	500	(kip)	(/
Local Web Yld Flange Bend.	Тор		<u>LCo</u> 	0.00	(kip) 29.0	6	(kip) 66.0	NO
	Top Bot		<u>LCo</u>	0.00	(kip) 29.0 28.0	6 42	(kip) 66.0 66.0	NO NO

RAM Structural System 15.07.00.17 RAM Structural System DataBase: Meehan Cabin 2018-02-19

02/27/18 11:56:28

Page 9/18

Bentley Building Code: IBC

Steel Code: AISC360-10 ASD

Frame #3:

Story Number: 2

Joint Number: 8

Final Design

No Web Plate Required

Top SideB Stiffener LxWxT (in):

0.375 4.500 3.125

No Bot Flange Stiffener Required

Joint Data and Material Properties

36.00 Web Plate Nominal Yield (ksi) _ 36.00 Stiffener Nominal Yield (ksi)

Yield(ksi) Plan Angle Elev Angle Size 90.00 50.00 Col. At Jnt: W10X49 0.00 50.00 Beam SideB: 270.00 W12X35

Criteria

Force on column flange is from beam moment, axial and shear forces.

Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

<u>Side</u>	Moment	<u>Axial</u>	Shear	Load Combination
	(kip-ft)	(kip)	(kip)	/
В	-58.39	-0.00	-10.32	1.077 D + 0.910 E3
Controlli	ng Shear Force (k	(ip)		= 43.34

Column Web Capacity w/o Web Plate (kip) 74.60

Stiffener Required Area

Side	<u>Flange</u>	Ast Reqd (two stiffeners)	
		(in2)	
SideB	Top	0.90 OK	

Compression			Side A	-	2 	Side B		
	<u>Flange</u>	Force	<u>LCo</u>	Cap.	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Тор				57.0	43	35.9	YES
	Bot				58.5	7	66.0	NO
Web Crippling	Top		222		57.0	43	38.4	YES
	Bot				58.5	7	76.7	NO
Tension			Side A		×2	Side B		

ension			Side A		×	Side B		
	<u>Flange</u>	Force	LCo	Cap.	Force	<u>LCo</u>	Cap.	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top				58.5	7	35.9	YES
	Bot				57.0	43	66.0	NO
Flange Bend.	Top			.===	58.5	7	29.3	YES
(- €	Bot				57.0	43	58.7	NO

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

02/27/18 11:56:28

Page 10/18

Bentley Building Code: IBC

Steel Code: AISC360-10 ASD

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 11/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Story Number: 2

Joint Number: 7

Final Design

No Web Plate Required

Top SideA Stiffener LxWxT (in):

4.500 x 3.125

x = 0.375

No Bot Flange Stiffener Required

Joint Data and Material Properties

Web Plate Nominal Yield (ksi) _____ 36.00

Stiffener Nominal Yield (ksi) _____ 36.00

Size Plan Angle Elev Angle Yield(ksi)
W10X49 90.00 --- 50.00

Col. At Jnt: W10X49 90.00 --- 50.00 Beam SideA: W12X35 90.00 0.00 50.00

Criteria

Force on column flange is from beam moment, axial and shear forces.

Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

SideMoment
(kip-ft)Axial
(kip)Shear
(kip)Load CombinationA-58.390.0010.321.077 D - 0.910 E3Controlling Shear Force (kip)= 43.34

Column Web Capacity w/o Web Plate (kip) = 74.60

Stiffener Required Area

Side Flange Ast Reqd (two stiffeners)

(in2)

SideA Top 0.90 OK

Side A Side B -Compression Stiffen **LCo** Cap. Flange <u>Force</u> <u>LCo</u> Cap. **Force** (kip) (kip) (kip) (kip) Local Web Yld 57.0 39 35.9 YES Top NO 58.5 11 66.0 Bot YES 57.0 39 38.4 Web Crippling Top NO Bot 58.5 11 76.7

Side A Side B Tension Stiffen <u>Flange</u> Force LCo Cap. <u>Force</u> LCo Cap. (kip) (kip) (kip) (kip) YES Local Web Yld Top 58.5 11 35.9 NO 57.0 39 Bot 66.0 YES 58.5 11 29.3 Flange Bend. Top NO Bot 57.0 39 58.7

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 12/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Story Number: 1

Joint Number: 18

Final Design

No Web Plate Required

No Top Flange Stiffener Required

No Bot Flange Stiffener Required

Joint Data and Material Properties

Web Plate Nominal Yield (ksi) _____ 36.00 Stiffener Nominal Yield (ksi) ____ 36.00

 Size
 Plan Angle
 Elev Angle
 Yield(ksi)

 Col. At Jnt:
 W10X49
 90.00
 -- 50.00

 Beam SideB:
 W12X35
 270.00
 0.00
 50.00

Criteria

Force on column flange is from beam moment, axial and shear forces.

Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

<u>Side</u>	<u>Moment</u>	<u>Axial</u>	<u>Shear</u>	Load	<u>Combination</u>
	(kip-ft)	(kip)	(kip)		
В	-39.51	0.00	-7.29	1.077	D + 0.910 E3
Shear Force	e In Column Ab	ove Joint(ki	p)	=	15.15
Controlling	Shear Force (k	tip)		=	43.71
Column We	eb Capacity w/o	Web Plate	(kip)	=	74.60

Compression		= ====	Side A		÷	Side B	-	
	<u>Flange</u>	<u>Force</u>	<u>LCo</u>	Cap.	Force	<u>LCo</u>	<u>Cap.</u>	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top				37.5	43	66.0	NO
	Bot				39.6	7	66.0	NO
Web Crippling	Top				37.5	43	76.7	NO
	Bot				39.6	7	76.7	NO
Tension			Side A		\$ 2	Side B	3	
Tension	<u>Flange</u>	Force	Side A LCo	<u>Сар.</u>	Force	Side B LCo	<u>Сар.</u>	Stiffen
Tension	<u>Flange</u>	Force (kip)		<u>Сар.</u> (kip)	Force (kip)		<u>Cap.</u> (kip)	Stiffen
Tension Local Web Yld	Flange Top							Stiffen NO
				(kip)	(kip)	LCo	(kip)	
	Тор			(kip)	(kip) 39.6	<u>LCo</u> 7	(kip) 66.0	NO
Local Web Yld	Top Bot			(kip)	(kip) 39.6 37.5	<u>LCo</u> 7 43	(kip) 66.0 66.0	NO NO

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 13/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Story Number: 1

Joint Number: 17

Final Design

No Web Plate Required

No Top Flange Stiffener Required

No Bot Flange Stiffener Required

Joint Data and Material Properties

36.00 Web Plate Nominal Yield (ksi) 36.00 Stiffener Nominal Yield (ksi)

Plan Angle Elev Angle Yield(ksi) Size 90.00 50.00 Col. At Jnt: W10X49 90.00 0.00 50.00 Beam SideA: W12X35

Criteria

Force on column flange is from beam moment, axial and shear forces. Use actual beam moments to determine panel zone shear at the joint. Optimize design of each stiffener at a joint

Results

Panel Zone

<u>Side</u>	<u>Moment</u>	<u>Axial</u>	Shear	Load	Combination
	(kip-ft)	(kip)	(kip)		
A	-39.51	-0.00	7.29	1.077	D - 0.910 E3
Shear For	rce In Column Ab	ove Joint(ki	p)	=	-15.15
Controlli	ng Shear Force (k	ip)		=	43.71
Column V	Web Capacity w/o	Web Plate	(kip)	=	74.60

Compression			Side A			Side B	-	
	Flange	Force	LCo	<u>Cap.</u>	Force	<u>LCo</u>	Cap.	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top	37.5	39	66.0	-			NO
	Bot	39.6	11	66.0				NO
Web Crippling	Top	37.5	39	76.7				NO
	Bot	39.6	11	76.7			Table 1	NO
Tension			Side A	<u> </u>		Side B	2	
Tension	<u>Flange</u>	Force	Side A LCo	 <u>Сар.</u>	Force	Side B LCo	<u>Сар.</u>	Stiffen
Tension	Flange			<u>Cap.</u> (kip)	Force (kip)		<u>Cap.</u> (kip)	Stiffen
Tension Local Web Yld	Flange Top	Force		100 CO 200 VO	- Van 12 12 12 12 12 12 12 12 12 12 12 12 12			Stiffen NO
		Force (kip)	<u>LCo</u>	(kip)	- Van 12 12 12 12 12 12 12 12 12 12 12 12 12			
	Тор	Force (kip) 39.6	<u>LCo</u> 11	(kip) 66.0	- Van 12 12 12 12 12 12 12 12 12 12 12 12 12			NO
Local Web Yld	Top Bot	Force (kip) 39.6 37.5	LCo 11 39	(kip) 66.0 66.0	- Van 12 12 12 12 12 12 12 12 12 12 12 12 12		(kip) 	NO NO

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 14/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Frame #4:

Story Number: 2

Joint Number: 4

Final Design

No Web Plate Required

Top SideA Stiffener LxWxT (in):

0.375 4.500 3.125

No Bot Flange Stiffener Required

Joint Data and Material Properties

Web Plate Nominal Yield (ksi) 36.00 36.00 Stiffener Nominal Yield (ksi)

Yield(ksi) Plan Angle Elev Angle Size 0.00 50.00 Col. At Jnt: W10X49 0.00 50.00 0.00 Beam SideA: W12X35

Criteria

Force on column flange is from beam moment, axial and shear forces.

Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

Side	Moment	<u>Axial</u>	Shear	Load Combination
	(kip-ft)	(kip)	(kip)	
A	-58.82	0.00	9.68	1.077 D - 0.910 E1
Controllin	ng Shear Force (k	= 41.22		
Column V	Web Capacity w/o	Web Plate	(kip)	= 74.60

Stiffener Required Area

Side Flange Ast Reqd (two stiffeners) (in2)0.91 OK SideA Top

Compression			Side A		 8	Side B	-	
	Flange	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	<u>Stiffen</u>
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top	57.5	37	35.9				YES
	Bot	58.9	9	66.0				NO
Web Crippling	Тор	57.5	37	38.4				YES
14	Bot	58.9	9	76.7				NO
Tension			Side A		<u> </u>	Side B		
Tension	Flange	Force	Side A LCo	<u>Сар.</u>	Force	Side B LCo	 Сар.	<u>Stiffen</u>
Tension	<u>Flange</u>	<u>Force</u>		<u>Cap.</u> (kip)			<u>Cap.</u> (kip)	Stiffen
Tension Local Web Yld				3. The second se	Force (kip)			Stiffen YES
	Flange Top Bot	Force (kip)	<u>LCo</u>	(kip)				
	Тор	Force (kip) 58.9	<u>LCo</u> 9	(kip) 35.9				YES

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 15/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 16/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

0.375

Story Number: 2

Joint Number: 6

Final Design

No Web Plate Required

Top SideB Stiffener LxWxT (in):

4.500 x 3.125

No Bot Flange Stiffener Required

Joint Data and Material Properties

Web Plate Nominal Yield (ksi) _____ 36.00 Stiffener Nominal Yield (ksi) _____ 36.00

 Size
 Plan Angle
 Elev Angle
 Yield(ksi)

 Col. At Jnt:
 W10X49
 0.00
 -- 50.00

 Beam SideB:
 W12X35
 180.00
 0.00
 50.00

Criteria

Force on column flange is from beam moment, axial and shear forces.

Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

<u>Side</u>	Moment	<u>Axial</u>	Shear	Load Combination
	(kip-ft)	(kip)	(kip)	
В	-53.65	-0.00	-9.62	1.077 D + 0.910 E1
Controlli	ng Shear Force (k	ip)		= 40.32
Column	Web Capacity w/o	= 74.60		

Stiffener Required Area

<u>Side</u>	<u>Flange</u>	Ast Reqd (two stiffeners)			
		(in2)			
SideB	Top	0.75	OK		

Compression			Side A	e e		Side B	-	
•	<u>Flange</u>	Force	<u>LCo</u>	<u>Cap.</u>	Force	<u>LCo</u>	Cap.	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top				52.9	41	35.9	YES
	Bot				53.7	5	66.0	NO
Web Crippling	Top				52.9	41	38.4	YES
4.4	Bot				53.7	5	76.7	NO

Tension			Side A	-	-	Side B		
	<u>Flange</u>	Force	<u>LCo</u>	Cap.	Force	<u>LCo</u>	Cap.	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top				53.7	5	35.9	YES
	Bot				52.9	41	66.0	NO
Flange Bend.	Тор				53.7	5	29.3	YES
	Bot				52.9	41	58.7	NO

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 17/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Story Number: 1

Joint Number: 16

Final Design

No Web Plate Required

No Top Flange Stiffener Required

No Bot Flange Stiffener Required

Joint Data and Material Properties

Stiffener Nominal Yield (ksi)	36.00	
Size	Plan Angle	Elev

	<u>Size</u>	<u>Plan Angle</u>	<u>Elev Angle</u>	Yield(ksi)
Col. At Jnt:	W10X49	0.00		50.00
Beam SideB:	W12X35	180.00	0.00	50.00

Criteria

Force on column flange is from beam moment, axial and shear forces. Use actual beam moments to determine panel zone shear at the joint.

Optimize design of each stiffener at a joint

Results

Panel Zone

Side	Moment	<u>Axial</u>	Shear	Load Combination
	(kip-ft)	(kip)	(kip)	
В	-28.93	0.00	-3.85	1.077 D + 0.910 E1
Shear For	ce In Column Ab	ove Joint(ki	p)	= 13.42
Controllin	ng Shear Force (k	= 33.31		
Column V	Veb Capacity w/o	= 74.60		

Compression			Side A		-	Side B		
•	<u>Flange</u>	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	<u>Force</u>	<u>LCo</u>	<u>Cap.</u>	<u>Stiffen</u>
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Top				28.0	41	66.0	NO
	Bot				29.0	5	66.0	NO
Web Crippling	Top			(444)	28.0	41	76.7	NO
	Bot				29.0	5	76.7	NO
Tension			Side A		(Side B		
Tension	<u>Flange</u>	Force	Side A LCo	<u>Сар.</u>	Force	Side B LCo	Cap.	Stiffen
Tension	<u>Flange</u>	Force (kip)		<u>Cap.</u> (kip)	Force (kip)		<u>Cap.</u> (kip)	Stiffen
Tension Local Web Yld	Flange Top	1000						Stiffen NO
		1000	<u>LCo</u>		(kip)	LCo	(kip)	
	Тор	1000	<u>LCo</u>		(kip) 29.0	LCo 5	(kip) 66.0	NO
Local Web Yld	Top Bot	1000	<u>LCo</u>		(kip) 29.0 28.0	<u>LCo</u> 5 41	(kip) 66.0 66.0	NO NO

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 18/18

02/27/18 11:56:28

Steel Code: AISC360-10 ASD

Frame #5:

Seismic Provisions Member Code Check

B

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

02/27/18 11:58:11

Sentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 2nd

Frame No: 1

Member No: 2

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 26.18 --- Combination: 1.058 D + 0.750 Sp - 1.575 E4

Max Pa/(Pn/ Ω) = 0.07 OK

Tension:

Max Pa (kip) = 22.27 --- Combination: 0.523 D + 2.100 E4

Max Pa/(Pn/ Ω) = 0.05 OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 36.74 --- Combination: 1.077 D - 2.100 E4

No shear in minor axis

Moment in major axis (kip-ft) = 179.69 --- Combination: 1.077 D - 2.100 E4

Moment in minor axis (kip-ft) = 0.00 --- Combination: 1.077 D - 2.100 E4

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

For calculation of web limit: Pa (kip) = 26.18

 $Py/\Omega(kip) = 431.14$

Flange b/tf=

8.93

Limit =

9.15 OK

Web h/tw =

23.18

Limit =

75.43 OK

E2.6g Column Splices (D2.5c Required Shear Strength)

Column is at the lowest story. No column splice required

Seismic Provisions Member Code Check

RAM Structural System

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Page 2/19 02/27/18 11:58:11

02/2//18 11:38:11

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 2nd

Frame No: 1

Member No: 3

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 26.18 --- Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 1.575 E4

Max $Pa/(Pn/\Omega) = 0.07$ OK

Tension:

Max Pa (kip) = 22.27 --- Combination: 0.523 D - 2.100 E4

Max $Pa/(Pn/\Omega) = 0.05$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 36.74 --- Combination: 1.077 D + 2.100 E4

No shear in minor axis

Moment in major axis (kip-ft) = 179.69 --- Combination: 1.077 D + 2.100 E4

Moment in minor axis (kip-ft) = 0.00 --- Combination: 1.077 D - 2.100 E4

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

For calculation of web limit: Pa (kip) = 26.18 Py/ Ω (kip) = 431.14

Flange b/tf = 8.93 Limit = 9.15 OK

Web h/tw = 23.18 Limit = 75.43 OK

E2.6g Column Splices (D2.5c Required Shear Strength)

Column is at the lowest story. No column splice required

Seismic Provisions Member Code Check

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 3/19

02/27/18 11:58:11

Steel Code: AISC341-10 - ASD

Beam Parameters

Story: 2nd

Frame No: 1

Member No: 12

Fy (ksi): 50.00

Size: W12X35

Frame Type: Intermediate Moment Resisting Frame

Left Connection - Reduced Beam Section Right Connection - Reduced Beam Section a(in) = 3.50 b(in) = 8.25 c(in) = 0.75 Use Reduced Section Properties in Analysis

Reduced Beam Section (RBS) Bending Check --- OK

	End I	End J
Distance column Flange to middle RBS (in)	7.63	7.63
Max Moment at RBS (kip-ft)	-54.45	-54.45
Load Combination Number	12	8
Reduced plastic modulus - Zrbs (in ³)	41.86	41.86
1.67 Ma / Zrbs Fy	0.52	0.52
	OK	OK

E2.4a Stability Bracing of Beams (D1.2a Moderately Ductile) --- OK

Max Lu (in) = 67.00

Lu Limit = 152.07

OK

Lateral Bracing Requirements along Beam

Required strength of lateral brace along beam = 3.13 kip

Required stiffness of bracing (A-6-8) = 3134.11 kip / Lb

Lateral Bracing Requirements at Plastic Hinge

Required strength of lateral brace at hinge = 7.69 kip

Required stiffness of bracing (A-6-8) = 2562.11 kip / Lb

Cd = 1.0 assumed for eqns (A-6-7/8)

Lb = distance between braces (in)

The brace closest to the point of inflection should be designed for two times these values (Cd=2)

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

Flange b/tf = Web h/tw =

6.31 36.20 Limit = Limit = 9.15 OK 90.55 OK

E2.6b Beam-to-Column Connection Requirements

Beam-to-column connection must be capable of sustaining a 0.02 radian interstory drift ratio. All beam-to-column joints to demonstrate conformance with E2.6b(1) as indicated in E2.6b(2)

RAM Structural System 15.07.00.17

02/27/18 11:58:11

Page 4/19

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 2nd

Frame No: 2

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 39.77 --- Combination: 1.058 D + 0.750 Sp + 1.575 E2

Member No: 11

Max $Pa/(Pn/\Omega) = 0.11$ OK

Tension:

Max Pa (kip) = 18.61 --- Combination: 0.523 D - 2.100 E2

Max $Pa/(Pn/\Omega) = 0.04$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 30.75 --- Combination: 1.077 D + 2.100 E2

No shear in minor axis

Moment in major axis (kip-ft) = 128.66 --- Combination: 1.077 D + 2.100 E2

Moment in minor axis (kip-ft) = 0.00 --- Combination: 1.077 D - 2.100 E4

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

For calculation of web limit: Pa (kip) = 39.77 $Py/\Omega(kip) = 431.14$

Flange b/tf =8.93 Limit =

9.15 OK

Web h/tw = 23.18 Limit =

67.58 OK

E2.6g Column Splices (D2.5c Required Shear Strength)

Major Minor

ΣMpc (kip-ft)

335.56

157.22

Column Splice Shear Force Required ΣMpc / 1.5H

Where Σ Mpc is the sum of column plastic strengths above and below splice.

Required flexural strength for bolted column splices (kip-ft) = 184.56

See code for more information on the Required Shear Strength

Page 5/19

Seismic Provisions Member Code Check

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

02/27/18 11:58:11 Steel Code: AISC341-10 - ASD Bentley Building Code: IBC

Column Parameters

Story: 2nd

Frame No: 2

Member No: 12

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 25.06 --- Combination: 1.058 D + 0.750 Lp + 0.750 Sp - 1.575 E2

Max $Pa/(Pn/\Omega) = 0.07$ OK

Tension:

Max Pa (kip) = 20.27 --- Combination: 0.523 D + 2.100 E2

Max $Pa/(Pn/\Omega) = 0.05$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 40.63 --- Combination: 1.077 D - 2.100 E2

No shear in minor axis

Moment in major axis (kip-ft) = 200.92 --- Combination: 1.077 D - 2.100 E2

Moment in minor axis (kip-ft) = 0.00 --- Combination: 1.077 D - 2.100 E4

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

For calculation of web limit: Pa (kip) = 25.06 $Py/\Omega(kip) = 431.14$

8.93 Limit = 9.15 OK Flange b/tf =

Web h/tw = 23.18 Limit = 76.08 OK

E2.6g Column Splices (D2.5c Required Shear Strength)

Column is at the lowest story. No column splice required

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 6/19

02/27/18 11:58:11

Steel Code: AISC341-10 - ASD

Beam Parameters

Story: 2nd

Frame No: 2

Member No: 9

Fy (ksi): 50.00

Size: W12X35

Frame Type: Intermediate Moment Resisting Frame

Left Connection - Reduced Beam Section Right Connnection - Reduced Beam Section a(in) = 3.50 b(in) = 8.25 c(in) = 0.75 Use Reduced Section Properties in Analysis

Reduced Beam Section (RBS) Bending Check --- OK

	End I	End J
Distance column Flange to middle RBS (in)	7.63	7.63
Max Moment at RBS (kip-ft)	-52.67	-47.53
Load Combination Number	10	6
Reduced plastic modulus - Zrbs (in 3)	41.86	41.86
1.67 Ma / Zrbs Fy	0.50	0.46
	OK	OK

E2.4a Stability Bracing of Beams (D1.2a Moderately Ductile) --- OK

Max Lu (in) = 77.00

Lu Limit =

152.07 C

Lateral Bracing Requirements along Beam

Required strength of lateral brace along beam = 3.13 kip

Required stiffness of bracing (A-6-8) = 3134.11 kip / Lb

Lateral Bracing Requirements at Plastic Hinge

Required strength of lateral brace at hinge = 7.69 kip

Required stiffness of bracing (A-6-8) = 2562.11 kip / Lb

Cd = 1.0 assumed for eqns (A-6-7/8)

Lb = distance between braces (in)

The brace closest to the point of inflection should be designed for two times these values (Cd=2)

OK

OK

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

Flange b/tf = 6.31Web h/tw = 36.20 Limit = Limit = 9.15 90.55

E2.6b Beam-to-Column Connection Requirements

Beam-to-column connection must be capable of sustaining a 0.02 radian interstory drift ratio. All beam-to-column joints to demonstrate conformance with E2.6b(1) as indicated in E2.6b(2)

RAM Structural System

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Page 7/19 02/27/18 11:58:11

Building Code: IBC

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 1st

Frame No: 2

Member No: 6

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 84.30 --- Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 1.575 E2

Max $Pa/(Pn/\Omega) = 0.24$ OK

Tension:

Max Pa (kip) = 19.83 --- Combination: 0.523 D - 2.100 E2

Max $Pa/(Pn/\Omega) = 0.05$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 10.08 --- Combination: 1.077 D - 2.100 E2

No shear in minor axis

Moment in major axis (kip-ft)= 70.43 --- Combination: 1.077 D - 2.100 E2

No moment in minor axis

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

For calculation of web limit: Pa (kip) = 84.30 Py/ Ω (kip) = 431.14

Flange b/tf = 8.93 L

Limit = 9.15

Web h/tw =

23.18

Limit =

57.57 OK

OK

E2.6g Column Splices (D2.5c Required Shear Strength)

Column is at the lowest story. No column splice required

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 8/19

02/27/18 11:58:11

Steel Code: AISC341-10 - ASD

Beam Parameters

Story: 1st

Frame No: 2

Member No: 7

Fy (ksi): 50.00

Size: W12X35

Frame Type: Intermediate Moment Resisting Frame

Right Connnection - Reduced Beam Section a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

Reduced Beam Section (RBS) Bending Check --- OK

	End I	End J
Distance column Flange to middle RBS (in)	7.63	7.63
Max Moment at RBS (kip-ft)	-17.36	-26.46
Load Combination Number	26	6
Reduced plastic modulus - Zrbs (in ³)	41.86	41.86
1.67 Ma / Zrbs Fy	0.17	0.25
	OK	OK

E2.4a Stability Bracing of Beams (D1.2a Moderately Ductile) --- OK

Max Lu (in) = 60.50

Lu Limit = 152.07

OK

Lateral Bracing Requirements along Beam

Required strength of lateral brace along beam = 3.13 kip

Required stiffness of bracing (A-6-8) = 3134.11 kip / Lb

Lateral Bracing Requirements at Plastic Hinge

Required strength of lateral brace at hinge = 7.69 kip

Required stiffness of bracing (A-6-8) = 2562.11 kip / Lb

Cd = 1.0 assumed for eqns (A-6-7/8)

Lb = distance between braces (in)

The brace closest to the point of inflection should be designed for two times these values (Cd=2)

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

Flange b/tf =

6.31

Limit =

9.15 OK

Web h/tw =

36.20

Limit =

90.55 OK

E2.6b Beam-to-Column Connection Requirements

Beam-to-column connection must be capable of sustaining a 0.02 radian interstory drift ratio. All beam-to-column joints to demonstrate conformance with E2.6b(1) as indicated in E2.6b(2)

Page 9/19

Seismic Provisions Member Code Check

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

02/27/18 11:58:11

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 2nd

Frame No: 3

Member No: 8

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 44.66 --- Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 1.575 E3

 $Max Pa/(Pn/\Omega) = 0.12 OK$

Tension:

Max Pa (kip) = 18.69 --- Combination: 0.523 D - 2.100 E3

Max $Pa/(Pn/\Omega) = 0.04$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 34.60 --- Combination: 1.077 D + 2.100 E3

No shear in minor axis

Moment in major axis (kip-ft)= 150.38 --- Combination: 1.077 D + 2.100 E3

Moment in minor axis (kip-ft) = 0.00 --- Combination: 1.077 D - 2.100 E4

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

 $Py/\Omega(kip) = 431.14$ For calculation of web limit: Pa (kip) = 44.66

Flange b/tf =

8.93

Limit =

9.15 OK

Web h/tw =

23.18

Limit =

64.76

OK

E2.6g Column Splices (D2.5c Required Shear Strength)

Major Minor

ΣMpc (kip-ft)

335.56

157.22

Column Splice Shear Force Required ΣMpc / 1.5H

Where Σ Mpc is the sum of column plastic strengths above and below splice.

Required flexural strength for bolted column splices (kip-ft) = 184.56

See code for more information on the Required Shear Strength

RAM Structural System 15.07.00.17 RAM Structural System DataBase: Meehan Cabin 2018-02-19

Page 10/19 02/27/18 11:58:11

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 2nd

Frame No: 3

Member No: 9

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 44.67 --- Combination: 1.058 D + 0.750 Sp - 1.575 E3

 $Max Pa/(Pn/\Omega) = 0.12 OK$

Tension:

Max Pa (kip) = 18.69 --- Combination: 0.523 D + 2.100 E3

Max $Pa/(Pn/\Omega) = 0.04$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 34.60 --- Combination: 1.077 D - 2.100 E3

No shear in minor axis

Moment in major axis (kip-ft) = 150.37 --- Combination: 1.077 D - 2.100 E3

Moment in minor axis (kip-ft)=0.00 --- Combination: 1.077 D - 2.100 E4

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

 $Py/\Omega(kip) = 431.14$ For calculation of web limit: Pa (kip) = 44.67

Flange b/tf=

8.93

Limit =

9.15 OK

Web h/tw =

23.18

Limit =

OK

64.75

E2.6g Column Splices (D2.5c Required Shear Strength)

Major Minor

ΣMpc (kip-ft)

335.56

157.22

Column Splice Shear Force Required ΣMpc / 1.5H

Where Σ Mpc is the sum of column plastic strengths above and below splice.

Required flexural strength for bolted column splices (kip-ft) = 184.56

See code for more information on the Required Shear Strength

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 11/19

02/27/18 11:58:11

Steel Code: AISC341-10 - ASD

Beam Parameters

Story: 2nd

Frame No: 3

Member No: 6

Fy (ksi): 50.00

Size: W12X35

Frame Type: Intermediate Moment Resisting Frame

Left Connection - Reduced Beam Section Right Connnection - Reduced Beam Section a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

Reduced Beam Section (RBS) Bending Check --- OK

	End I	End J
Distance column Flange to middle RBS (in)	7.63	7.63
Max Moment at RBS (kip-ft)	-51.85	-51.86
Load Combination Number	11	7
Reduced plastic modulus - Zrbs (in 3)	41.86	41.86
1.67 Ma / Zrbs Fy	0.50	0.50
	OK	OK

E2.4a Stability Bracing of Beams (D1.2a Moderately Ductile) --- OK

Max Lu (in) =78.00 Lu Limit =

152.07

Lateral Bracing Requirements along Beam

Required strength of lateral brace along beam = 3.13 kip

Required stiffness of bracing (A-6-8) = 3134.11 kip / Lb

Lateral Bracing Requirements at Plastic Hinge

Required strength of lateral brace at hinge = 7.69 kip

Required stiffness of bracing (A-6-8) = 2562.11 kip / Lb

Cd = 1.0 assumed for eqns (A-6-7/8)

Lb = distance between braces (in)

The brace closest to the point of inflection should be designed for two times these values (Cd=2)

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

6.31 Flange b/tf = Web h/tw =36.20 Limit = Limit =

9.15 OK 90.55 OK

E2.6b Beam-to-Column Connection Requirements

Beam-to-column connection must be capable of sustaining a 0.02 radian interstory drift ratio. All beam-to-column joints to demonstrate conformance with E2.6b(1) as indicated in E2.6b(2)

B

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

Page 12/19

02/27/18 11:58:11

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 1st

Frame No: 3

Member No: 11

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 75.94 --- Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 1.575 E3

 $Max Pa/(Pn/\Omega) = 0.21 OK$

Tension:

Max Pa (kip) = 29.42 --- Combination: 0.523 D - 2.100 E3

Max $Pa/(Pn/\Omega) = 0.07$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 9.82 --- Combination: 1.077 D - 2.100 E3

No shear in minor axis

Moment in major axis (kip-ft) = 68.71 --- Combination: 1.077 D - 2.100 E3

No moment in minor axis

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

For calculation of web limit: Pa (kip) = 75.94 Py/ Ω (kip) = 431.14

Flange b/tf =

8.93

Limit =

9.15 OK

Web h/tw =

23.18

Limit =

58.10 OK

E2.6g Column Splices (D2.5c Required Shear Strength)

Column is at the lowest story. No column splice required

RAM Structural System

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Page 13/19 02/27/18 11:58:11

RAM Structural System Data Base. IVI certain Caom 20
September: Building Code: IBC

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 1st

Frame No: 3

Member No: 12

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 75.87 --- Combination: 1.058 D + 0.750 Lp + 0.750 Sp - 1.575 E3

Max $Pa/(Pn/\Omega) = 0.21$ OK

Tension:

Max Pa (kip) = 29.46 --- Combination: 0.523 D + 2.100 E3

Max Pa/ $(Pn/\Omega) = 0.07$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip)= 9.82 --- Combination: 1.077 D + 2.100 E3

No shear in minor axis

Moment in major axis (kip-ft)= 68.72 --- Combination: 1.077 D + 2.100 E3

No moment in minor axis

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

For calculation of web limit: Pa (kip) = 75.87 Py/ Ω (kip) = 431.14

Flange b/tf = 8.93 Limit = 9.15 OK

Web h/tw = 23.18 Limit = 58.10 OK

E2.6g Column Splices (D2.5c Required Shear Strength)

Column is at the lowest story. No column splice required

RAM Structural System

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 14/19

02/27/18 11:58:11

Steel Code: AISC341-10 - ASD

Beam Parameters

Story: 1st

Frame No: 3

Member No: 16

Fy (ksi): 50.00

Size: W12X35

Frame Type: Intermediate Moment Resisting Frame

Left Connection - Reduced Beam Section

Right Connnection - Reduced Beam Section

a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

Reduced Beam Section (RBS) Bending Check --- OK

	End I	End J
Distance column Flange to middle RBS (in)	7.63	7.63
Max Moment at RBS (kip-ft)	-34.92	-34.92
Load Combination Number	11	7
Reduced plastic modulus - Zrbs (in 3)	41.86	41.86
1.67 Ma / Zrbs Fy	0.33	0.33
	OK	OK

E2.4a Stability Bracing of Beams (D1.2a Moderately Ductile) --- OK

Max Lu (in) = 7

78.00

Lu Limit = 152.07

OK

Lateral Bracing Requirements along Beam

Required strength of lateral brace along beam = 3.13 kip

Required stiffness of bracing (A-6-8) = 3134.11 kip / Lb

Lateral Bracing Requirements at Plastic Hinge

Required strength of lateral brace at hinge = 7.69 kip

Required stiffness of bracing (A-6-8) = 2562.11 kip / Lb

Cd = 1.0 assumed for eqns (A-6-7/8)

Lb = distance between braces (in)

The brace closest to the point of inflection should be designed for two times these values (Cd=2)

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

Flange b/tf = Web h/tw =

6.31 36.20 Limit = Limit = 9.15 OK 90.55 OK

E2.6b Beam-to-Column Connection Requirements

Beam-to-column connection must be capable of sustaining a 0.02 radian interstory drift ratio. All beam-to-column joints to demonstrate conformance with E2.6b(1) as indicated in E2.6b(2)

RAM Structural System

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

02/27/18 11:58:11

Page 15/19

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 2nd

Frame No: 4

Member No: 5

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 25.06 --- Combination: 1.058 D + 0.750 Lp + 0.750 Sp - 1.575 E1

Max $Pa/(Pn/\Omega) = 0.07$ OK

Tension:

Max Pa (kip) = 20.27 --- Combination: 0.523 D + 2.100 E1

Max $Pa/(Pn/\Omega) = 0.05$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 40.63 --- Combination: 1.077 D - 2.100 E1

No shear in minor axis

Moment in major axis (kip-ft) = 200.92 --- Combination: 1.077 D - 2.100 E1

Moment in minor axis (kip-ft) = 0.00 --- Combination: 1.077 D - 2.100 E4

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

For calculation of web limit: Pa (kip) = 25.06 Py/ Ω (kip) = 431.14

Flange b/tf=

8.93

Limit =

9.15 OK

OK

Web h/tw =

23.18

Limit =

76.08

E2.6g Column Splices (D2.5c Required Shear Strength)

Column is at the lowest story. No column splice required

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 16/19

02/27/18 11:58:11

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 2nd

Frame No: 4

Member No: 6

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 39.77 --- Combination: 1.058 D + 0.750 Sp + 1.575 E1

Max $Pa/(Pn/\Omega) = 0.11$ OK

Tension:

Max Pa (kip) = 18.61 --- Combination: 0.523 D - 2.100 E1

Max $Pa/(Pn/\Omega) = 0.04$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 30.76 --- Combination: 1.077 D + 2.100 E1

No shear in minor axis

Moment in major axis (kip-ft) = 128.67 --- Combination: 1.077 D + 2.100 E1

Moment in minor axis (kip-ft) = 0.00 --- Combination: 1.077 D - 2.100 E4

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

For calculation of web limit: Pa (kip) = 39.77 $Py/\Omega(kip) = 431.14$

Flange b/tf =

8.93

Limit =

OK

Limit =

9.15

67.58 OK Web h/tw =23.18

E2.6g Column Splices (D2.5c Required Shear Strength)

Major Minor

ΣMpc (kip-ft)

335.56

157.22

Column Splice Shear Force Required ΣMpc / 1.5H

Where Σ Mpc is the sum of column plastic strengths above and below splice.

Required flexural strength for bolted column splices (kip-ft) = 184.56

See code for more information on the Required Shear Strength

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 17/19

02/27/18 11:58:11

Steel Code: AISC341-10 - ASD

Beam Parameters

Story: 2nd

Frame No: 4

Member No: 15

Fy (ksi): 50.00

Size: W12X35

Frame Type: Intermediate Moment Resisting Frame

Left Connection - Reduced Beam Section Right Connnection - Reduced Beam Section a(in) = 3.50 b(in) = 8.25 c(in) = 0.75 Use Reduced Section Properties in Analysis

Reduced Beam Section (RBS) Bending Check --- OK

	End I	End J
Distance column Flange to middle RBS (in)	7.63	7.63
Max Moment at RBS (kip-ft)	-52.67	-47.54
Load Combination Number	9	5
Reduced plastic modulus - Zrbs (in 3)	41.86	41.86
1.67 Ma / Zrbs Fy	0.50	0.46
	OK	OK

E2.4a Stability Bracing of Beams (D1.2a Moderately Ductile) --- OK

Max Lu (in) = 77.00

Lu Limit =

152.07

OK

Lateral Bracing Requirements along Beam

Required strength of lateral brace along beam = 3.13 kip

Required stiffness of bracing (A-6-8) = 3134.11 kip / Lb

Lateral Bracing Requirements at Plastic Hinge

Required strength of lateral brace at hinge = 7.69 kip

Required stiffness of bracing (A-6-8) = 2562.11 kip / Lb

Cd = 1.0 assumed for eqns (A-6-7/8)

Lb = distance between braces (in)

The brace closest to the point of inflection should be designed for two times these values (Cd=2)

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

Flange b/tf = Web h/tw =

6.31 36.20 Limit =

9.15 OK 90.55 OK

E2.6b Beam-to-Column Connection Requirements

Beam-to-column connection must be capable of sustaining a 0.02 radian interstory drift ratio. All beam-to-column joints to demonstrate conformance with E2.6b(1) as indicated in E2.6b(2)

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 18/19

02/27/18 11:58:11

Steel Code: AISC341-10 - ASD

Column Parameters

Story: 1st

Frame No: 4

Member No: 3

Fy (ksi): 50.00

Size: W10X49

Frame Type: Intermediate Moment Resisting Frame

D1.4a Required Strength --- OK

Compression:

Max Pa (kip) = 83.72 --- Combination: 1.058 D + 0.750 Lp + 0.750 Sp + 1.575 E1

 $Max Pa/(Pn/\Omega) = 0.23 OK$

Tension:

Max Pa (kip) = 20.10 --- Combination: 0.523 D - 2.100 E1

Max $Pa/(Pn/\Omega) = 0.05$ OK

D2.5b Column Splices - Required Strength

Design strength of column splices must meet or exceed the following forces:

Required tension and compression strength from D1.4a.

Shear in major axis (kip) = 10.08 --- Combination: 1.077 D - 2.100 E1

No shear in minor axis

Moment in major axis (kip-ft) = 70.44 --- Combination: 1.077 D - 2.100 E1

No moment in minor axis

Required shear for column splice is max result from D2.5b and D2.5c

Refer to AISC 341 section D2.5b for additional detailing requirements.

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

For calculation of web limit: Pa (kip) = 83.72 $Py/\Omega(kip) = 431.14$

Limit = 9.15 OK Flange b/tf =8.93

Web h/tw = Limit = 57.61 OK 23.18

E2.6g Column Splices (D2.5c Required Shear Strength)

Column is at the lowest story. No column splice required

RAM Structural System

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Sentley Building Code: IBC

Page 19/19

02/27/18 11:58:11

Steel Code: AISC341-10 - ASD

Beam Parameters

Story: 1st

Frame No: 4

Member No: 2

Fy (ksi): 50.00

Size: W12X35

Frame Type: Intermediate Moment Resisting Frame

Right Connnection - Reduced Beam Section

a(in) = 3.50 b(in) = 8.25 c(in) = 0.75

Use Reduced Section Properties in Analysis

Reduced Beam Section (RBS) Bending Check --- OK

	End I	End J
Distance column Flange to middle RBS (in)	7.63	7.63
Max Moment at RBS (kip-ft)	-17.33	-26.48
Load Combination Number	25	5
Reduced plastic modulus - Zrbs (in 3)	41.86	41.86
1.67 Ma / Zrbs Fy	0.17	0.25
	OK	OK

E2.4a Stability Bracing of Beams (D1.2a Moderately Ductile) --- OK

Max Lu (in) = 60.50

Lu Limit = 152.07

OK

Lateral Bracing Requirements along Beam

Required strength of lateral brace along beam = 3.13 kip

Required stiffness of bracing (A-6-8) = 3134.11 kip / Lb

Lateral Bracing Requirements at Plastic Hinge

Required strength of lateral brace at hinge = 7.69 kip

Required stiffness of bracing (A-6-8) = 2562.11 kip / Lb

Cd = 1.0 assumed for eqns (A-6-7/8)

Lb = distance between braces (in)

The brace closest to the point of inflection should be designed for two times these values (Cd=2)

E2.5a Basic Requirements (D1.1 Moderately Ductile) --- OK

Flange b/tf =

6.31

Limit =

9.15 OK

Web h/tw =

36.20

Limit =

90.55 OK

E2.6b Beam-to-Column Connection Requirements

Beam-to-column connection must be capable of sustaining a 0.02 radian interstory drift ratio. All beam-to-column joints to demonstrate conformance with E2.6b(1) as indicated in E2.6b(2)

RAM Structural System

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

02/27/18 11:58:39

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Frame #1:

Joint Parameters

Story: 2nd

Frame No: 1

Joint No: 1

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

Bm No. Col Side

Mpe (kip-ft)

L (ft) V Max (kip)

V LCo (kip)

kip) Comb.

12

Flange

211.02 10.729

23.39

24.46

6 8

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

Bm. Size 12 W12X35

Fyb (ksi)

Bbf (in)

Tbf (in)

Tf Req. (in)

Tf Prov (in) Stiffen

50.00 6.56 0.520 1.09 0.56 Yes

12

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Page 2/13

02/27/18 11:58:39

Steel Code: AISC341-10 - ASD

Bentley Building Code: IBC

Joint Parameters

Story: 2nd

Frame No: 1

Joint No: 2

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

Flange

Bm No. Col Side Mpe (kip-ft) L (ft)

211.02

V Max (kip) 10.729 23.39 V LCo (kip) Comb. 24.46 4

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

Stiffen Bbf (in) Tbf (in) Tf Req. (in) Tf Prov (in) Bm. Size Fyb (ksi) 1.09 0.56 Yes 12 W12X35 50.00 6.56 0.520

RAM Structural System 15.07.00.17

Page 3/13

RAM Structural System DataBase: Meehan Cabin 2018-02-19

02/27/18 11:58:39

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Frame #2:

Joint Parameters

Story: 2nd

Frame No: 2

Joint No: 5

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

Bm No.

Col Side

Mpe (kip-ft) L (ft) V Max (kip)

V LCo (kip)

Comb.

9 Flange 211.02

10.729

22.19

21.71

2

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

Bm. Size 9 W12X35 Fyb (ksi) 50.00

Bbf (in) 6.56 Tbf (in) 0.520

Tf Req. (in) 1.09

Tf Prov (in) Stiffen

0.56 Yes

Page 4/13

Seismic Provisions Joint Code Check

9

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

02/27/18 11:58:39

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Joint Parameters

Story: 2nd

Frame No: 2

Joint No: 3

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

Flange

Col Side Bm No.

Mpe (kip-ft) L (ft)

211.02

V Max (kip) 22.40 V LCo (kip) Comb.

21.78

6

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

10.729

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

Stiffen Tf Req. (in) Tf Prov (in) Bm. Size Fyb (ksi) Bbf (in) Tbf (in) Yes 1.09 0.56 9 W12X35 50.00 6.56 0.520

RAM Structural System

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC

Page 5/13

02/27/18 11:58:39

Steel Code: AISC341-10 - ASD

Joint Parameters

Story: 1st

Frame No: 2

Joint No: 15

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

 Bm No.
 Col Side
 Mpe (kip-ft)
 L (ft)
 V Max (kip)
 V LCo (kip)
 Comb.

 7
 Flange
 211.02
 11.146
 21.85
 8.28
 2

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

Bm.	Size	Fyb (ksi)	Bbf (in)	Tbf (in)	Tf Req. (in)	Tf Prov (in)	Stiffen
7	W12X35	50.00	6.56	0.520	1.09	0.56	Yes

RAM Structural System

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Page 6/13 02/27/18 11:58:39

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Frame #3:

Joint Parameters

Story: 2nd

Frame No: 3

Joint No: 8

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

 Bm No.
 Col Side
 Mpe (kip-ft)
 L (ft)
 V Max (kip)
 V LCo (kip)
 Comb.

 6
 Flange
 211.02
 10.729
 23.23
 22.84
 3

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

 Bm.
 Size
 Fyb (ksi)
 Bbf (in)
 Tbf (in)
 Tf Req. (in)
 Tf Prov (in)
 Stiffen

 6
 W12X35
 50.00
 6.56
 0.520
 1.09
 0.56
 Yes

Page 7/13

No.

Seismic Provisions Joint Code Check

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

02/27/18 11:58:39

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Joint Parameters

Story: 2nd

Frame No: 3

Joint No: 7

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

Bm No. Col Side Flange

Mpe (kip-ft) L (ft) 211.02 10.729 V Max (kip) 23.23 V LCo (kip) Comb.

0.43

22.84 7

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

 Bm.
 Size
 Fyb (ksi)
 Bbf (in)
 Tbf (in)
 Tf Req. (in)
 Tf Prov (in)
 Stiffen

 6
 W12X35
 50.00
 6.56
 0.520
 1.09
 0.56
 Yes

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Page 8/13

3

02/27/18 11:58:39

Steel Code: AISC341-10 - ASD

Bentley Building Code: IBC

Joint Parameters

Story: 1st

Frame No: 3

Joint No: 18

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

Col Side Bm No.

Mpe (kip-ft) L (ft)

V Max (kip) 10.729 24.06 V LCo (kip) Comb. 15.59

211.02 16 Flange V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

Tf Prov (in) Stiffen Bbf (in) Tbf (in) Tf Req. (in) Bm. Size Fyb (ksi) 1.09 0.56 Yes 16 W12X35 50.00 6.56 0.520

RAM Structural System

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Page 9/13 02/27/18 11:58:39

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Joint Parameters

16

Story: 1st

Frame No: 3

Joint No: 17

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

Flange

Bm No. Col Side

Mpe (kip-ft) L (ft)

211.02

L (ft) V Max (kip) 10.729 24.06 V LCo (kip) Comb.

15.59 7

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

 Bm.
 Size
 Fyb (ksi)
 Bbf (in)
 Tbf (in)
 Tf Req. (in)
 Tf Prov (in)
 Stiffen

 16
 W12X35
 50.00
 6.56
 0.520
 1.09
 0.56
 Yes

Page 10/13

Seismic Provisions Joint Code Check

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

02/27/18 11:58:39

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Frame #4:

Joint Parameters

Story: 2nd

Frame No: 4

Joint No: 4

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

Bm No.

Col Side

Mpe (kip-ft)

L (ft)

V Max (kip)

V LCo (kip) Comb.

15 Flange 211.02

10.729

22.40

21.77

5

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

Bm. Size 15 W12X35 Fyb (ksi) 50.00 Bbf (in) 6.56 Tbf (in) 0.520 Tf Req. (in) 1.09

Tf Prov (in) Stiffen 0.56

Yes

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Page 11/13

02/27/18 11:58:39

Building Code: IBC

Steel Code: AISC341-10 - ASD

Joint Parameters

Story: 2nd

Frame No: 4

Joint No: 6

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

Bm No. Col Side Mpe (kip-ft)
15 Flange 211.02

L (ft) 10.729 V Max (kip) 22.19 V LCo (kip) Comb.

21.71 1

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

Bm.	Size	Fyb (ksi)	Bbf (in)	Tbf (in)	Tf Req. (in)	Tf Prov (in)	Stiffen
15	W12X35	50.00	6.56	0.520	1.09	0.56	Yes

No.

2

RAM Structural System 15.07.00.17

RAM Structural System DataBase: Meehan Cabin 2018-02-19

Page 12/13

02/27/18 11:58:39

Bentley Building Code: IBC

Steel Code: AISC341-10 - ASD

Joint Parameters

Story: 1st

Frame No: 4

Joint No: 16

Fy (ksi): 50.00

Column Size: W10X49

Joint Frame Type: Intermediate Moment Resisting Frame

Strain Hardening Factor Cpr = 1.10

E2.6d Connection Required Shear Strength

Flange

Bm No. Col Side

Mpe (kip-ft) L (ft) 211.02 11.146 V Max (kip) 21.86 V LCo (kip) Comb.

8.28

V Max = Max shear from applicable load combinations (with Emh)

Vu LCo = Max shear due to the special seismic load combination no. shown in Combo column

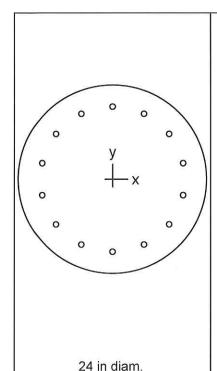
Mpr = 1.1 x Ry x Fy x Zrbs, where Zrbs = Z if no RBS exists

E2.6f Continuity Plates --- OK With Web Plate / Stiffeners

Tf Req. (in) Tf Prov (in) Stiffen Bm. Size Fyb (ksi) Bbf (in) Tbf (in) 2 W12X35 50.00 6.56 0.520 1.09 0.56 Yes

RAM Structural System 15.07.00.17
DataBase: Meehan Cabin 2018-02-19

Bentley Building Code: IBC


Page 13/13

02/27/18 11:58:39

Steel Code: AISC341-10 - ASD

Frame #5:

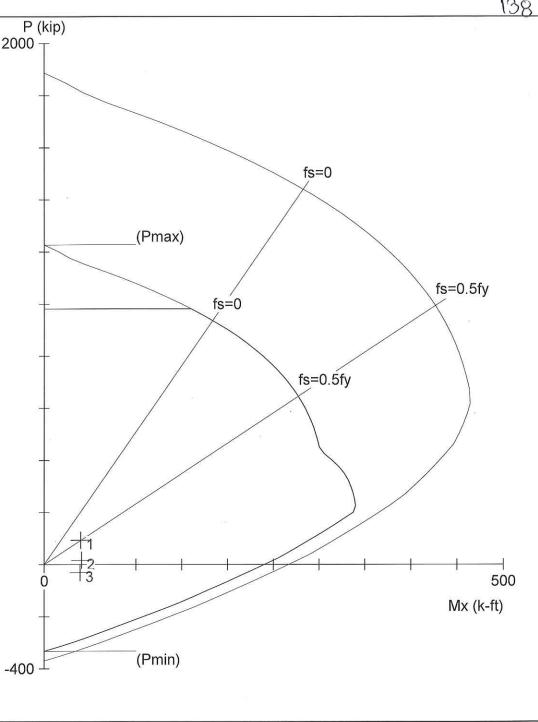
®	JOB TITLE Meehan Cabin		
CALDER RICHARDS CONSULTING ENGINEERS	SUBJECT Column Base Loads		
1 2 3 4 5 6		8 19 20 21 22 23	24 25 26 27 28
Columns on Ci			
Required Axi			
	n = 93.57 K LRFD		
Tension =	+31.32K LRFD		
Required Shea			
D2.5b: V=	12,39K LRFD		
D2.5e; V=	Mpd/H = 50 Kgi x 60.4 m3/10.67/x 1	2= 23.58K LRF	
Required Flexu	we		
a) III x Ry x F	= 1 × Z = 1.1 × 1.1 × 50 Ks1 × 60.4 m3 = 3	304.52 LRFD	
b) Overatr	ength = 40.71K-LRFD		
Max Compres	asion		
P= 93.57K			
V= 1217k			
M= 39.80 K			
W- 51.00			
Max Uplift			
P=31.32 K			
	-> 23.58 ^k		
M= 39.12 K-			
Max Shear/	On space of		
P= 16.70 K			
V= 12.39K>			
M= H0,71K	23.58		
WE HO.711			

Code: ACI 318-14

Units: English

Run axis: About X-axis

Run option: Investigation


Slenderness: Not considered

Column type: Structural

Bars: ASTM A615

Date: 02/27/18

Time: 15:09:33

STRUCTUREPOINT - spColumn v6.00 (TM). Licensed to: Calder Richards Consulting Engineers. License ID: 68548-1061382-4-32C47-28C56

File: x:\project files\2017\17xxx meehan cabin\calculations\piers\round column.col

Project:

Column: f'c = 4 ksi

Engineer:

14 #6 bars

Ec = 3605 ksi

fy = 60 ksi

Es = 29000 ksi

As = 6.16 in^2

 $Ag = 452.389 in^2$

rho = 1.36%

fc = 3.4 ksi

e_yt = 0.00206897 in/in

Xo = 0.00 in

 $Ix = 16286 in^4$

 $e_u = 0.003 in/in$

Yo = 0.00 in

 $Iy = 16286 in^4$

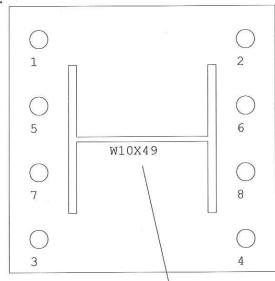
Beta1 = 0.85

Min clear spacing = 3.37 in

Clear cover = 2.38 in

Confinement: Tied

phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65


Meehan Cabin Pier Connections Detailed Design Results 2/27/18 14:46

CRITERIA: Analysis Maintain Strain Compatibility Use min. effective plate area for axial only compressi Design Use ASD 9th to check plate bending Max concrete bearing per AISC J9. Anchor Shear Check Per AISC Specifications. Anchor Tension Check Per AISC Specifications.	on load on plate.
INPUT DATA: Column Column Size	
Anchor Size	
Footing Footing Strength f'c (ksi)	
Load combination: Single Load Case Axial (kip)	
RESULTS: Analysis YBar (in)	4.23 0.00
Plate Bending Max bending moment from anchor/s #1 in tension Allowable Stress Increase Factor m [N-0.95d]/2.0 (in) n [B-0.80b]/2.0 (in) Controlling effective width to resist moment (in) Controlling plate bending moment (kip-ft) fb (ksi) Fb (ksi) fb/Fb Thickness Required (in)	1.00 4.260 5.000 4.750 2.85 19.21 27.00 0.71 1.265

Meehan Cabin Pier Connections Detailed Design Results 2/27/18 14:46

Thickness controlled by cantilever action.					
Anchors					
Anchor	X(in)	Y(in)	V(kip)	T(kip)	Interaction
1	-7.00	6.75	2.95	12.44	0.29
2	7.00	6.75	2.95	0.00	0.14
3	-7.00	-6.75	2.95	12.44	0.29
3 4	7.00	-6.75	2.95	0.00	0.14
5	-7.00	2.25	2.95	12.44	0.29
6	7.00	2.25	2.95	0.00	0.14
6 7	-7.00	-2.25	2.95	12.44	0.29
8	7.00	-2.25	2.95	0.00	0.14
Bearing					
Eff Are	a of Suppo	rt A2 (in^	2)		576.00
Plate A	rea Al (in	^2)			324.00
Sgrt (A2	/A1)				1.33
			(ksi)		

DIAGRAM:

#	X(in)	Y(in)
1	-7.000	6.750
2	7.000	6.750
3	-7.000	-6.750
4	7.000	-6.750
5	-7.000	2.250
6	7.000	2.250
7	-7.000	-2.250
8	7.000	-2.250

PL 18.00 X 18.00 X 1.50 (in) 8 - 1 1/8" A325 Anchor Bolts

www.hilti.us

Profis Anchor 2.7.3

Company: Specifier: Address:

Phone I Fax: E-Mail:

Page:

Project: Sub-Project I Pos. No.:

Date:

2/27/2018

Specifier's comments:

1 Input data

Anchor type and diameter:

Heavy Hex Head ASTM F 1554 GR. 105 1 1/8

Additional plate or washer (17.4.2.8):

 d_{plate} = 2.000 in., t_{plate} = 0.375 in.

Effective embedment depth:

 $h_{ef} = 24.000 \text{ in., } h_{ef,17.4.2.8} = 0.000 \text{ in.}$

Material:

ASTM F 1554

Proof:

Design method ACI 318-14 / CIP

Stand-off installation:

without clamping (anchor); restraint level (anchor plate): 2.00; e_b = 1.500 in.; t = 2.000 in.

Hilti Grout: CB-G EG, epoxy, $f_{c,Grout} = 14939 \text{ psi}$

Anchor plate:

l_x x l_y x t = 18.000 in. x 18.000 in. x 2.000 in.; (Recommended plate thickness: not calculated

Profile:

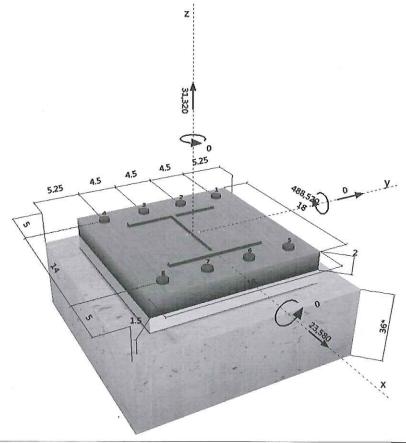
W shape (AISC); (L x W x T x FT) = 9.980 in. x 10.000 in. x 0.340 in. x 0.560 in.

Base material:

cracked concrete, 2500, $f_c' = 2500 \text{ psi}$; h = 36.000 in.

Reinforcement:

tension: condition A, shear: condition A; anchor reinforcement: tension, shear


edge reinforcement: > No. 4 bar with stirrups

Seismic loads (cat. C, D, E, or F)

Tension load: yes (17.2.3.4.3 (d))

Shear load: yes (17.2.3.5.3 (c))

Geometry [in.] & Loading [lb, in.lb]

www.hilti.us

Company: Specifier:

Address: Phone I Fax:

E-Mail:

Page: Project:

Sub-Project I Pos. No .:

• Tension

 \bigcirc_4

2/27/2018

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	12343	2947	2947	0
2	12343	2947	2947	0
3	12343	2947	2947	0
4	12343	2947	2947	0
5	0	2947	2947	0
6	0	2947	2947	0
7	0	2947	2947	0
8	0	2947	2947	0
may concrete c	omoressive strain:	n	14 [%]	

max. concrete compressive strain: max. concrete compressive stress:

0.14 [‰] 618 [psi] 49371 [lb]

resulting tension force in (x/y)=(-7.000/0.000): resulting compression force in (x/y)=(7.918/0.000): 18051 [lb]

3 Tension load

	Load N _{ua} [lb]	Capacity of Nn [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	12343	71531	18	OK
Pullout Strength*	12343	19435	64	OK
Concrete Breakout Strength**1	N/A	N/A	N/A	N/A _
Concrete Side-Face Blowout, direction x-**	49371	44387	112 (not recommended
* anchor having the highest loading **anchor	group (anchors in tension)			1

^{*}anchor group (anchors in tension)

3.1 Steel Strength

 $N_{sa} = A_{se,N} f_{uta}$ $\phi N_{sa} \ge N_{ua}$

ACI 318-14 Eq. (17.4.1.2) ACI 318-14 Table 17.3.1.1

Variables

A_{se,N} [in.²] f_{uta} [psi] 0.76 125001

Calculations

N_{sa} [lb] 95375

Results

N _{sa} [lb]	φ steel	φ N _{sa} [lb]	N _{ua} [lb]
95375	0.750	71531	12343

(0) Compression

¹ Tension Anchor Reinforcement has been selected!

Profis Anchor 2.7.3 www.hilti.us 3 Company: Page: Project: Specifier: Address: Sub-Project I Pos. No.: Phone I Fax: 1 2/27/2018 E-Mail: 3.2 Pullout Strength ACI 318-14 Eq. (17.4.3.1) $N_{pN} = \psi_{c,p} N_p$ $N_p = 8 A_{brg} f_c$ ACI 318-14 Eq. (17.4.3.4) $\phi N_{pN} \ge N_{ua}$ ACI 318-14 Table 17.3.1.1 Variables A_{brg} [in.²] fc [psi] λ_a 2500 Calculations N_ρ [lb] 37020 Results N_{pn} [lb] φ N_{pn} [lb] N_{ua} [lb] φ seismic φ nonductile 37020 0.700 0.750 1.000 19435 12343 0.375 3.3 Concrete Side-Face Blowout, direction x-0.37 $N_{sb} = 160 c_{a1} \sqrt{A_{brg}} \lambda_a \sqrt{f_c}$ ACI 318-14 Eq. (17.4.4.1) $\begin{array}{ll} N_{sbg} &= \alpha_{group} \; N_{sb} \\ \varphi \; N_{sbg} \geq N_{ua} \end{array}$ ACI 318-14 Eq. (17.4.4.2) ACI 318-14 Table 17.3.1.1 $\alpha_{\text{group}} = \left(1 + \frac{s}{6c}\right)$ see ACI 318-14, Section 17.4.4.2, Eq. (17.4.4.2) Variables c_{a1} [in.] 5.000 c_{a2} [in.] 5.250 fc [psi] s [in.] 2500 13.500 Calculations N_{sb} [lb] 54421 Results N_{sbg} [lb] 78910 N_{ua,edge} [lb] 49371 φ N_{sbg} [lb] \$ concrete nonductile 0.750 0.750 1.000 44387 NSb=160×5×14.696×1.0×12500 = 86,681 lbs Noby = 1.45 × 86681 = 125,687 16 O Nobg = 0.75 × 125,687 = 94,266 lbs > 49,371 lbs.

Unity = 49,371/94,206 = 0.52 => 52%

Page: Project:

Company: Specifier: Address: Phone I Fax:

E-Mail:

Sub-Project I Pos. No.:

2/27/2018

4 Shear load

	Load V _{ua} [lb]	Capacity φ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	2947	29757	10	OK
Steel failure (with lever arm)*	2947	4727	63	OK
Pryout Strength**	23580	45506	52	OK
Concrete edge failure in direction **1	N/A	N/A	N/A	N/A

4.1 Steel Strength

 $V_{sa} = 0.6$ $\phi V_{sleel} \ge V_{ua}$ = $0.6 A_{se,V} f_{uta}$ ACI 318-14 Eq. (17.5.1.2b)

ACI 318-14 Table 17.3.1.1

Variables

A_{se,V} [in.²] 0.76 f_{uta} [psi]

Calculations

Results

V _{sa} [lb]	φ steel	φ eb	φ V _{sa} [lb]	V _{ua} [lb]
57225	0.650	0.800	29757	2947

4.2 Steel failure (with lever arm)

$$V_s^M = \frac{\alpha_M \cdot M_s}{L_b}$$
 bending equation for stand-off $M_s = M_s^0 \left(1 - \frac{N_{ua}}{\phi N_{sa}}\right)$ resultant flexural resistance of

resultant flexural resistance of anchor

 M_s^0 $= (1.2) (S) (f_{u,min})$ $\frac{N_{ua}}{\phi N_{sa}}$

characteristic flexural resistance of anchor

S

elastic section modulus of anchor bolt at concrete surface

reduction for tensile force acting simultaneously with a shear force on the anchor

 $= z + (n)(d_0)$ $\varphi \ V_s^M$

internal lever arm adjusted for spalling of the surface concrete

ACI 318-14 Table 17.3.1.1

Variables

αM	f _{u,min} [psi]	N _{ua} [lb]	φ N _{sa} [lb]	z [in.]	n	d ₀ [in.]
2.00	125001	12343	71531	2.500	0.500	1.125

Calculations

$$\frac{M_{s}^{0} [in.lb]}{13456.937} \qquad \frac{\left(1 - \frac{N_{ua}}{\phi N_{sa}}\right)}{0.827} \qquad \frac{M_{s} [in.lb]}{1134.929} \qquad \frac{L_{b} [in.]}{3.063}$$

Results

$$V_s^M$$
 [lb] ϕ_{steel} ϕ_s^M [lb] V_{ua} [lb] 7272 0.650 4727 2947

¹ Shear Anchor Reinforcement has been selected!

Page: Project: 5

Company: Specifier:

P

5

Address: Phone I Fax: Sub-Project I Pos. No.:

2/27/2018

E-Mail:

4.3 Pryout Strength

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$	ACI 318-14 Eq. (17.5.3.1b)
$\phi V_{cog} \ge V_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Nc} see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	(%)
$A_{Nc0} = 9 h_{ef}^2$	ACI 318-14 Eq. (17.4.2.1c)
$\left(\frac{1}{1}\right)$	

1

$$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right) \le 1.0$$
 ACI 318-14 Eq. (17.4.2.4)

$$\begin{array}{ll} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{C_{a,\text{min}}}{1.5 h_{\text{ef}}} \right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{C_{a,\text{min}}}{C_{\text{ac}}}, \frac{1.5 h_{\text{ef}}}{C_{\text{ac}}} \right) \leq 1.0 \\ N_{\text{b}} &= k_{\text{c}} \lambda_{\text{a}} \sqrt{f_{\text{c}}} \, h_{\text{ef}}^{1.5} \end{array} \qquad \begin{array}{ll} \text{ACI 318-14 Eq. (17.4.2.5b)} \\ \text{ACI 318-14 Eq. (17.4.2.7b)} \\ \text{ACI 318-14 Eq. (17.4.2.2a)} \end{array}$$

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	4.667	0.000	0.000	5.000
Ψ c,N	c _{ac} [in.]	k _c	λa	f _c [psi]
1.000	5 -	24	1.000	2500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
576.00	196.00	1.000	1.000	0.914	1.000	12097
esults						
V _{cpg} [lb]	φ concrete	φ seismic	φ nonductile	φ V _{cpg} [lb]	V _{ua} [lb]	
65008	0.700	1.000	1.000	45506	23580	

5 Combined tension and shear loads

β_N	βv	ζ	Utilization β _{N,V} [%]	Status	
1.112	0.624	1.000	145	not recommended	
$\beta_{NV} = (\beta_N + \beta_V) / 1.2 \le 1$					

www.hilti.us			Profis Anchor 2.7.3
Company:		Page:	6
Specifier:		Project:	
Address:		Sub-Project I Pos. No	D.:
Phone I Fax:	1	Date:	2/27/2018
E-Mail:	125		

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- ACI 318 does not specifically address anchor bending when a stand-off condition exists. PROFIS Anchor calculates a shear load corresponding to anchor bending when stand-off exists and includes the results as a shear Design Strength!
- · Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- The design of Anchor Reinforcement is beyond the scope of PROFIS Anchor. Refer to ACI 318-14, Section 17.4.2.9 for information about Anchor Reinforcement.
- The design of Anchor Reinforcement is beyond the scope of PROFIS Anchor. Refer to ACI 318-14, Section 17.5.2.9 for information about Anchor Reinforcement.
- · Anchor Reinforcement has been selected as a design option, calculations should be compared with PROFIS Anchor calculations.

Fastening does not meet the design criteria!

Company: Specifier:

Address: Phone I Fax: E-Mail:

Page: Project:

Sub-Project I Pos. No.:

Date:

2/27/2018

7 Installation data

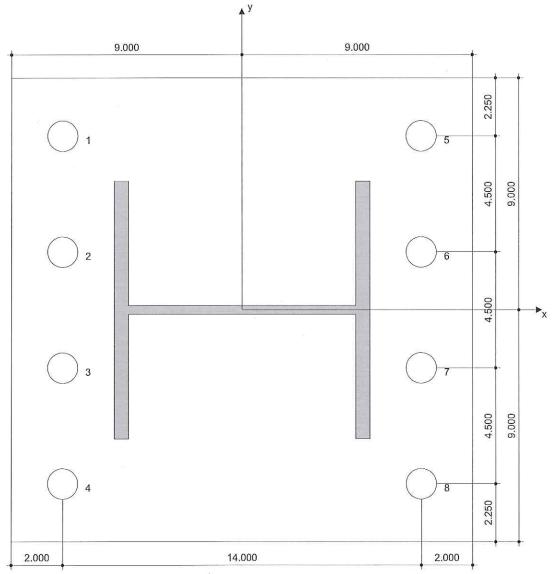
Anchor plate, steel: -

Profile: W shape (AISC); $9.980 \times 10.000 \times 0.340 \times 0.560$ in. Hole diameter in the fixture: $d_f = 1.188$ in.

Plate thickness (input): 2.000 in.

Recommended plate thickness: not calculated

Drilling method: -


Cleaning: No cleaning of the drilled hole is required

Anchor type and diameter: Heavy Hex Head ASTM F 1554 GR. 105 1 1/8 Installation torque: -

Hole diameter in the base material: - in.

Hole depth in the base material: 24.000 in.

Minimum thickness of the base material: 25.250 in.

Coordinates Anchor in.

Anchor	х	у	C _{-x}	C+x	C _{-y}	C _{+y}	Anchor	х	У	C-x	C+x	C _{-y}	C _{+y}
1	-7.000	6.750	5.000	19.000	18.750	5.250	5	7.000	6.750	19.000	5.000	18.750	5.250
2	-7.000	2.250	5.000	19,000	14.250	9.750	6	7.000	2.250	19.000	5.000	14.250	9.750
3	-7.000	-2.250	5.000	19.000	9.750	14.250	7	7.000	-2.250	19.000	5.000	9.750	14.250
4	-7.000	-6.750	5.000	19.000	5.250	18.750	8	7.000	-6.750	19.000	5.000	5.250	18.750

www.hilti.us		Profis Anchor 2.7.3
Company:	Page:	8
Specifier:	Project:	
Address:	Sub-Project I P	os. No.:
Phone I Fax:	Date:	2/27/2018
E-Mail:		

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

(R)	JOB TITLE M	eehan	Cabir)		BY D	sm	DATE ()	2/2019
CALDER RICHARDS CONSULTING ENGINEERS	SUBJECT Co	lumn	Base	Load				SHEET	OF
1 2 3 4 5 6	7 8 9 10	11 12 1	3 14 15	16 17	18	19 20 2	1 22 23	24 25 26	27 28
Columns On U									
Required Axio	2 COLK								
Compressio	n = 35.81 1	KFD							
Tension=	25.HY N LI	SED							
Required Shed									
D2 5h! V:	17 10/0K 101	-D							
D2.5c: V= r	npc/H= 50	KS1 × 60	H 113/	1/×12	= 2	7.96 K	LRFD		
Required Flexi									
a) I.IxRyxFy	v Z = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	x 50 Ks	i × (00.4)	n3 =	304.	< K.f+	LRFD		
b) Overstren	noth = 232	3,95 *	-					<i>K</i>	
	cia v								
Max Compres	91011								
P= 35.81*									
V = 43.30 K	,								
M= 510'51K									
Max Uplift									
p= -25.49*									
V= 42.26K									
M= 207.791	<*/							10	
Max Shear/IY	lavag va-t								
P= 33.83 K	ion en								
P= 9505									
V= 47.66 K	<i>(1)</i>								
M= 234.58									
				+					+

www.hilti.us Company:

Page:

Project:

Sub-Project I Pos. No.:

Date:

2/27/2018

Phone I Fax: E-Mail:

Specifier:

Address:

Specifier's comments:

1 Input data

Anchor type and diameter: Heavy Hex Head ASTM F 1554 GR. 105 1 3/4

Additional plate or washer (17.4.2.8):

 $d_{\text{plate}} = 3.000 \text{ in., } t_{\text{plate}} = 0.500 \text{ in.}$

Effective embedment depth:

 $h_{ef} = 24.000 \text{ in., } h_{ef,17.4.2.8} = 0.000 \text{ in.}$

Material:

ASTM F 1554

Proof:

Design method ACI 318-14 / CIP

Stand-off installation:

without clamping (anchor); restraint level (anchor plate): 2.00; e_b = 2.000 in.; t = 2.000 in.

Hilti Grout: CB-G EG, epoxy, fc.Grout = 14939 psi

Anchor plate:

 $I_x \times I_y \times t = 26.000$ in. x 20.000 in. x 2.000 in.; (Recommended plate thickness: not calculated

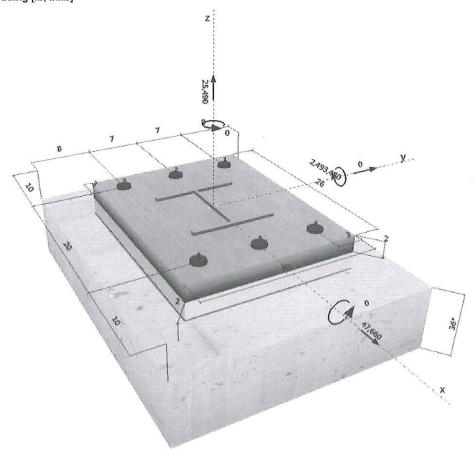
Profile:

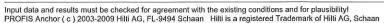
W shape (AISC); (L x W x T x FT) = 9.980 in. x 10.000 in. x 0.340 in. x 0.560 in.

Base material:

cracked concrete, 4000, f_c' = 4000 psi; h = 36.000 in.

Reinforcement:


tension: condition A, shear: condition A; anchor reinforcement: tension, shear


edge reinforcement: > No. 4 bar with stirrups

Seismic loads (cat. C, D, E, or F)

Tension load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.5.3 (c))

Geometry [in.] & Loading [lb, in.lb]

Page:

Company: Specifier:

Project: Sub-Project I Pos. No.:

Address: Phone I Fax: E-Mail:

2/27/2018

2

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	44610	7943	7943	0
2	44610	7943	7943	0
3	44610	7943	7943	0
4	0	7943	7943	0
5	0	7943	7943	0
6	0	7943	7943	0
max. concrete c	ompressive strain:		0.35 [%]	
max. concrete c	ompressive stress:		1545 [psi]	
resulting tension	force in (x/y)=(-10.	000/0.000):	133830 [lb]	
	ession force in (x/y)=		108340 [lb]	

3 Tension load

	Load N _{ua} [lb]	Capacity φ N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	44610	178125	26	OK
Pullout Strength*	44610	69619	65	OK
Concrete Breakout Strength**1	N/A	N/A	N/A	N/A
Concrete Side-Face Blowout, direction y-**	44610	92698	49	OK

^{*} anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

ACI 318-14 Eq. (17.4.1.2) $N_{sa} = A_{se,N} f_{uta}$ $\phi N_{sa} \ge N_{ua}$ ACI 318-14 Table 17.3.1.1

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
1.90	125001

Calculations

N_{sa} [lb] 237500

Results

N _{sa} [lb]	φ steel	φ N _{sa} [lb]	N _{ua} [lb]
237500	0.750	178125	44610

¹ Tension Anchor Reinforcement has been selected!

Profis Anchor 2.7.3 3

Company: Specifier:

E-Mail:

Address: Phone I Fax:

1

Page: Project:

Sub-Project I Pos. No.:

Date:

2/27/2018

3.2 Pullout Strength

 $N_{pN} = \psi_{c,p} N_p$

ACI 318-14 Eq. (17.4.3.1)

 $N_p = 8 A_{brg} f_c$

ACI 318-14 Eq. (17.4.3.4)

 $\phi N_{pN} \ge N_{ua}$

ACI 318-14 Table 17.3.1.1

Variables

A_{brg} [in.²] 4.14

λ_a

f_c [psi] 4000

Calculations

N_p [lb] 132608

Results

N_{pn} [lb] 132608

0.700

φ nonductile 1.000

λ_a

 ϕ N_{pn} [lb] 69619

f_c [psi]

4000

N_{ua} [lb] 44610

s [in.]

3.3 Concrete Side-Face Blowout, direction y-

 $N_{sb} = 160 c_{a1} \sqrt{A_{brg}} \lambda_a \sqrt{f_c}$

ACI 318-14 Eq. (17.4.4.1)

 $N_{sbg} = \alpha_{group} N_{sb}$ $\phi N_{sbg} \ge N_{ua}$

ACI 318-14 Eq. (17.4.4.2)

ACI 318-14 Table 17.3.1.1

A_{brg} [in.²] 4.14

 $\alpha_{\text{group}} = \left(1 + \frac{s}{6 c_{a1}}\right)$

see ACI 318-14, Section 17.4.4.2, Eq. (17.4.4.2)

Variables

c_{a2} [in.] 10.000 c_{a1} [in.] 8.000 Calculations

> N_{sb} [lb] 164797

Results

N_{ua,edge} [lb] 44610 N_{sbg} [lb] 164797 ϕ N_{sbg} [lb] oncrete φ nonductile φ seismic 1.000 92698 0.750 0.750

Page:

Project: Sub-Project I Pos. No.:

Date:

2/27/2018

4

Company: Specifier: Address:

Phone I Fax: E-Mail:

4 Shear load

	Load V _{ua} [lb]	Capacity φ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	7943	74100	11	OK
Steel failure (with lever arm)*	7943	13354	60	OK
Pryout Strength**	47660	103153	47	OK
Concrete edge failure in direction **1	N/A	N/A	N/A	N/A

^{*} anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

 $\begin{array}{l} V_{sa} = 0.6 \; A_{se,V} \; f_{uta} \\ \varphi \; V_{steel} \geq V_{ua} \end{array}$

ACI 318-14 Eq. (17.5.1.2b)

ACI 318-14 Table 17.3.1.1

Variables

A_{se,V} [in.²] f_{uta} [psi] 1.90 125001

Calculations

Results

V _{sa} [lb]	φ steel	ф eb	φ V _{sa} [lb]	V _{ua} [lb]
142500	0.650	0.800	74100	7943

4.2 Steel failure (with lever arm)

V_{s}^{M}	$=\frac{\alpha_{M}\cdotM_{s}}{L_{b}}$	bending equation for stand-off
M_s	$= M_s^0 \left(1 - \frac{N_{ua}}{\phi N_{sa}} \right)$	resultant flexural resistance of anchor
M_s^0	= (1.2) (S) (f _{u,min})	characteristic flexural resistance of anchor
$(1 - \frac{1}{1})$	lua)	reduction for tensile force acting simultaneously with a shear force on the anchor

S = $\frac{\pi(d)^3}{32}$ elastic section modulus of anchor bolt at concrete surface

 $L_b = z + (n)(d_0)$ $\phi V_s^M \ge V_{ua}$

internal lever arm adjusted for spalling of the surface concrete

ACI 318-14 Table 17.3.1.1

Variables

α_{M}	f _{u,min} [psi]	N _{ua} [lb]	φ N _{sa} [lb]	z [in.]	n	d _o [in.]
2.00	125001	44610	178125	3.000	0.500	1.750

Calculations

M _s [in.lb]	$\left(1 - \frac{N_{ua}}{\phi N_{sa}}\right)$	M _s [in.lb]	L _b [in.]
53106 195	0.750	39806.126	3.875

Results

V _s [lb]	φ steel	ϕV_s^M [lb]	V _{ua} [lb]
20545	0.650	13354	7943

¹ Shear Anchor Reinforcement has been selected!

Profis Anchor 2.7.3

www.hilti.us

Phone I Fax:

Page: Project: 5

Company: Specifier: Address:

Sub-Project I Pos. No.: Date:

2/27/2018

E-Mail:

4.3 Pryout Strength

$$\begin{array}{lll} V_{cpg} &= k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \, \psi_{ed,N} \, \psi_{c,N} \, \psi_{cp,N} \, N_b \right] & \text{ACI 318-14 Eq. (17.5.3.1b)} \\ \varphi \, V_{cpg} \geq V_{ua} & \text{ACI 318-14 Table 17.3.1.1} \\ A_{Nc} & \text{see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)} \\ A_{Nc0} &= 9 \, h_{ef}^2 & \text{ACI 318-14 Eq. (17.4.2.1c)} \end{array}$$

$$A_{Nc0} = 9 h_{ef}^{2}$$
 $\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 \dot{e_{N}}}{3 h_{ef}}}\right) \le 1.0$

$$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5 h_{\text{ef}}} \right) \le 1.0$$

$$\begin{split} & \psi_{ed,N} &= 0.7 + 0.3 \left(\frac{C_{a,min}}{1.5h_{ef}} \right) \le 1.0 \\ & \psi_{cp,N} &= MAX \left(\frac{C_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \le 1.0 \\ & N_b &= k_c \, \lambda_a \, \sqrt{f_c} \, h_{ef}^{1.5} \end{split}$$

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	6.667	0.000	0.000	8.000

$$\psi_{c,N}$$
 c_{ac} [in.] k_c λ_a f_c [psi] 1.000 - 24 1.000 4000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
1200.00	400.00	1.000	1.000	0.940	1.000	26128
Results						
V _{cpg} [lb]	φ concrete	φ seismic	φ nonductile	φ V _{cpg} [lb]	V _{ua} [lb]	
147361	0.700	1.000	1.000	103153	47660	

5 Combined tension and shear loads

βN	βν	ζ	Utilization β _{N,V} [%]	Status
0.641	0.595	5/3	90	OK

 $\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$

2/27/2018

 www.hilti.us
 Profis Anchor 2.7.3

 Company:
 Page:
 6

 Specifier:
 Project:

 Address:
 Sub-Project I Pos. No.:

Date:

rancou ra

Phone I Fax:

E-Mail:

6 Warnings

I

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- ACI 318 does not specifically address anchor bending when a stand-off condition exists. PROFIS Anchor calculates a shear load corresponding to anchor bending when stand-off exists and includes the results as a shear Design Strength!
- · Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by one.
- The design of Anchor Reinforcement is beyond the scope of PROFIS Anchor. Refer to ACI 318-14, Section 17.4.2.9 for information about Anchor Reinforcement.
- The design of Anchor Reinforcement is beyond the scope of PROFIS Anchor. Refer to ACI 318-14, Section 17.5.2.9 for information about Anchor Reinforcement.
- Anchor Reinforcement has been selected as a design option, calculations should be compared with PROFIS Anchor calculations.

Fastening meets the design criteria!

Company: Specifier: Address:

Phone I Fax: E-Mail:

1

Page:

Project: Sub-Project I Pos. No.:

Date:

2/27/2018

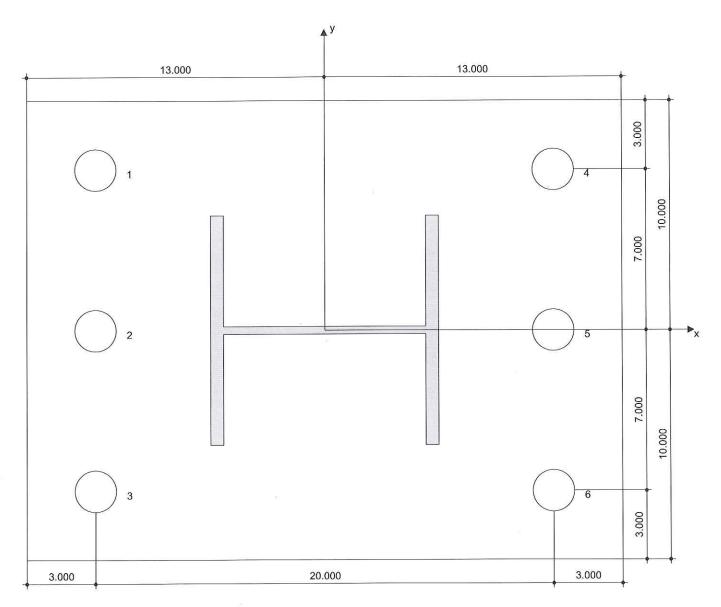
7 Installation data

Anchor plate, steel: -

Profile: W shape (AISC); 9.980 x 10.000 x 0.340 x 0.560 in.

Hole diameter in the fixture: $d_f = 1.813$ in.

Plate thickness (input): 2.000 in.


Recommended plate thickness: not calculated

Drilling method: -

Cleaning: No cleaning of the drilled hole is required

Anchor type and diameter: Heavy Hex Head ASTM F 1554 GR. 105 1 3/4 Installation torque: -

Hole diameter in the base material: - in.
Hole depth in the base material: 24.000 in.
Minimum thickness of the base material: 25.656 in.

Coordinates Anchor in.

Anchor	X	У	C-x	C+x	C _{-y}	C+y		Anchor	x	У	C-x	C+X	C.y	C+y
1	-10.000	7.000	10.000	30.000	22.000	8.000		4	10.000	7.000	30.000	10.000	22.000	8.000
2	-10.000	0.000	10.000	30.000	15.000	15.000	(9)	5	10.000	0.000	30.000	10.000	15.000	15.000
3	-10.000	-7.000	10.000	30.000	8.000	22.000		6	10.000	-7.000	30.000	10.000	8.000	22.000

Profis Anchor 2.7.3

Company: Specifier: Address: Phone I Fax:

E-Mail:

Project: Sub-Project I Pos. No.:

Date:

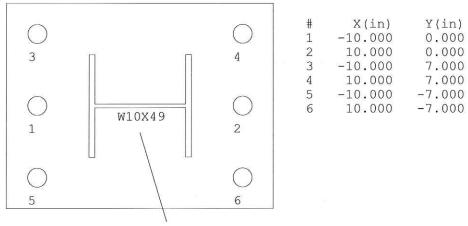
Page:

2/27/2018

8

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.


Pier Connections

CRITERIA: Analysis Maintain Strain Compatibility Use min. effective plate area for axial only compress: Design Use ASD 9th to check plate bending Max concrete bearing per AISC J9. Anchor Shear Check Per AISC Specifications. Anchor Tension Check Per AISC Specifications.	ion load	on	plate.
INPUT DATA: Column Column Size			
Anchor Anchor Size	9		**
Dimension (Perpendicular to web) (ft) 2.00 Design Load Building Code: - None - Load combination: Single Load Case Axial (kip)			
RESULTS: Analysis YBar (in) Resultant Angle (°) Plate Bending Max bending moment from anchor/s #1, 3, 5 in tension Allowable Stress Increase Factor m [N-0.95d]/2.0 (in) n [B-0.80b]/2.0 (in) Controlling effective width to resist moment (in) Controlling plate bending moment (kip-ft) fb (ksi) Fb (ksi) fb/Fb Thickness Required (in)	8.39 0.00 1.00 8.260 6.000 20.000 57.23 22.89 27.00 0.85 2.762		

Pier Connections

Thickne	ess control	led by cant	tilever actio	on.				
Anchors								
Anchor	·X(in)	Y(in)	V(kip)	T(kip)	Interaction			
1	-10.00	0.00	6.77	43.53	0.42			
2	10.00	0.00	6.77	0.00	0.13			
3	-10.00	7.00	6.77	43.53	0.42			
4	10.00	7.00	6.77	0.00	0.13			
5	-10.00	-7.00	6.77	43.53	0.42			
6	10.00	-7.00	6.77	0.00	0.13			
Bearing								
Eff Area of Support A2 (in^2)								
Plate Area A1 (in^2) 520.00								
Sqrt(A2/A1)								
Allowable Bearing Pressure (ksi) 1.62								
Actual Bearing Stress (ksi) 1.29								

DIAGRAM:

PL 26.00 X 20.00 X 3.00 (in) 6 - 1 3/4" A325 Anchor Bolts