November 27， 2017

Mike Molyneux
Kimball Engineering
908 W．Gordon Ave．Suite \＃3
Layton，UT 84041

Re：Plunkett Kuhr SFD－Plan Review Comments（First Review）

WC ${ }^{3}$ Project \＃：217－525－188

Mr．Molyneux：
We have reviewed the structural plan review comments listed above and dated October 26，2017．See below for responses in bold italic font to your comments．The numbering of the responses corresponds to the numbering of the review comments．

Structural Drawings：

S1．Sheet S－000：Please include in the Design Criteria Notes the basic seismic force－resisting systems as required by IBC 1603．1．5．

See revised plans for changes．
S2．Sheet S－101：Footings FC2．5 and FS6．0 do not meet the minimum reinforcement requirements of Section 24．4．3 of ACI 318－14．

See revised plans for changes．
S3．Sheet S－300：The concrete pier size and reinforcing requirements have not been specified in Detail K．Please provide．

See revised plans for changes．
S4．Sheet S－301：Please address the following：
A．Detail F references the plan and schedule for the concrete column reinforcing．The concrete column has not been indicated on the plan．Please clarify．

See revised plans for changes．
B．Detail G references B／S3．1 for wall reinforcing．This detail could not be found．Please clarify．
See revised plans for changes．
S5．Sheet S－400：Details C and D both reference the shear wall schedule，but do not show the correct sheet number．Similar errors were noticed throughout the plans．Please verify that all references are correct．

See revised plans for changes．
S6．The required thicknesses of concrete walls could not be found on the plans．Please clarify．
Foundation note 3 on $S-101$ directs the contractor to the concrete wall schedule．The thickness of the wall is specified in the schedule．The thickness of the walls is also to scale on the structural plans．

```
\(94 \square\) ELM AVE．，SALT LAKE City，பTAH， 841 ロ6 TEL 8ロ1．486．6848 FAX 8ロ1．466．3327 WWW．CANYONSSTRUCTURAL．COM LICENSES THRロUGHロUT THE US AND CANADA page 1 of 3
```

Structural Calculations：

S7．The flat roof snow load is shown to be 192 psf ．The exterior concrete deck snow load is shown to be 98 psf．Please explain how the deck snow load can be so much lower that the flat roof snow load．
98 psf was not used in design， 192 psf is the governing snow load for all applicable areas，including the exposed terrace．All beams in the initial calculation set submitted have this value inputted．

S8．Steel column SC 1 is shown as $\operatorname{HSS} 5 \times 5 \times 1 / 2$ in the calculations while the plans show HSS $4 \times 4 \times 1 / 2$ ． Please verify．
Column schedule typo，correction made．See revised plans for changes．
S9．The concrete lintel calculations show 16 inches deep by 10 inches wide．Detail S／S－300 shows 12 inches deep and the width could not be found．Please address．
Calculation and detail revisited．See revised plans and calcs for change．
S10．The calculations show W2 Formlok Deck with 5－1／2 inches total slab depth．Detail E／S－301 shows 4 inches total slab depth．Please clarify．
4 ＂is for the structural slab，and the additional 1.5 ＂is for concrete topping if the architect chooses to add it．The design is covered if so．The detail only shows what is required for the deck diaphragm．

S11．Simpson anchorage calculations were done per ACI 318－11．Please verify that ACI 318－14 requirements have been met．
ACI 318－14 have been met．Updated calculation attached for reference．Please note，some holdowns have been eliminated in the locations where a steel column occurs．The typical steel column connection has been checked for max uplift and has been added to the supplemental calculation set for reference．

S12．Snow drift calculations could not be found and drift loads do not appear to be indicated on the plans．Please address．
The rooftop terrace，where drift is applicable，was designed for a live load of 252 psf．Max snow drift is 245 psf．See supplemental calculation for drift calc reference．The balcony that wraps around Part A does not include drift as its surface is covered by the eave．

S13．The proposed structure includes in－plane discontinuity in vertical lateral force－resisting element irregularities as defined by Table 12．3－2 of ASCE 7－10．Please confirm that the requisite forces were increased as required by Sections 12．3．3．3 and 12．3．3．4 of ASCE 7.
These requirements have been met where applicable and the key plans attached show locations of all irregularities considered．Calculations were checked during the initial design phase．

S14．The proposed structure includes nonparallel system irregularities as defined by Table 12．3－1 of ASCE 7－10．Please confirm that the requisite forces were increased as required and that the requirements of Sections 12.5 .3 and 12．7．3 of ASCE 7 have been met．
These requirements have been met where applicable and the key plans attached show locations of all irregularities considered．Calculations were checked during the initial design phase．

[^0]S15．The lateral design was difficult to follow．Please provide a key plan indicating all lateral resisting elements（i．e．shear walls，moment frames，etc．）along with a horizontal distribution of lateral forces per Section 12．8．4 of ASCE 7－10 for the structure showing which walls／frames were considered in the design and the shear load to each wall／frame．
Key plans and horizontal distribution have been added to the supplemental calculations．

S16．Please provide anchorage calculations for the moment frame per Chapter 17 of ACI 318－14．

Calculations attached．

S17．The calculations appear to indicate that cantilever columns were used as lateral resisting elements， but detailing of these was not clear on the plans．Please clarify and verify that the correct R value was used for design．
Cantilevered columns were not used，see updated plans for verification of lateral resisting elements．The lateral resisting elements for this structure are wood shearwalls，ordinary moment frames，and ordinary concrete shearwalls．

S18．It appears that combinations of framing systems are used in the same direction．Please verify that the requirements of Section 12．2．3 of ASCE 7－10 have been met and that the most stringent applicable structural system limitations contained in Table 12．2－1 have been applied．
Most stringent design used was an R of 3.5 for the ordinary moment frames．Key plans attached will bring clarity to this requirement and what was used．Area B of the structure uses an R of 6.5 for just the shear design above the stringent design，these areas being the high roof and upper floor．

S19．Please provide calculations for the concrete columns and verify that ACI 318－14 detailing requirements have been met．

Calculation added，and detailing requirement noted on plans．

Do not hesitate to contact us with any questions，and thank you for your time reviewing this work．
Respectfully，

Courtney R．Fleming，E．I．T
Project Engineer

Dany JP Tremblay，SE PE P．Eng
President｜Canyons Structural，Inc

Digitally signed by Dany JP Tremblay DN：cn＝Dany JP Tremblay，o＝Canyons Structural Consulting， Inc．，ou＝President， email＝dany＠canyonsstr tural．com，c＝U －07＇00＇

CODE REFERENCES

Calculations per ACI 318-14, IBC 2015, ASCE 7-10
Load Combination Set : IBC 2015

Material Properties

(3)

Cross Section \& Reinforcing Details

Rectangular Section, Width $=8.0$ in, Height $=14.0$ in
Span \#1 Reinforcing....
2-\#7 at 2.0 in from Bottom, from 0.0 to 6.0 ft in this span

Applied Loads

2-\#7 at 2.0 in from Top, from 0.0 to 6.0 ft in this span
Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loads Load for Span Number 1

Uniform Load : D $=0.0250, \mathrm{~L}=0.040 \mathrm{ksf}$, Tributary Width $=6.50 \mathrm{ft}$, (Floor/deck loading)
Point Load: D=3.0, S = 19.0 k @ 4.0 ft , (Roof Point Load (wehen occurs, w)
Uniform Load : E = $0.6330 \mathrm{k} / \mathrm{ft}$, Tributary Width $=1.0 \mathrm{ft}$, (Seimic load $+25 \%$ increase for i)

DESIGN SUMMARY			Design OK	
Maximum Bending Stress Ratio =	0.812:1	Maximum Deflection		
Section used for this span	Typical Section	Max Downward Transient Deflection	0.038 in Ratio $=$	$1885>=48$
Mu: Applied	$47.175 \mathrm{k}-\mathrm{ft}$	Max Upward Transient Deflection	0.000 in Ratio $=$	$0<480$
Mn * Phi : Allowable	58.078 k-ft	Max Downward Total Deflection	0.049 in Ratio $=$	$1458>=24$
Location of maximum on span	4.000 ft	Max Upward Total Deflection	0.000 in Ratio $=$	$999<240$
Span \# where maximum occurs	Span \# 1			

Vertical Reactions	Support notation : Far left is \#1	
Load Combination	Support 1	Support 2
Overall MAXimum	8.159	15.493
Overall MINimum	0.780	0.780
+D+H	1.826	2.826
+D+L+H	2.606	3.606
+D+Lr+H	1.826	2.826
+D+S+H	8.159	15.493
+D+0.750Lr+0.750L+H	2.411	3.411
+D+0.750L+0.750S+H	7.161	12.911
+D+0.60W+H	1.826	2.826
+D+0.70E+H	3.155	4.155
+D+0.750Lr+0.750L+0.450W+H	2.411	3.411 Supplemental Calcs 1 Page 1 of 37

Vertical Reactions		
Load Combination	Support 1	Support 2
$+D+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+\mathrm{H}$	7.161	12.911
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$	8.158	13.908
+0.60D $+0.60 \mathrm{~W}+0.60 \mathrm{H}$	1.096	1.695
+0.60D+0.70E +0.60 H	2.425	3.025
D Only	1.826	2.826
Lr Only		
L Only	0.780	0.780
S Only	6.333	12.667
W Only		
E Only	1.899	1.899
H Only		

Shear Stirrup Requirements

Entire Beam Span Length : PhiVc < Vu, Req'd Vs = 1.812, use stirrups spaced at 6.000 in

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length		Location (ft) Span \# in Span		Bending Stress Results (k-ft)			
				Mu: Max	Phi*Mnx	Stress Ratio	
MAXimum BENDING Envelope							
Span \# 1		1		47.17	58.08	0.81	
+1.40D+1.60H							
Span \# 1		1		7.14	58.08	0.12	
+1.20D+0.50Lr+1.60L+1.60H							
Span \# 1		1		7.79	58.08	0.13	
+1.20D+1.60L+0.50S+1.60H							
Span \# 1		1		20.45	58.08	0.35	
+1.20D+1.60Lr+0.50L+1.60H							
Span \# 1		1		6.64	58.08	0.11	
+1.20D+1.60Lr+0.50W+1.60H							
Span \# 1		1		6.12	58.08	0.11	
+1.20D+0.50L+1.60S+1.60H							
Span \# 1		1		47.17	58.08	0.81	
+1.20D+1.60S+0.50W+1.60H							
Span \# 1		1		46.65	58.08	0.80	
+1.20D+0.50Lr+0.50L+W+1.60H							
Span \# 1		1		6.64	58.08	0.11	
+1.20D+0.50L+0.50S+W+1.60H							
Span \# 1		1		19.31	58.08	0.33	
+1.20D+0.50L+0.70S+E+1.60H							
Span \# 1		1		26.91	58.08	0.46	
+1.20D+0.50L+0.70S-E+1.60H							
Span \# 1		1		21.84	58.08	0.38	
+0.90D+W+0.90H							
Span \# 1		1		4.59	58.08	0.08	
$+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$							
Span \# 1		1		7.12	58.08	0.12	
+0.90D-E+0.90H							
Span \# 1		1		2.06	58.08	0.04	
Overall Maximum Deflections							
Load Combination Span	Max. "-- Defl	Locatio	pan	tion		Max. "+" Defl	Location in Span
+D+S+H 1	0.0494					0.0000	0.000

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Strongylie
 Software
 Version 2.5.6464.0

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	Courtney Fleming	Page:	$1 / 4$
Project:	HDU2		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-11
Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor
Material: F1554 Grade 36
Diameter (inch): 0.625
Effective Embedment depth, hef (inch): 10.000
Code report: ICC-ES ESR-2508
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 13.13
$\mathrm{Cac}^{\text {(inch): }} 17.02$
$\mathrm{C}_{\text {min }}$ (inch): 1.75
$\mathrm{S}_{\text {min }}$ (inch): 3.00

Project description:
Location:
Fastening description:

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 26.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\Psi_{\text {c,v: }} 1.0$
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No
Ignore concrete breakout in tension: No
Ignore concrete breakout in shear: No
Hole condition: Dry concrete
Inspection: Periodic
Temperature range, Short/Long: $150 / 110^{\circ} \mathrm{F}$
Ignore 6do requirement: Not applicable Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2
Load combination: not set
Seismic design: Yes
Anchors subjected to sustained tension: No
Ductility section for tension: D.3.3.4.3 (b) is satisfied
Ductility section for shear: D.3.3.5.2 not applicable
Ω_{0} factor: not set
Apply entire shear load at front row: No 2372 lb
Anchors only resisting wind and/or seismic loads: Yes
<Figure 1>

SIMPSON
 Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.5.6464.0

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	Courtney Fleming	Page:	$2 / 4$
Project:	HDU2		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: SET-XP® - SET-XP w/ 5/8"Ø F1554 Gr. 36
Code Report: ICC-ES ESR-2508

SIMPSON Anchor Designer™ Software
 Version 2.5.6464.0

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	Courtney Fleming	Page:	$3 / 4$
Project:	HDU2		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $V\left(V_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	2372.0	0.0	0.0	0.0
Sum	2372.0	0.0	0.0	0.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 2372
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e' $n x$ (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e' Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. D.5.1)

$N_{\text {sa }}$ (lb)	ϕ	$\phi N_{\text {sa }}$ (b)
13110	0.75	9833

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

$N_{b}=k_{c} \lambda_{a} \downarrow f^{\prime} h_{\text {ef }}{ }^{1.5}$ (Eq. D-6)

k_{c}	λa	$f^{\prime}{ }^{\prime}(\mathrm{psi})$	$h_{\text {ef }}$ (in)	N_{b} (lb)				
17.0	1.00	2500	10.000	26879				
$0.75 \phi N_{c b}=0.75 \phi\left(A_{N c} / A_{N c o}\right) \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Sec. D.4.1 \& Eq. D-3)								
$A_{N c}\left(\mathrm{in}^{2}\right)$	Anco (in ${ }^{2}$	$\mathrm{Ca}_{\mathrm{m} \text { min }}(\mathrm{in})$	$\Psi_{e d, N}$	$\Psi_{C, N}$	$\Psi_{c p, N}$	N_{b} (lb)	ϕ	$0.75 \phi N_{c b}(\mathrm{lb})$
240.00	900.00	2.75	0.755	1.00	1.000	26879	0.65	2638

6. Adhesive Strength of Anchor in Tension (Sec. 5.5)

$\tau_{k, c r}=\tau_{k, \text { cr }} f_{\text {short-term }} K_{\text {sat }} \alpha_{\mathrm{N} . \text { seis }}$

$\tau_{k, c r}(\mathrm{psi})$	$f_{\text {short-term }}$	$K_{\text {sat }}$	$\alpha_{N . \text { seis }}$	$\tau_{k, c r}(\mathrm{psi})$
435	1.72	1.00	1.00	748

$N_{b a}=\lambda_{a} \tau_{c r} \pi d_{a} h_{\text {ef }}($ Eq. D-22)

λ_{a}	$\tau_{c r}(\mathrm{psi})$	$d_{a}($ in $)$	$h_{e f}($ in $)$	$N_{b a}(\mathrm{lb})$
1.00	748	0.63	10.000	14691

$0.75 \phi N_{a}=0.75 \phi\left(A_{N a} / A_{N a}\right) \Psi_{e d, N_{a}} \Psi_{c p, N_{a}} N_{b a}(S e c . D .4 .1 \& E q . D-18)$

$A_{N a}\left(\mathrm{in}^{2}\right)$	$A_{N a O}\left(\mathrm{in}^{2}\right)$	$C_{N a}$ (in)	$C_{a, \min }$ (in)	$\Psi_{e d, N a}$	$\Psi_{p, N a}$	$N_{\mathrm{ao} 0}(\mathrm{lb})$	ϕ	$0.75 \phi \mathrm{Na}_{\mathrm{a}}(\mathrm{lb})$
128.74	258.98	8.05	2.75	0.803	1.000	14691	0.55	2418

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Strongtie Software

Company:	Canyons Structural	Date:	11/25/2017
Engineer:	Courtney Fleming	Page:	$4 / 4$
Project:	HDU2		
Address:			
Phone:			
E-mail:			

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øN $\mathrm{n}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	2372	9833	0.24	Pass
Concrete breakout	2372	2638	0.90	Pass
Adhesive	$\mathbf{2 3 7 2}$	$\mathbf{2 4 1 8}$	$\mathbf{0 . 9 8}$	Pass (Governs)

SET-XP w/ 5/8"Ø F1554 Gr. 36 with hef $=10.000$ inch meets the selected design criteria.

12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.
- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 D.3.3.5.3 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Strong4tie
 Software

Version 2.5.6464.0

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$1 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:
Project description: Steel column tensile load check (worst case,
loaction B) where in place of typ. holdown
Location:
Fastening description:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor
Material: F1554 Grade 36
Diameter (inch): 0.750
Effective Embedment depth, $h_{\text {ef }}$ (inch): 12.000
Code report: ICC-ES ESR-2508
Anchor category: -
Anchor ductility: Yes
$h_{\text {min }}$ (inch): 15.75
Cac (inch): 28.45
$\mathrm{C}_{\text {min }}$ (inch): 1.75
$S_{\text {min }}$ (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 5.3
Base Material
Concrete: Normal-weight
Concrete thickness, h (inch): 18.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\mathrm{c}, \mathrm{V}:} 1.0$
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No
Ignore concrete breakout in tension: Yes
Ignore concrete breakout in shear: Yes
Hole condition: Dry concrete
Inspection: Periodic
Temperature range, Short/Long: $150 / 110^{\circ} \mathrm{F}$
Ignore 6do requirement: Not applicable
Build-up grout pad: No

Base Plate

Length \times Width \times Thickness (inch): $9.00 \times 24.00 \times 0.75$
Yield stress: 34084 psi
Seismic design: Yes
Anchors subjected to sustained tension: No
Profile type/size: HSS5X5X1/4
Ductility section for tension: 17.2.3.4.3 (b) is satisfied $\mathbf{1 7 . 2}$ not applicab|65 $\mathbf{6 2 5}$
Ω_{0} factor: not set
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads:

SIMPSON
Anchor Designer ${ }^{\text {TM }}$ Software
Version 2.5.6464.0

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$2 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: SET-XP® - SET-XP w/ 3/4"Ø F1554 Gr. 36
Code Report: ICC-ES ESR-2508

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.5.6464.0

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$3 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $\mathrm{V}_{\text {uax }}(\mathrm{bb})$	Shear load y, $\mathrm{V}_{\text {uay }}(\mathrm{lb})$	Shear load combined, $\sqrt{(V)}$
1	1631.3	0.0	163.0	163.0
2	1631.3	0.0	163.0	163.0
3	1631.3	0.0	163.0	163.0
4	1631.3	0.0	163.0	163.0
Sum	6525.0	0.0	652.0	652.0

Maximum concrete compression strain (\%): 0.00
<Figure 3>
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 0
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x -axis, $\mathrm{e}^{\prime} \mathrm{Nx}$ (inch): 0.00
Eccentricity of resultant tension forces in y -axis, e'Ny (inch): 0.00
Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00
Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}$ (lb)	ϕ	$\phi N_{\text {sa }}($ lb)
19370	0.75	14528

6. Adhesive Strength of Anchor in Tension (Sec. 17.4.5)

$\tau_{k, c r}=\tau_{k, c r} f_{\text {short-term }} K_{\text {sat }} \alpha_{N . \text { seis }}$

$\tau_{k, c r}(\mathrm{psi})$	$f_{\text {short-term }}$	$K_{\text {sat }}$	$\alpha_{N . \text { seis }}$	$\tau_{k, \text { cr }}(\mathrm{psi})$
385	1.72	1.00	1.00	662

$N_{b a}=\lambda_{a} \tau_{c r} \pi d_{a} h_{e f}($ Eq. 17.4.5.2)

λ_{a}	$\tau_{c r}(\mathrm{psi})$	$d_{a}($ in $)$	$h_{e f}($ in $)$	$N_{b a}(\mathrm{lb})$
1.00	662	0.75	12.000	18723

$0.75 \phi N_{a g}=0.75 \phi\left(A_{N a} / A_{N a 0}\right) \Psi_{e c, N a} \Psi_{e d, N a} \Psi_{c p, N a} N_{b a}($ Sec. $17.3 .1 \&$ Eq. 17.4.5.1b)

$A_{N a}\left(\right.$ in $\left.^{2}\right)$	$A_{N a O}\left(\right.$ in $\left.^{2}\right)$	$C_{N a}($ in $)$	$C_{a, m i n}($ in $)$	$\Psi_{e c, N a}$	$\Psi_{e d, N a}$	$\Psi_{c p, N a}$	$N_{b a}($ (bb)	ϕ	$0.75 \phi N_{a g}($ (Ib)
364.26	341.26	9.24	4.50	1.000	0.846	1.000	18723	0.55	6976

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$4 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

$V_{\text {sa }}($ Ib $)$	$\phi_{\text {grout }}$	ϕ	$\alpha V_{\text {seis }}$	$\phi_{\text {grout }} \alpha_{V, \text { seis }} \phi V_{\text {sa }}$ (Ib)
11625	1.0	0.65	0.68	5138

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)
$\phi V_{c p g}=\phi \min \left|k_{c p} N_{a g} ; k_{c p} N_{c b g}\right|=\phi \min \mid k_{c p}\left(A_{N a} / A_{N a O}\right) \Psi_{e c, N a} \Psi_{e d, N a} \Psi_{c p, N_{a}} N_{b a} ; k_{c p}\left(A_{N c} / A_{\left.N_{c o}\right)} \Psi_{e c, N} \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b} \mid\right.$ (Sec. 17.3.1\& Eq. 17.5.3.1b)

$k_{c p}$	$A_{N a}\left(\mathrm{in}^{2}\right)$	$A_{N a 0}\left(\mathrm{in}^{2}\right)$	$\Psi_{e d, N a}$	$\Psi_{e c, N a}$	$\Psi_{c p, N a}$	$N_{b a}(\mathrm{lb})$	$N_{a}(\mathrm{lb})$
2.0	364.26	341.26	0.846	1.000	1.000	1823	16910

$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$\Psi_{e c, N}$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c p, N}$	$N_{b}(\mathrm{lb})$	$N_{c b}(\mathrm{lb})$	ϕ
378.00	400.00	1.000	0.835	1.000	1.000	14631	11545	0.70

$\phi V_{\text {cpg }}$ (Ib)
16163

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Load, Nua (lb)	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	1631	14528	0.11	Pass
Adhesive	6525	6976	0.94	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, $\varnothing \mathrm{V}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	163	5138	0.03	Pass
Pryout	652	16163	0.04	Pass (Governs)
Interaction check	$N_{u a} / \phi N_{n} \quad V_{u a} / \phi V_{n}$	Combined Ratio	Permissible	Status
Sec. 17.6.. 1	0.94 0.00	93.5 \%	1.0	Pass

SET-XP w/ 3/4"Ø F1554 Gr. 36 with hef $=12.000$ inch meets the selected design criteria.

Base Plate Thickness

Required base plate thickness: 0.595 inch

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Software
 Version 2.5.6464.0

Company:	Canyons Structural	Date:	11/25/2017
Engineer:	CRF	Page:	$5 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.
- Minimum spacing and edge distance requirement of 6 da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Concrete breakout strength in shear has not been evaluated against applied shear load(s) per designer option. Refer to ACl 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$1 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor
Material: F1554 Grade 36
Diameter (inch): 0.750
Effective Embedment depth, hef (inch): 8.000
Code report: ICC-ES ESR-2508
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 11.75
$\mathrm{Cac}^{\text {(inch): }} 13.30$
$\mathrm{C}_{\text {min }}$ (inch): 1.75
$\mathrm{S}_{\text {min }}$ (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 5.3
Project description: Steel column tensile load check (worst case)
where in place of typ. holdown
Location:
Fastening description:

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 18.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\mathrm{c}, \mathrm{v}}$: 1.0
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No
Ignore concrete breakout in tension: Yes
Ignore concrete breakout in shear: Yes
Hole condition: Dry concrete
Inspection: Periodic
Temperature range, Short/Long: $150 / 110^{\circ} \mathrm{F}$
Ignore 6do requirement: Not applicable
Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): $9.00 \times 24.00 \times 0.50$
Yield stress: 34084 psi
Seismic design: Yes
Anchors subjected to sustained tension: No
Profile type/size: HSS5X5X1/4
Ductility section for tension: 17.2.3.4.3 (b) is satisfied
Ductility section for shear: 17.2 .3 .5 .2 not applicabl $\mathbf{4 5 0 0} \mathbf{~ I b}$
Ω_{0} factor: not set
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads:

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560 .9000 Fax: 925.847 .3871 www.strongtie.com

SIMPSON
Anchor Designer ${ }^{\text {TM }}$ Software
Version 2.5.6464.0

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$2 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: SET-XP® - SET-XP w/ 3/4"Ø F1554 Gr. 36
Code Report: ICC-ES ESR-2508

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.5.6464.0

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$3 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $\mathrm{N}_{\text {ua }}(\mathrm{lb})$	Shear load x, $\mathrm{V}_{\text {uax }}(\mathrm{lb})$	Shear load y, $\mathrm{V}_{\text {uay }}(\mathrm{lb})$

Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 0
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e' $N x$ (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'ny (inch): 0.00
Eccentricity of resultant shear forces in x-axis, $e^{\prime} v_{x}$ (inch): 0.00
Eccentricity of resultant shear forces in y-axis, $e^{\prime} v y$ (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}$ (lb)	ϕ	$\phi N_{\text {sa }}($ lb)
19370	0.75	14528

6. Adhesive Strength of Anchor in Tension (Sec. 17.4.5)

$\tau_{k, c r}=\tau_{k, c r} f_{\text {short-term }} K_{\text {sat }} \alpha_{N . \text { seis }}$

$\tau_{k, c r}(\mathrm{psi})$	$f_{\text {short-term }}$	$K_{\text {sat }}$	$\alpha_{N . \text { seis }}$	$\tau_{k, \text { cr }}(\mathrm{psi})$
385	1.72	1.00	1.00	662

$N_{b a}=\lambda_{a} \tau_{c r} \pi d_{a} h_{e f}($ Eq. 17.4.5.2)

λ_{a}	$\tau_{c r}(\mathrm{psi})$	d_{a} (in)	$h_{e f}$ (in)	$N_{b a}(\mathrm{lb})$
1.00	662	0.75	8.000	12482

$0.75 \phi N_{a g}=0.75 \phi\left(A_{N a} / A_{N a 0}\right) \Psi_{e c, N a} \Psi_{e d, N a} \Psi_{c p, N a} N_{b a}($ Sec. $17.3 .1 \&$ Eq. 17.4.5.1b)

$A_{N a}\left(\right.$ in $\left.^{2}\right)$	$A_{N a O}\left(\right.$ in $\left.^{2}\right)$	$C_{N a}($ in $)$	$C_{a, m i n}($ in $)$	$\Psi_{e c, N a}$	$\Psi_{e d, N a}$	$\Psi_{c p, N a}$	$N_{b a}($ (bb)	ϕ	$0.75 \phi N_{a g}($ (Ib) $)$
364.26	341.26	9.24	4.50	1.000	0.846	1.000	12482	0.55	4650

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$4 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

$V_{\text {sa }}($ Ib $)$	$\phi_{\text {grout }}$	ϕ	$\alpha V_{\text {seis }}$	$\phi_{\text {grout }} \alpha_{V, \text { seis }} \phi V_{\text {sa }}$ (Ib)
11625	1.0	0.65	0.68	5138

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)
$\phi V_{c p g}=\phi \min \left|k_{c p} N_{a g} ; k_{c p} N_{c b g}\right|=\phi \min \mid k_{c p}\left(A_{N a} / A_{N a O}\right) \Psi_{e c, N a} \Psi_{e d, N a} \Psi_{c p, N_{a}} N_{b a} ; k_{c p}\left(A_{N c} / A_{\left.N_{c o}\right)} \Psi_{e c, N} \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b} \mid\right.$ (Sec. 17.3.1\& Eq. 17.5.3.1b)

$k_{c p}$	$A_{N a}\left(\mathrm{in}^{2}\right)$	$A_{N a 0}\left(\mathrm{in}^{2}\right)$	$\Psi_{e d, N a}$	$\Psi_{e c, N a}$	$\Psi_{c p, N a}$	$N_{b a}(\mathrm{lb})$	$N_{a}(\mathrm{lb})$
2.0	364.26	341.26	0.846	1.000	1.000	12482	11274

$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$\Psi_{e c, N}$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c p, N}$	$N_{b}(\mathrm{lb})$	$N_{c b}(\mathrm{lb})$	ϕ
378.00	400.00	1.000	0.835	1.000	1.000	14631	11545	0.70

$\phi \mathrm{V}_{\text {cpg }}$ (Ib)
15783

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Load, Nua (lb)	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	1125	14528	0.08	Pass
Adhesive	4500	4650	0.97	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, $\varnothing \mathrm{V}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	885	5138	0.17	Pass
Pryout	3538	15783	0.22	Pass (Governs)
Interaction check	$N_{u a} / \phi N_{n} \quad V_{u a} / \phi V_{n}$	Combined Ratio	Permissible	Status
Sec. 17.6..3	0.97 0.22	119.2 \%	1.2	Pass

SET-XP w/ 3/4"Ø F1554 Gr. 36 with hef $=8.000$ inch meets the selected design criteria.

Base Plate Thickness

Required base plate thickness: 0.498 inch

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Software
 Version 2.5.6464.0

Company:	Canyons Structural	Date:	11/25/2017
Engineer:	CRF	Page:	$5 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.
- Minimum spacing and edge distance requirement of 6 da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Concrete breakout strength in shear has not been evaluated against applied shear load(s) per designer option. Refer to ACl 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

DRIFT LOADS

Height up to which Drift is NOT a factor

Difference in height between upper and lower roof or deck -

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{r}}:=1.5 \cdot \mathrm{ft} \\
& \mathrm{P}_{\mathrm{g}}:=274 \cdot \mathrm{psf} \\
& \mathrm{P}_{\mathrm{f}}:=192 \cdot \mathrm{psf} \\
& \mathrm{~h}_{\mathrm{b}}=5.5 \mathrm{ft}
\end{aligned}
$$

Ground Snow Load -
Roof Snow Load -

Height of balanced snow load on lower roof or deck -

$$
h_{b}:=\frac{\mathrm{P}_{\mathrm{f}}}{\mathrm{D}} \quad \mathrm{~h}_{\mathrm{b}}=5.5 \mathrm{ft}
$$

$\frac{\left(h_{r}-h_{b}\right)}{h_{b}}=-0.727$

$$
\left(\mathrm{h}_{\mathrm{r}_{-} \text {consider }}=6.583 \mathrm{ft}\right)
$$

Drift $=$ "DOES NOT need to be considered"

Drift Area 1

Difference in height between upper and lower roof or deck -
$h_{\mathrm{r}}:=5 \cdot \mathrm{ft}$
Height of balanced snow load on lower roof or deck $-\quad h_{b}:=\frac{P_{f}}{D} \quad h_{b}=5.5 \mathrm{ft}$
$\frac{\left(h_{r}-h_{b}\right)}{h_{b}}=-0.089$
$\left(\mathrm{h}_{\mathrm{r}_{-} \text {consider }}=6.583 \mathrm{ft}\right)$
Drift = "DOES NOT need to be considered"

Horizontal dimension of upper roof normal to the line of change in roof level, but not less than 50 ft . or greater than 500 ft .
$\mathrm{W}_{\mathrm{b}}:=50 \cdot \mathrm{ft}$
Maximum height of drift surcharge - $\quad \mathrm{h}_{\mathrm{d}}:=\left[0.43 \cdot\left(\frac{\mathrm{~W}_{\mathrm{b}}}{\mathrm{ft}}\right)^{.33} \cdot\left(\frac{\mathrm{P}_{\mathrm{g}}}{\mathrm{psf}}+10\right)^{.25}-1.5\right] \cdot \mathrm{ft} \quad \mathrm{h}_{\mathrm{d}}=4.9 \mathrm{ft}$

Width of the drift load -

$$
\mathrm{W}_{\mathrm{d}}:=\min \left[4 \cdot \mathrm{~h}_{\mathrm{d}}, 4 \cdot\left(\mathrm{~h}_{\mathrm{r}}-\mathrm{h}_{\mathrm{b}}\right)\right]
$$

$$
\mathrm{W}_{\mathrm{d}}=-1.9 \mathrm{ft}
$$

Maximum intensity of the snow load at the highest point of drift -

$$
\mathrm{P}_{\mathrm{m}}:=\min \left[\mathrm{D} \cdot\left(\mathrm{~h}_{\mathrm{d}}+\mathrm{h}_{\mathrm{b}}\right), \mathrm{D} \cdot \mathrm{~h}_{\mathrm{r}}\right]
$$

$$
\mathrm{P}_{\mathrm{m}}=175 \mathrm{psf}
$$

Drift Area 2

Difference in height between upper and lower roof or deck -
$h_{\mathrm{r}}:=6 \cdot \mathrm{ft}$
Height of balancedsnow load on lower roof or deck - $\quad h_{b}:=\frac{P_{f}}{D}$
$h_{b}=5.5 \mathrm{ft}$
$\frac{\left(h_{r}-h_{b}\right)}{h_{b}}=0.094$
$\left(h_{r_{\text {_consider }}}=6.583 \mathrm{ft}\right)$
Drift = "DOES NOT need to be considered"

Maximum height of drift surcharge $-\quad \mathrm{h}_{\mathrm{d}}:=\left[0.43 \cdot\left(\frac{\mathrm{~W}_{\mathrm{b}}}{\mathrm{ft}}\right)^{.33} \cdot\left(\frac{\mathrm{P}_{\mathrm{g}}}{\mathrm{psf}}+10\right)^{.25}-1.5\right] \cdot \mathrm{ft} \quad \mathrm{h}_{\mathrm{d}}=4.9 \mathrm{ft}$

Width of the drift load -

$$
\mathrm{W}_{\mathrm{d}}:=\min \left[4 \cdot \mathrm{~h}_{\mathrm{d}}, 4 \cdot\left(\mathrm{~h}_{\mathrm{r}}-\mathrm{h}_{\mathrm{b}}\right)\right]
$$

$$
\mathrm{W}_{\mathrm{d}}=2.1 \mathrm{ft}
$$

Maximum intensity of the snow load at the highest point of drift -

$$
P_{m}:=\min \left[D \cdot\left(h_{d}+h_{b}\right), D \cdot h_{r}\right] \quad P_{m}=210 \mathrm{psf}
$$

Maximum Drift

Difference in height between upper and lower roof or deck -

$$
\mathrm{h}_{\mathrm{r}}:=7 \cdot \mathrm{ft}
$$

Height of balancedsnow load on lower roof or deck - $\quad h_{b}:=\frac{P_{f}}{D}$

$$
h_{b}=5.5 \mathrm{ft}
$$

$\frac{\left(\mathrm{h}_{\mathrm{r}}-\mathrm{h}_{\mathrm{b}}\right)}{\mathrm{h}_{\mathrm{b}}}=0.276$

$$
\left(\mathrm{h}_{\mathrm{r}_{-} \text {consider }}=6.583 \mathrm{ft}\right.
$$

Drift = "MUST be considered"

Maximum height of drift surcharge $-\quad \mathrm{h}_{\mathrm{d}}:=\left[0.43 \cdot\left(\frac{\mathrm{~W}_{\mathrm{b}}}{\mathrm{ft}}\right)^{.33} \cdot\left(\frac{\mathrm{P}_{\mathrm{g}}}{\mathrm{psf}}+10\right)^{.25}-1.5\right] \cdot \mathrm{ft} \quad \mathrm{h}_{\mathrm{d}}=4.9 \mathrm{ft}$

Width of the drift load $-\quad \mathrm{W}_{\mathrm{d}}:=\min \left[4 \cdot \mathrm{~h}_{\mathrm{d}}, 4 \cdot\left(\mathrm{~h}_{\mathrm{r}}-\mathrm{h}_{\mathrm{b}}\right)\right]$
Maximum intensity of the snow load at the highest point of drift -

$$
\mathrm{P}_{\mathrm{m}}:=\min \left[\mathrm{D} \cdot\left(\mathrm{~h}_{\mathrm{d}}+\mathrm{h}_{\mathrm{b}}\right), \mathrm{D} \cdot \mathrm{~h}_{\mathrm{r}}\right]
$$

(
0
ueld Кəヤ્ર łOOप

∞

(2)

(s-211) $\frac{\text { 3RD FLOOR FRAMING (PART B) \& ROOF FRAMING PLAN (PART A) }}{\text { SCAL } 1 / 4^{\prime \prime}=r^{1-O^{\prime \prime}}}$
Review Question: S15

8)

(
(v)
\qquad

σ

Review Question: S15

	Browning Ski Lodge (Part B) Horizontal Seismic Force Distribution by Courtney R. Fleming						$0.085 * \mathbf{W}$ (Shearwall ASD)						2017
Location	Area	DL	Seismic SL	Seismic Wt., W	Level Force, \mathbf{V}_{+}	\# of walls	Wall Length, L	Wall Height, H	Wall DL	Wall Wt., $\mathrm{W}_{\text {u }}$	Wall Force, ${ }^{\text {V }}$	Total Force, Vs	
1	400 ft ²	15 psf	37 psf	20.8 kips	1.8 kips	2	38.0 ft	9.0 ft	8 psf	2.7 kips	0.2 kips	2.0 kips	
2	$400 \mathrm{ft}^{\wedge} 2$	10 psf	0 psf	4.0 kips	0.3 kips	2	38.0 ft	9.0 ft	8 psf	2.7 kips	0.2 kips	0.6 kips	
3	400 ft ¢2	78 psf	0 psf	31.2 kips	2.7 kips	2	40.0 ft	9.0 ft	95 psf	34.2 kips	5.4 kips	8.0 kips	
											0.157	For location 3	3 Wall Forces

	Browning Ski Lodge (Terrace Deck) Horizontal Seismic Force Distribution by Courtney R. Fleming						0.157 *W (Shearwall ASD)					
Location	Area	DL	Seismic SL	Seismic Wt., W	Level Force, $\mathrm{V}_{ \pm}$	\# of walls	Wall Length, L	Wall Height, H	Wall DL	Wall Wt., W_{w}	Wall Force, Vw	al Force, Vs
1	375 ft /2	78 psf	37 psf	43.1 kips	3.7 kips	2	36.8 ft	9.0 ft	95 psf	31.5 kips	4.9 kips	8.6 kips

Vertical Distribution of Forces:		Terrace							
		$\mathrm{k}=\quad 1.0$		ASCE 7-10 Equation 12.8-12, pg. 91					ASD REDUCTION
Location		wi	hi	wi*hi^k	wi*hi^k/2wi*hi^k	Cs	Fx	Vx (kips)	
1	---	59 kips	10.0 ft .	588	0.4	0.157	6.3 kips	6.3 kips	4.5 kips
2	---	16 kips	0.0 ft .	0	0.0	0.085	0.0 kips	0.0 kips	0.0 kips
3	---	0 kips	0.0 ft .	0	0.0	0.157	0.0 kips	0.0 kips	0.0 kips
Slab	---	0 kips	0.0 ft .	0	0.0	0.157	0.0 kips	0.0 kips	0.0 kips
	---		0.0 ft .	0	0.0	0.085	0.0 kips	0.0 kips	0.0 kips
	---		0.0 ft .	0	0.0	0.085	0.0 kips	0.0 kips	0.0 kips
Σ	---	74.5 kips	--	588			6.3 kips		

				CRF								11/23/2017	
				Elliot Group - Browning Ski Lodge (Part B) SUMMARY OF LATERAL FORCES (SEGMENTED DESIGN)									
Level	Line No.	Wall No.	Mark	Force V(k)	Wind/Seismic	Length (ft)	v (plf)	Height (ft)	Reduction	SW Type	Uplift	Uplift LEFT Jplift RIGH ${ }^{-}$	Holddowns
R	1	1	R.1.1			14	132	9	1.00	A	1189	n/a n/a	-
		Totals		1.9	Seismic wood/wood	14							
F	1	1	F.1.1			14	150	9	1.00	A	1350	n/a n/a	-
		Totals		2.1	Seismic wood/concrete	14							

[^1]

		Elliot Group - Browning Ski Lodge (Part A) SUMMARY OF LATERAL FORCES- SEGMENTED											11/23/2017
Level	Mark	Force V(k)	Wood/Conc.	Wind/Seismic	Length (ft)	v (plf)	Height (ft)	Reduction	SW Type	Uplift	Uplift LEFT	T Jplift RIGH ${ }^{-}$	${ }^{-}$Holddowns
R	R.1.2	6.10	wood/concrete	Seismic	11.5	530	10	1.00	D	5304	4366	4366	STL COL.
R	R.1.3	2.50	wood/concrete	Seismic	6.6	379	10	1.00	C	3788	3249	3249	STL COL.
R	R.1.4	1.14	wood/concrete	Seismic	4.2	271	10	0.84	B	2714	2372	2372 H	HDU2/STL COL.
R	R.1.5	1.14	wood/concrete	Seismic	4.2	271	10	0.84	B	2714	2372	2372 H	HDU2/STL COL.
F	F.1.3	1.52	wood/concrete	Seismic	6.6	230	10	1.00	A	2297	4084	4084	STL COL.
F	F.1.4	7.4	wood/concrete	Seismic	15.5	477	10	1.00	D	4774	3937	3937	STL COL.

[^2]| Company: | Canyons Structural | Date: | $11 / 25 / 2017$ |
| :--- | :--- | :--- | :--- |
| Engineer: | CRF | Page: | $1 / 5$ |
| Project: | Ski Lodge | | |
| Address: | | | |
| Phone: | | | |
| E-mail: | | | |

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor
Material: F1554 Grade 36
Diameter (inch): 0.750
Effective Embedment depth, hef (inch): 14.000
Code report: ICC-ES ESR-2508
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 17.75
$\mathrm{Cac}^{\text {(inch): }} 22.99$
$\mathrm{C}_{\text {min }}$ (inch): 1.75
$\mathrm{S}_{\text {min }}$ (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: not set
Seismic design: Yes
Anchors subjected to sustained tension: No
Ductility section for tension: 17.2.3.4.3 (b) is satisfied
Ductility section for shear: 17.2.3.5.2 not applicable
Ω_{0} factor: not set
Apply entire shear load at front row: No
<Figure 1>

SIMPSON
 Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.5.6464.0

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$2 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: SET-XP® - SET-XP w/ 3/4"Ø F1554 Gr. 36
Code Report: ICC-ES ESR-2508

11/2017

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.5.6464.0

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$3 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N_{ua} (lb)	Shear load x , $V_{\text {uax }}(\mathrm{lb})$	Shear load y , $V_{\text {uay (}}$ (b)		Shear load combined, $\sqrt{\left(V_{\text {uax }}\right)^{2}+\left(V_{\text {uay }}\right)^{2}(\mathrm{Ib})}$
1	1690.3	0.0	884.5		884.5
2	1690.3	0.0	884.5		884.5
3	1690.3	0.0	884.5		884.5
4	1690.3	0.0	884.5		884.5
Sum	6761.0	0.0	3538.0		3538.0
Maximum concrete compression strain (\%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e' ${ }^{n} \times$ (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00				01 ○ 4	

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}$ (lb)	ϕ	$\phi N_{\text {sa }}$ (lb)
19370	0.75	14528

6. Adhesive Strength of Anchor in Tension (Sec. 17.4.5)

$\tau_{k, c r}=\tau_{k, c r} f_{\text {short-term }} K_{\text {sat }} \alpha_{N . \text { seis }}$

$\tau_{k, c r}(\mathrm{psi})$	$f_{\text {short-term }}$	$K_{\text {sat }}$	$\alpha_{N . \text { seis }}$	$\tau_{k, \text { cr }}(\mathrm{psi})$
385	1.72	1.00	1.00	662

$N_{b a}=\lambda_{a} \tau_{c r} \pi d_{a} h_{e f}($ Eq. 17.4.5.2)

λ_{a}	$\tau_{c r}(\mathrm{psi})$	d_{a} (in)	$h_{e f}$ (in)	$N_{b a}(\mathrm{lb})$
1.00	662	0.75	14.000	21844

$0.75 \phi N_{a g}=0.75 \phi\left(A_{N a} / A_{N a 0}\right) \Psi_{e c, N a} \Psi_{e d, N a} \Psi_{c p, N a} N_{b a}($ Sec. $17.3 .1 \&$ Eq. 17.4.5.1b)

$A_{N a}\left(\mathrm{in}^{2}\right)$	$A_{N a O}\left(\right.$ in $\left.^{2}\right)$	$C_{N a}(\mathrm{in})$	$C_{a, \text { min }}(\mathrm{in})$	$\Psi_{e c, N a}$	$\Psi_{e d, N a}$	$\Psi_{c p, N a}$	$N_{b a}(\mathrm{lb})$	ϕ	$0.75 \phi N_{a g}(\mathrm{lb})$
324.00	341.26	9.24	4.00	1.000	0.830	1.000	21844	0.55	7100

Company:	Canyons Structural	Date:	$11 / 25 / 2017$
Engineer:	CRF	Page:	$4 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

$V_{\text {sa }}($ Ib $)$	$\phi_{\text {grout }}$	ϕ	$\alpha V_{\text {seis }}$	$\phi_{\text {grout }} \alpha_{V, \text { seis }} \phi V_{\text {sa }}$ (Ib)
11625	1.0	0.65	0.68	5138

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)
$\phi V_{c p g}=\phi \min \left|k_{c p} N_{a g} ; k_{c p} N_{c o g}\right|=\phi \min \left|k_{c p}\left(A_{N a} / A_{N a o}\right) \Psi_{e c, N a} \Psi_{e d, N a} \Psi_{c p, N a} N_{b a} ; k_{c p}\left(A_{N c} / A_{N c o}\right) \Psi_{e c, N} \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}\right|$ (Sec. 17.3.1\& Eq. 17.5.3.1b)

$k_{c p}$	$A_{N a}\left(\mathrm{in}^{2}\right)$	$A_{N a 0}\left(\mathrm{in}^{2}\right)$	$\Psi_{e d, N a}$	$\Psi_{e c, N a}$	$\Psi_{c p, N a}$	$N_{b a}(\mathrm{lb})$	$N_{a}(\mathrm{lb})$
2.0	324.00	341.26	0.830	1.000	1.000	21844	17211

$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$\Psi_{e c, N}$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c p, N}$	$N_{b}(\mathrm{lb})$	$N_{c b}(\mathrm{lb})$	ϕ
324.00	100.00	1.000	0.940	1.000	1.000	5173	15755	0.70

$\phi V_{\text {cpg }}$ (Ib)
22057

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Load, Nua (lb)	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	1690	14528	0.12	Pass
Adhesive	6761	7100	0.95	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, $\varnothing \mathrm{V}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	885	5138	0.17	Pass (Governs)
Pryout	3538	22057	0.16	Pass
Interaction check	$N_{u a} / \phi N_{n} \quad V_{u a} / \phi V_{n}$	Combined Ratio	Permissible	Status
Sec. 17.6.. 1	0.950 .00	95.2 \%	1.0	Pass

SET-XP w/ 3/4" \varnothing F1554 Gr. 36 with hef $=14.000$ inch meets the selected design criteria.

Base Plate Thickness

Required base plate thickness: 0.313 inch

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Software
 Version 2.5.6464.0

Company:	Canyons Structural	Date:	11/25/2017
Engineer:	CRF	Page:	$5 / 5$
Project:	Ski Lodge		
Address:			
Phone:			
E-mail:			

12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.
- Minimum spacing and edge distance requirement of 6 da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Concrete breakout strength in shear has not been evaluated against applied shear load(s) per designer option. Refer to ACl 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Concrete Column

Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : IBC 2015

Column Cross Section

Applied Loads

Entered loads are factored per load combinations specified by user.
Column self weight included : 1,500.0 lbs * Dead Load Factor
AXIAL LOADS .
Axial Load at 10.0 ft above base, $\mathrm{D}=8.0, \mathrm{~S}=26.0 \mathrm{k}$
BENDING LOADS . . .
Lat. Point Load at 10.0 ft creating My-y, $\mathrm{E}=3.70 \mathrm{k}$

DESIGN SUMMARY

$\underset{\text { Ratio }=\left(P u^{\wedge} 2+M u^{\wedge} 2\right)^{\wedge} .5 /\left(\text { PhiPn }^{\wedge} 2+\text { PhiMn }^{\wedge} 2\right)^{\wedge} .5}{\text { Maximum }}$

Pu $=$	53.0 k	$\varphi * \mathrm{Pn}=$	183.196 k
$\mathrm{Mu}-\mathrm{x}=$	$0.0 \mathrm{k}-\mathrm{ft}$	$\varphi * \mathrm{Mn}-\mathrm{x}=$	$0.0 \mathrm{k}-\mathrm{ft}$
Mu- $=$	$0.0 \mathrm{k}-\mathrm{ft}$	$\varphi * \mathrm{Mn}-\mathrm{y}=$	$0.0 \mathrm{k}-\mathrm{ft}$
Angle $=$	0.0 deg		
Angle $=$	$0.0 \mathrm{k}-\mathrm{ft}$	$\varphi \mathrm{Mn}$ at Angle $=$	$0.0 \mathrm{k}-\mathrm{ft}$

Maximum SERVICE Load Deflections . . .

Along $Y-Y \quad 0.0$ in at $\quad 0.0 \mathrm{ft}$ above base
for load combination :
Along $X-X \quad 0.0$ in at $\quad 0.0 \mathrm{ft}$ above base for load combination :

General Section Information. $\varphi=0.650 \quad \beta=0.850 \quad \theta=0.80$
Pn \& Mn values located
Column Capacities . .

Pnmax : Nominal Max. Compressive Axial Capacity
Pnmin : Nominal Min. Tension Axial Capacity
φ Pn, max : Usable Compressive Axial Capacity -48.0 k
183.196 k
φ Pn, min : Usable Tension Axial Capacity
-31.20 k

Governing Load Combination Results

Governing Factored Load Combination	Moment		Dist. from		Axial Load k		Bending Analysis k-ft						Utilization	
	X-X	Y-Y		ft	Pu	φ *Pn	δx	$\delta{ }^{\text {* Mux }}$	δ^{y}	δy^{*} Muy	Alpha (deg)	$\delta \mathrm{Mu}$	$\varphi \mathrm{Mn}$	Ratio
+1.40D			9.93		13.30	183.2					0.000			0.073

Concrete Column

Lic. \# : KW-06009078
Description: CC1, includes lateral (Worst Case) - Works for all dimensions required in this structure

Governing Load Combination Results

Governing Factored Load Combination	Moment		Dist. from base ft	Axial Load k		δ^{x}	Bending Analysis k-ft				$\delta \mathrm{Mu}$	Utilization	
	X-X	Y-Y		Pu	φ * Pn		$\delta{ }^{\text {* }}$ Mux	δ^{y}	δy^{*} Muy	Alpha (deg)		$\varphi \mathrm{Mn}$	Ratio
+1.20D			9.93	11.40	183.20					0.000			0.062
+1.20D+0.50S			9.93	24.40	183.20					0.000			0.133
+1.20D+1.60S			9.93	53.00	183.20					0.000			0.289
+1.20D+0.70S+E			9.93	29.60	183.20					0.000			0.162
+1.20D+0.70S-E			9.93	29.60	183.20					0.000			0.162
+0.90D			9.93	8.55	183.20					0.000			0.047
+0.90D+E			9.93	8.55	183.20					0.000			0.047
+0.90D-E			9.93	8.55	183.20					0.000			0.047

Maximum Reactions
Note: Only non-zero reactions are listed.

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance					
D Only	0.0000	in	0.000	ft	0.000	in	0.000	ft	
+D+S	0.0000	in	0.000	ft	0.000	in	0.000	ft	
+D+0.750S	0.0000	in	0.000	ft	0.000	in	0.000	ft	
+D+0.70E	0.0000	in	0.000	ft	0.000	in	0.000	ft	
+D+0.750S+0.5250E	0.0000	in	0.000	ft	0.000	in	0.000	ft	
+0.60D	0.0000	in	0.000	ft	0.000	in	0.000	ft	
+0.60D+0.70E	0.0000	in	0.000	ft	0.000	in	0.000	ft	
S Only	0.0000	in	0.000	ft	0.000	in	0.000	ft	
E Only	0.0000	in	0.000	ft	0.000	in	0.000	ft	

Description: CC1, includes lateral (Worst Case) - Works for all dimensions required in this structure

Sketches

Interaction Diagrams

Concrete Column

Lic. \# : KW-06009078
Description : CC1, includes lateral (Worst Case) - Works for all dimensions required in this structure

Concrete Column P-M Interaction Diagram

Concrete Column P-M Interaction Diagram

Concrete Column P-M Interaction Diagram

Concrete Column

Lic. \# : KW-06009078
Description : CC1, includes lateral (Worst Case) - Works for all dimensions required in this structure

Concrete Column P-M Interaction Diagram

Concrete Column P-M Interaction Diagram

Concrete Column P-M Interaction Diagram

[^0]: 94ロ ELM AVE．，SALT LAKE City，பTAH， 841 ロ6
 TEL 8ロ1．486．6848 FAX 8ロ1．466．3327 WWW．CANYONSSTRUCTURAL．COM LICENSES thraUghaut the US AND CANADA Page 2 of 3

[^1]: Holdown Note:
 Many locations where holdowns should occur, steel columns are in their place for the gravity design of this house. Anchorage in these instances have checked for the worst possible uplift.

[^2]: Holdown Note:
 Many locations where holdowns should occur, steel columns are in their place for the gravity design of this house. Anchorage in these instances have checked for the worst possible uplift.

