

November 27, 2017

Mike Molyneux Kimball Engineering 908 W. Gordon Ave. Suite #3 Layton, UT 84041

# Re: Plunkett Kuhr SFD – Plan Review Comments (First Review) WC<sup>3</sup> Project #: 217-525-188

Mr. Molyneux:

We have reviewed the structural plan review comments listed above and dated October 26, 2017. See below for responses in bold italic font to your comments. The numbering of the responses corresponds to the numbering of the review comments.

Structural Drawings:

S1. Sheet S-000: Please include in the Design Criteria Notes the basic seismic force-resisting systems as required by IBC 1603.1.5.

See revised plans for changes.

S2. Sheet S-101: Footings FC2.5 and FS6.0 do not meet the minimum reinforcement requirements of Section 24.4.3 of ACI 318-14.

See revised plans for changes.

S3. Sheet S-300: The concrete pier size and reinforcing requirements have not been specified in Detail K. Please provide.

See revised plans for changes.

S4. Sheet S-301: Please address the following:

A. Detail F references the plan and schedule for the concrete column reinforcing. The concrete column has not been indicated on the plan. Please clarify.

See revised plans for changes.

B. Detail G references B/S3.1 for wall reinforcing. This detail could not be found. Please clarify. *See revised plans for changes.* 

S5. Sheet S-400: Details C and D both reference the shear wall schedule, but do not show the correct sheet number. Similar errors were noticed throughout the plans. Please verify that all references are correct. *See revised plans for changes.* 

S6. The required thicknesses of concrete walls could not be found on the plans. Please clarify. *Foundation note 3 on S-101 directs the contractor to the concrete wall schedule. The thickness* 

*Foundation note 5 on S-101 directs the contractor to the concrete wall schedule. The thickness of the wall is specified in the schedule. The thickness of the walls is also to scale on the structural plans.* 



Structural Calculations:

S7. The flat roof snow load is shown to be 192 psf. The exterior concrete deck snow load is shown to be 98 psf. Please explain how the deck snow load can be so much lower that the flat roof snow load.

98 psf was not used in design, 192 psf is the governing snow load for all applicable areas, including the exposed terrace. All beams in the initial calculation set submitted have this value inputted.

S8. Steel column SC1 is shown as HSS5x5x1/2 in the calculations while the plans show HSS4x4x1/2. Please verify.

Column schedule typo, correction made. See revised plans for changes.

S9. The concrete lintel calculations show 16 inches deep by 10 inches wide. Detail S/S-300 shows 12 inches deep and the width could not be found. Please address. *Calculation and detail revisited. See revised plans and calcs for change.* 

S10. The calculations show W2 Formlok Deck with 5-1/2 inches total slab depth. Detail E/S-301 shows 4 inches total slab depth. Please clarify.

4" is for the structural slab, and the additional 1.5" is for concrete topping if the architect chooses to add it. The design is covered if so. The detail only shows what is required for the deck diaphragm.

S11. Simpson anchorage calculations were done per ACI 318-11. Please verify that ACI 318-14 requirements have been met.

ACI 318-14 have been met. Updated calculation attached for reference. Please note, some holdowns have been eliminated in the locations where a steel column occurs. The typical steel column connection has been checked for max uplift and has been added to the supplemental calculation set for reference.

S12. Snow drift calculations could not be found and drift loads do not appear to be indicated on the plans. Please address.

The rooftop terrace, where drift is applicable, was designed for a live load of 252 psf. Max snow drift is 245 psf. See supplemental calculation for drift calc reference. The balcony that wraps around Part A does not include drift as its surface is covered by the eave.

S13. The proposed structure includes in-plane discontinuity in vertical lateral force-resisting element irregularities as defined by Table 12.3-2 of ASCE 7-10. Please confirm that the requisite forces were increased as required by Sections 12.3.3.3 and 12.3.3.4 of ASCE 7.

These requirements have been met where applicable and the key plans attached show locations of all irregularities considered. Calculations were checked during the initial design phase.

S14. The proposed structure includes nonparallel system irregularities as defined by Table 12.3-1 of ASCE 7-10. Please confirm that the requisite forces were increased as required and that the requirements of Sections 12.5.3 and 12.7.3 of ASCE 7 have been met.

These requirements have been met where applicable and the key plans attached show locations of all irregularities considered. Calculations were checked during the initial design phase.



S15. The lateral design was difficult to follow. Please provide a key plan indicating all lateral resisting elements (i.e. shear walls, moment frames, etc.) along with a horizontal distribution of lateral forces per Section 12.8.4 of ASCE 7-10 for the structure showing which walls/frames were considered in the design and the shear load to each wall/frame.

Key plans and horizontal distribution have been added to the supplemental calculations.

S16. Please provide anchorage calculations for the moment frame per Chapter 17 of ACI 318-14. *Calculations attached.* 

S17. The calculations appear to indicate that cantilever columns were used as lateral resisting elements, but detailing of these was not clear on the plans. Please clarify and verify that the correct R value was used for design.

Cantilevered columns were not used, see updated plans for verification of lateral resisting elements. The lateral resisting elements for this structure are wood shearwalls, ordinary moment frames, and ordinary concrete shearwalls.

S18. It appears that combinations of framing systems are used in the same direction. Please verify that the requirements of Section 12.2.3 of ASCE 7-10 have been met and that the most stringent applicable structural system limitations contained in Table 12.2-1 have been applied.

Most stringent design used was an R of 3.5 for the ordinary moment frames. Key plans attached will bring clarity to this requirement and what was used. Area B of the structure uses an R of 6.5 for just the shear design above the stringent design, these areas being the high roof and upper floor.

S19. Please provide calculations for the concrete columns and verify that ACI 318-14 detailing requirements have been met. *Calculation added, and detailing requirement noted on plans.* 

Do not hesitate to contact us with any questions, and thank you for your time reviewing this work.

Respectfully,

Reviewed By:

C. Fleming

Courtney R. Fleming, E.I.T Project Engineer

Dany JP Tremblay, SE PE P.Eng President | Canyons Structural, Inc

+D+0.60W+H

+D+0.70E+H

+D+0.750Lr+0.750L+0.450W+H

Project Title: Engineer: Project Descr:

Project 102017

# **Review Question: S9**

| Concrete Beam                                                                                                                                         |                                                                                                     |                                                               | File = C:\Users\Courtney\DOWNLO~1\CALCS(-    | -4\Calcs\beams.ec6 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|--------------------|
| Lic. # : KW-06009078                                                                                                                                  |                                                                                                     |                                                               | Licensee : Canyon                            | s Structural In    |
| Description : Concrete Lintels around p                                                                                                               | perimter floor at skylights, includir                                                               | ng lateral load                                               |                                              |                    |
|                                                                                                                                                       |                                                                                                     |                                                               |                                              |                    |
| CODE REFERENCES                                                                                                                                       |                                                                                                     |                                                               |                                              |                    |
| Load Combination Set : IBC 2015                                                                                                                       | 2015, ASCE 7-10                                                                                     |                                                               |                                              |                    |
| Material Properties                                                                                                                                   |                                                                                                     |                                                               |                                              |                    |
| Material Properties                                                                                                                                   |                                                                                                     |                                                               |                                              |                    |
| fc = 4.0 ksi<br>fr = fc <sup>1/2</sup> * 7.50 = 474.342 psi<br>ψ Density = 145.0 pcf<br>λ LtWt Factor = 1.0<br>Elastic Modulus = 3.122.0 ksi          | $\oint$ Phi Values I<br>$\beta_1 =$<br>Ev - Stirrups                                                | -lexure : 0.90<br>Shear : 0.750<br>0.850<br>40.0 ksi          | • •                                          |                    |
| fy - Main Rebar = $60.0 \text{ ksi}$<br>E Main Pohar = $29,000.0 \text{ ksi}$                                                                         | E - Stirrups =<br>Stirrup Bar Size #                                                                | 29,000.0 ksi<br>3                                             | 4                                            |                    |
| Number of                                                                                                                                             | Resisting Legs Per Stirrup =                                                                        | 6.0                                                           | • •                                          |                    |
|                                                                                                                                                       |                                                                                                     |                                                               | * 8 in *                                     |                    |
|                                                                                                                                                       |                                                                                                     | D(3) S(19)                                                    |                                              |                    |
|                                                                                                                                                       |                                                                                                     | F(0.633)                                                      |                                              |                    |
|                                                                                                                                                       | ¥ ¥                                                                                                 | D(0.1625) L (0.26)                                            |                                              |                    |
|                                                                                                                                                       | <b>* *</b>                                                                                          | ▼ ▼                                                           | <b>+</b>                                     |                    |
|                                                                                                                                                       | $\overline{X}$                                                                                      |                                                               |                                              |                    |
|                                                                                                                                                       |                                                                                                     | 8" w x 14" h                                                  |                                              |                    |
|                                                                                                                                                       |                                                                                                     | Span=6.0 ft                                                   |                                              |                    |
| <b>Cross Section &amp; Reinforcing</b>                                                                                                                | Details                                                                                             |                                                               |                                              |                    |
| Rectangular Section, Width = 8.0 in, H                                                                                                                | eight = 14.0 in                                                                                     |                                                               |                                              |                    |
| 2-#7 at 2.0 in from Bottom, from 0                                                                                                                    | 0 to 6.0 ft in this span                                                                            | 2-#7 at 2.0                                                   | in from Top, from 0.0 to 6.0 ft in this span |                    |
| Applied Loads                                                                                                                                         |                                                                                                     | Service lo                                                    | ads entered. Load Factors will be applied    | for calculation    |
| Beam self weight calculated and added                                                                                                                 | to loads                                                                                            |                                                               |                                              |                    |
| Load for Span Number 1<br>Uniform Load : D = 0.0250, L = 0.040 k<br>Point Load : D = 3.0, S = 19.0 k @ 4.0<br>Uniform Load : E = 0.6330 k/ft, Tributa | ksf, Tributary Width = 6.50 ft,<br>ft, (Roof Point Load (wehen o<br>ry Width = 1.0 ft, (Seimic load | (Floor/deck loading)<br>cccurs, w)<br>I + 25% increase for i) |                                              |                    |
| DESIGN SUMMARY                                                                                                                                        |                                                                                                     | ,                                                             | De                                           | sign <u>OK</u>     |
| Maximum Bending Stress Ratio =                                                                                                                        | <b>0.812</b> : 1                                                                                    | Maximum Deflect                                               | ion                                          |                    |
| Section used for this span                                                                                                                            | Typical Section                                                                                     | Max Downward Tra                                              | ransient Deflection 0.038 in Ratio           | = 1885>=           |
| Mu : Applied<br>Mp * Phi : Allowable                                                                                                                  | 47.175 K-t                                                                                          | Max Downward                                                  | Total Deflection 0.049 in Ratio              | = 0<4<br>= 1458>=  |
|                                                                                                                                                       | JO.U/O K-I                                                                                          | Max Upward Tot                                                | al Deflection 0.000 in Ratio                 | = 999<2            |
| Span # whore maximum eccure                                                                                                                           | 4.000 Il<br>Spap # 1                                                                                |                                                               |                                              |                    |
| Spail # where maximum occurs                                                                                                                          | Span # 1                                                                                            |                                                               |                                              |                    |
| Vertical Reactions                                                                                                                                    |                                                                                                     | Support notation : Far left                                   | is #1                                        |                    |
| oad Combination                                                                                                                                       | Support 1 Support 2                                                                                 |                                                               |                                              |                    |
| Overall MAXimum                                                                                                                                       | 8.159 15.493                                                                                        |                                                               |                                              |                    |
|                                                                                                                                                       | 0.780 0.780                                                                                         |                                                               |                                              |                    |
| יוידטד<br>+D+I +H                                                                                                                                     | 1.020 2.820<br>2.606 2.606                                                                          |                                                               |                                              |                    |
| +D+Ir+H                                                                                                                                               | 1 826 2 826                                                                                         |                                                               |                                              |                    |
| +D+S+H                                                                                                                                                | 8,159 15 493                                                                                        |                                                               |                                              |                    |
| +D+0.750Lr+0.750L+H                                                                                                                                   | 2.411 3.411                                                                                         |                                                               |                                              |                    |
| +D+0.750L+0.750S+H                                                                                                                                    | 7.161 12.911                                                                                        |                                                               |                                              |                    |

| 4.155 |                    |   |
|-------|--------------------|---|
| 3.411 | Supplemental Calcs | 1 |
|       | Dama 4 af 07       |   |

2.826

1.826

3.155

2.411

Printed: 24 NOV 2017, 12:47PM

# **Concrete Beam**

File = C:\Users\Courtney\DOWNLO~1\CALCS(-4\Calcs\beams.ec6 ENERCALC, INC. 1983-2016, Build:6.16.7.21, Ver.6.16.7.21 Licensee : Canyons Structural Inc

Lic. # : KW-06009078 Description : Concrete Lintels around perimter floor at skylights, including lateral load

| Vertical Reactions         |           |           | Support notation : Far left is #1 |  |
|----------------------------|-----------|-----------|-----------------------------------|--|
| Load Combination           | Support 1 | Support 2 |                                   |  |
| +D+0.750L+0.750S+0.450W+H  | 7.161     | 12.911    |                                   |  |
| +D+0.750L+0.750S+0.5250E+H | 8.158     | 13.908    |                                   |  |
| +0.60D+0.60W+0.60H         | 1.096     | 1.695     |                                   |  |
| +0.60D+0.70E+0.60H         | 2.425     | 3.025     |                                   |  |
| D Only                     | 1.826     | 2.826     |                                   |  |
| Lr Only                    |           |           |                                   |  |
| L Only                     | 0.780     | 0.780     |                                   |  |
| S Only                     | 6.333     | 12.667    |                                   |  |
| W Only                     |           |           |                                   |  |
| E Only                     | 1.899     | 1.899     |                                   |  |
| H Only                     |           |           |                                   |  |

# Shear Stirrup Requirements

Entire Beam Span Length : PhiVc < Vu, Req'd Vs = 1.812, use stirrups spaced at 6.000 in

# Maximum Forces & Stresses for Load Combinations

| Load Combination            |         |               | Location (ft) Bending Stress Results (k-ft) |              |            |         |              |                  |
|-----------------------------|---------|---------------|---------------------------------------------|--------------|------------|---------|--------------|------------------|
| Segment Length              |         |               | Span #                                      | in Span      | Mu : Max   | Phi*Mnx | Stress Rati  | 0                |
| MAXimum BENDING Envelope    |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 47.17      | 58.08   | 0.81         |                  |
| +1.40D+1.60H                |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 7.14       | 58.08   | 0.12         |                  |
| +1.20D+0.50Lr+1.60L+1.60H   |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 7.79       | 58.08   | 0.13         |                  |
| +1.20D+1.60L+0.50S+1.60H    |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 20.45      | 58.08   | 0.35         |                  |
| +1.20D+1.60Lr+0.50L+1.60H   |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 6.64       | 58.08   | 0.11         |                  |
| +1.20D+1.60Lr+0.50W+1.60H   |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 6.12       | 58.08   | 0.11         |                  |
| +1.20D+0.50L+1.60S+1.60H    |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 47.17      | 58.08   | 0.81         |                  |
| +1.20D+1.60S+0.50W+1.60H    |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 46.65      | 58.08   | 0.80         |                  |
| +1.20D+0.50Lr+0.50L+W+1.60H |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 6.64       | 58.08   | 0.11         |                  |
| +1.20D+0.50L+0.50S+W+1.60H  |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 19.31      | 58.08   | 0.33         |                  |
| +1.20D+0.50L+0.70S+E+1.60H  |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 26.91      | 58.08   | 0.46         |                  |
| +1.20D+0.50L+0.70S-E+1.60H  |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 21.84      | 58.08   | 0.38         |                  |
| +0.90D+W+0.90H              |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 4.59       | 58.08   | 0.08         |                  |
| +0.90D+E+0.90H              |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 7.12       | 58.08   | 0.12         |                  |
| +0.90D-E+0.90H              |         |               |                                             |              |            |         |              |                  |
| Span # 1                    |         |               | 1                                           | 6.000        | 2.06       | 58.08   | 0.04         |                  |
| Overall Maximum Defle       | ections |               |                                             |              |            |         |              |                  |
| Load Combination            | Span    | Max. "-" Defl | Location in                                 | Span Load Co | ombination | Ma      | ax. "+" Defl | Location in Span |
| +D+S+H                      | 1       | 0.0494        | 3.2                                         | 295          |            |         | 0.0000       | 0.000            |

# Review Question: S11

11/2017

# SIMPSON

Strong-1

# Anchor Designer™ Software Version 2.5.6464.0

# 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

## 2. Input Data & Anchor Parameters

General

Design method:ACI 318-11 Units: Imperial units

#### Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625 Effective Embedment depth, h<sub>ef</sub> (inch): 10.000 Code report: ICC-ES ESR-2508 Anchor category: -Anchor ductility: Yes h<sub>min</sub> (inch): 13.13 c<sub>ca</sub> (inch): 17.02 C<sub>min</sub> (inch): 1.75 S<sub>min</sub> (inch): 3.00

#### Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: D.3.3.4.3 (b) is satisfied Ductility section for shear: D.3.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | Courtney Fleming   | Page: | 1/4        |
| Project:  | HDU2               |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

Project description: Location: Fastening description:

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 26.00 State: Cracked Compressive strength, f° (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Periodic Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No





# Anchor Designer™ Software Version 2.5.6464.0

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | Courtney Fleming   | Page: | 2/4        |
| Project:  | HDU2               |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

<Figure 2>



# **Recommended Anchor**

Anchor Name: SET-XP® - SET-XP w/ 5/8"Ø F1554 Gr. 36 Code Report: ICC-ES ESR-2508



11/2017

| Anchor Designer™   |  |
|--------------------|--|
| Software           |  |
| Version 2.5.6464.0 |  |

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | Courtney Fleming   | Page: | 3/4        |
| Project:  | HDU2               |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

# **3. Resulting Anchor Forces**

SIMPSO

Strong'

128.74

258.98

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb) |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1      | 2372.0                                | 0.0                                    | 0.0                                    | 0.0                                                          |
| Sum    | 2372.0                                | 0.0                                    | 0.0                                    | 0.0                                                          |

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 2372

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

# 4. Steel Strength of Anchor in Tension (Sec. D.5.1)

| N <sub>sa</sub> (lb) | $\phi$ | $\phi N_{sa}$ (Ib) |
|----------------------|--------|--------------------|
| 13110                | 0.75   | 9833               |

# 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

8.05

2.75

| $N_b = k_c \lambda_a \sqrt{f'_c}$                 | h <sub>ef</sub> <sup>1.5</sup> (Eq. D-6)     |                                  |                                    |                      |               |                      |        |                       |
|---------------------------------------------------|----------------------------------------------|----------------------------------|------------------------------------|----------------------|---------------|----------------------|--------|-----------------------|
| <i>k</i> <sub>c</sub>                             | λa                                           | f'c (psi)                        | h <sub>ef</sub> (in)               | N <sub>b</sub> (lb)  |               |                      |        |                       |
| 17.0                                              | 1.00                                         | 2500                             | 10.000                             | 26879                |               |                      |        |                       |
| $0.75\phi N_{cb} = 0$                             | ).75φ (A <sub>Nc</sub> / A <sub>Nco</sub> )  | Ψed,N Ψc,N Ψcp,N                 | <i>I<sub>b</sub></i> (Sec. D.4.1 & | Eq. D-3)             |               |                      |        |                       |
| $A_{Nc}$ (in <sup>2</sup> )                       | $A_{Nco}$ (in <sup>2</sup>                   | c <sub>a,min</sub> (in)          | $\Psi_{ed,N}$                      | $\Psi_{c,N}$         | $\Psi_{cp,N}$ | N <sub>b</sub> (lb)  | $\phi$ | 0.75 <i>¢Ncb</i> (lb) |
| 240.00                                            | 900.00                                       | 2.75                             | 0.755                              | 1.00                 | 1.000         | 26879                | 0.65   | 2638                  |
| $6. Adhesive$ $\tau_{k,cr} = \tau_{k,cr} f_{sho}$ | e Strength of An<br>rt-termKsatαN.seis       | nchor in Tens                    | <u>sion (Sec. 5.5)</u>             |                      |               |                      |        |                       |
| τ <sub>k,cr</sub> (psi)                           | <b>f</b> short-term                          | Ksa                              | t                                  | αN.seis              | тк,cr (psi)   |                      |        |                       |
| 435                                               | 1.72                                         | 1.0                              | 0                                  | 1.00                 | 748           |                      |        |                       |
| $N_{ba} = \lambda_{a} \tau_{cr} \pi$              | d <sub>a</sub> h <sub>ef</sub> (Eq. D-22)    |                                  |                                    |                      |               |                      |        |                       |
| λa                                                | $	au_{cr}$ (psi)                             | da (in)                          | h <sub>ef</sub> (in)               | N <sub>ba</sub> (lb) |               |                      |        |                       |
| 1.00                                              | 748                                          | 0.63                             | 10.000                             | 14691                |               |                      |        |                       |
| $0.75\phi N_a = 0$                                | .75¢ (A <sub>Na</sub> / A <sub>Na0</sub> ) 9 | $\Psi_{ed,Na}\Psi_{cp,Na}N_{ba}$ | (Sec. D.4.1 & E                    | q. D-18)             |               |                      |        |                       |
| $A_{Na}$ (in <sup>2</sup> )                       | $A_{Na0}$ (in <sup>2</sup> )                 | c <sub>Na</sub> (in)             | c <sub>a.min</sub> (in)            | $\Psi_{ed Na}$       | $\Psi_{n Na}$ | N <sub>a0</sub> (lb) | ø      | 0.75 <i>øN₂</i> (lb)  |

0.803

1.000

14691

0.55

2418



# Anchor Designer™ Software Version 2.5.6464.0

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | Courtney Fleming   | Page: | 4/4        |
| Project:  | HDU2               |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

# 11. Results

## 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

| Tension           | Factored Load, Nua (lb) | Design Strength, øNn (lb) | Ratio | Status         |
|-------------------|-------------------------|---------------------------|-------|----------------|
| Steel             | 2372                    | 9833                      | 0.24  | Pass           |
| Concrete breakout | 2372                    | 2638                      | 0.90  | Pass           |
| Adhesive          | 2372                    | 2418                      | 0.98  | Pass (Governs) |

#### SET-XP w/ 5/8"Ø F1554 Gr. 36 with hef = 10.000 inch meets the selected design criteria.

#### 12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 D.3.3.5.3 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

# **Review Question: S11**

CRF

Ski Lodge

Canyons Structural

Company:

Engineer:

Project:

Address:

11/2017 11/25/2017

1/5

Date:

Page:

# SIMPSON

Strong-

Anchor Designer™ Software Version 2.5.6464.0

# 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

## 2. Input Data & Anchor Parameters

**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.750 Effective Embedment depth, h<sub>ef</sub> (inch): 12.000 Code report: ICC-ES ESR-2508 Anchor category: -Anchor ductility: Yes h<sub>min</sub> (inch): 15.75 C<sub>ac</sub> (inch): 28.45 C<sub>min</sub> (inch): 1.75 S<sub>min</sub> (inch): 3.00

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: 17.2.3.4.3 (b) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable **525 lb**  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Tes <Figure 1> Phone: E-mail: Project description: Steel column tensile load check (worst case, loaction B) where in place of typ, holdown

loaction B) where in place of typ. holdown Location: Fastening description:

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength,  $f_c$  (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: Yes Hole condition: Dry concrete Inspection: Periodic Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

#### Base Plate

Length x Width x Thickness (inch): 9.00 x 24.00 x 0.75 Yield stress: 34084 psi

Profile type/size: HSS5X5X1/4





# Anchor Designer™ Software Version 2.5.6464.0

|           | La                 |       |            |
|-----------|--------------------|-------|------------|
| Company:  | Canyons Structural | Date: | 11/25/2017 |
| Engineer: | CRF                | Page: | 2/5        |
| Project:  | Ski Lodge          |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

<Figure 2>



# Recommended Anchor

Anchor Name: SET-XP® - SET-XP w/ 3/4"Ø F1554 Gr. 36 Code Report: ICC-ES ESR-2508



# Anchor Designer™ Software Version 2.5.6464.0

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | CRF                | Page: | 3/5        |
| Project:  | Ski Lodge          |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

# **3. Resulting Anchor Forces**

SIMPSON

Strong-I

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (Ib) |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1      | 1631.3                                | 0.0                                    | 163.0                                  | 163.0                                                        |
| 2      | 1631.3                                | 0.0                                    | 163.0                                  | 163.0                                                        |
| 3      | 1631.3                                | 0.0                                    | 163.0                                  | 163.0                                                        |
| 4      | 1631.3                                | 0.0                                    | 163.0                                  | 163.0                                                        |
| Sum    | 6525.0                                | 0.0                                    | 652.0                                  | 652.0                                                        |

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00 Eccentricity of resultant shear forces in x-axis,  $e'_{Vx}$  (inch): 0.00 Eccentricity of resultant shear forces in y-axis,  $e'_{Vy}$  (inch): 0.00





### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

| Nsa (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|----------|--------|--------------------|
| 19370    | 0.75   | 14528              |

#### 6. Adhesive Strength of Anchor in Tension (Sec. 17.4.5)

| $\tau_{k,cr} = \tau_{k,cr} f_{show}$   | rt-term $K$ sat $lpha$ N.seis               |                                         |                                           |                     |                |                         |                      |        |                                  |
|----------------------------------------|---------------------------------------------|-----------------------------------------|-------------------------------------------|---------------------|----------------|-------------------------|----------------------|--------|----------------------------------|
| τ <sub>k,cr</sub> (psi)                | <b>f</b> short-term                         | ŀ                                       | Sat                                       | αN.seis             |                | т <sub>к,cr</sub> (psi) |                      |        |                                  |
| 385                                    | 1.72                                        | 1                                       | .00                                       | 1.00                |                | 662                     |                      |        |                                  |
| $N_{ba} = \lambda_{a} \tau_{cr} \pi d$ | d <sub>a</sub> h <sub>ef</sub> (Eq. 17.4.5. | 2)                                      |                                           |                     |                |                         |                      |        |                                  |
| λa                                     | $	au_{cr}$ (psi)                            | d₂ (in)                                 | h <sub>ef</sub> (in)                      | N <sub>ba</sub> (Ib | )              |                         |                      |        |                                  |
| 1.00                                   | 662                                         | 0.75                                    | 12.000                                    | 18723               | 5              |                         |                      |        |                                  |
| $0.75\phi N_{ag} = 0$                  | ).75φ (A <sub>Na</sub> / A <sub>Na0</sub> ) | Ψ <sub>ec,Na</sub> Ψ <sub>ed,Na</sub> Ұ | с <sub>р,Na</sub> N <sub>ba</sub> (Sec. 1 | 7.3.1 & Eq. 1       | 7.4.5.1b)      |                         |                      |        |                                  |
| $A_{Na}$ (in <sup>2</sup> )            | $A_{Na0}$ (in <sup>2</sup> )                | c <sub>Na</sub> (in)                    | c <sub>a,min</sub> (in)                   | $\Psi_{ec,Na}$      | $\Psi_{ed,Na}$ | $\Psi_{cp,Na}$          | N <sub>ba</sub> (lb) | $\phi$ | 0.75 <i>∳N<sub>ag</sub></i> (lb) |
| 364.26                                 | 341.26                                      | 9.24                                    | 4.50                                      | 1.000               | 0.846          | 1.000                   | 18723                | 0.55   | 6976                             |

| SIMPSON<br>Strong-Tie | Anchor Designer™   | Comp   |
|-----------------------|--------------------|--------|
|                       |                    | Engine |
|                       | Sonware            | Projec |
|                       | Version 2.5.6464.0 | Addre  |
|                       |                    | Dhone  |

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | CRF                | Page: | 4/5        |
| Project:  | Ski Lodge          |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

# 8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

| V <sub>sa</sub> (lb) | $\phi_{	ext{grout}}$ | $\phi$ | lphaV,seis | $\phi_{grout} lpha_{V,seis} \phi V_{sa}$ (lb) |
|----------------------|----------------------|--------|------------|-----------------------------------------------|
| 11625                | 1.0                  | 0.65   | 0.68       | 5138                                          |

# 10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

 $\phi V_{cpg} = \phi \min[k_{cp} N_{ag}; k_{cp} N_{cbg}] = \phi \min[k_{cp} (A_{Na} / A_{Na0}) \Psi_{ec,Na} \Psi_{ed,Na} \Psi_{cp,Na} N_{ba}; k_{cp} (A_{Nc} / A_{Nc0}) \Psi_{ec,N} \Psi_{cp,N} \Psi_{cp,N} N_b] (Sec. 17.3.1 \& Eq. 17.5.3.1b)$ 

| Kcp                    | $A_{Na}$ (in <sup>2</sup> ) | $A_{Na0}$ (in <sup>2</sup> ) | $\Psi_{ed,Na}$ | $arPhi_{	extsf{ec,Na}}$ |               | $arPsi_{cp,Na}$ | N <sub>ba</sub> (lb) | Na (lb) |
|------------------------|-----------------------------|------------------------------|----------------|-------------------------|---------------|-----------------|----------------------|---------|
| 2.0                    | 364.26                      | 341.26                       | 0.846          | 1.000                   |               | 1.000           | 18723                | 16910   |
|                        |                             |                              |                |                         |               |                 |                      |         |
| Anc (in <sup>2</sup> ) | Anco (in²)                  | $\Psi_{ec,N}$                | Ψed,N          | Ψc,N                    | $\Psi_{cp,N}$ | Nb (lb)         | Ncb (lb)             | $\phi$  |
| 378.00                 | 400.00                      | 1.000                        | 0.835          | 1.000                   | 1.000         | 14631           | 11545                | 0.70    |

*φV<sub>cpg</sub>* (lb) 16163

# 11. Results

# Interaction of Tensile and Shear Forces (Sec. 17.6.)

| Tension           | Factored Load, | N <sub>ua</sub> (lb) | Design Str | ength, øNn (lb)             | Ratio | D           | Status         |   |
|-------------------|----------------|----------------------|------------|-----------------------------|-------|-------------|----------------|---|
| Steel             | 1631           |                      | 14528      |                             | 0.11  |             | Pass           | _ |
| Adhesive          | 6525           |                      | 6976       |                             | 0.94  |             | Pass (Governs) |   |
|                   |                |                      |            |                             |       |             |                |   |
| Shear             | Factored Load, | V <sub>ua</sub> (lb) | Design Str | ength, øV <sub>n</sub> (lb) | Ratio | D           | Status         |   |
| Steel             | 163            |                      | 5138       |                             | 0.03  |             | Pass           | _ |
| Pryout            | 652            |                      | 16163      |                             | 0.04  |             | Pass (Governs) |   |
| Interaction check | Nua/ \$Nn      | V <sub>ua</sub> /øVn |            | Combined Ratio              | I     | Permissible | Status         |   |
| Sec. 17.61        | 0.94           | 0.00                 |            | 93.5 %                      |       | 1.0         | Pass           | _ |

## SET-XP w/ 3/4"Ø F1554 Gr. 36 with hef = 12.000 inch meets the selected design criteria.

# **Base Plate Thickness**

Required base plate thickness: 0.595 inch



| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | CRF                | Page: | 5/5        |
| Project:  | Ski Lodge          |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

# 12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Concrete breakout strength in shear has not been evaluated against applied shear load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

# **Review Question: S11**

11/2017

# SIMPSON

Strong-

# Anchor Designer™ Software Version 2.5.6464.0

# 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

## 2. Input Data & Anchor Parameters

**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.750 Effective Embedment depth, h<sub>ef</sub> (inch): 8.000 Code report: ICC-ES ESR-2508 Anchor category: -Anchor ductility: Yes h<sub>min</sub> (inch): 11.75 c<sub>ac</sub> (inch): 13.30 C<sub>min</sub> (inch): 1.75 S<sub>min</sub> (inch): 3.00

## Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: 17.2.3.4.3 (b) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Tes <Figure 1>

#### 

Project description: Steel column tensile load check (worst case) where in place of typ. holdown Location: Fastening description:

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength,  $f_c$  (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: Yes Hole condition: Dry concrete Inspection: Periodic Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

#### Base Plate

Length x Width x Thickness (inch): 9.00 x 24.00 x 0.50 Yield stress: 34084 psi

Profile type/size: HSS5X5X1/4





# Anchor Designer™ Software Version 2.5.6464.0

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | CRF                | Page: | 2/5        |
| Project:  | Ski Lodge          |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

<Figure 2>



### Recommended Anchor

Anchor Name: SET-XP® - SET-XP w/ 3/4"Ø F1554 Gr. 36 Code Report: ICC-ES ESR-2508



# Anchor Designer™ Software Version 2.5.6464.0

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | CRF                | Page: | 3/5        |
| Project:  | Ski Lodge          |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

# **3. Resulting Anchor Forces**

SIMPSON

Strong-I

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb) |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1      | 1125.0                                | 0.0                                    | 884.5                                  | 884.5                                                        |
| 2      | 1125.0                                | 0.0                                    | 884.5                                  | 884.5                                                        |
| 3      | 1125.0                                | 0.0                                    | 884.5                                  | 884.5                                                        |
| 4      | 1125.0                                | 0.0                                    | 884.5                                  | 884.5                                                        |
| Sum    | 4500.0                                | 0.0                                    | 3538.0                                 | 3538.0                                                       |

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00

Eccentricity of resultant tension forces in x-axis,  $e_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00 Eccentricity of resultant shear forces in x-axis,  $e'_{Vx}$  (inch): 0.00 Eccentricity of resultant shear forces in y-axis,  $e'_{Vy}$  (inch): 0.00





### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

| Nsa (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|----------|--------|--------------------|
| 19370    | 0.75   | 14528              |

#### 6. Adhesive Strength of Anchor in Tension (Sec. 17.4.5)

| $\tau_{k,cr} = \tau_{k,cr} f_{shor}$   | t-term $K$ sat $lpha$ N.seis                     |                      |                                            |                    |                |                |                      |        |                                  |
|----------------------------------------|--------------------------------------------------|----------------------|--------------------------------------------|--------------------|----------------|----------------|----------------------|--------|----------------------------------|
| τ <sub>k,cr</sub> (psi)                | <b>f</b> short-term                              | ŀ                    | sat                                        | αN.seis            |                | тк,cr (psi)    |                      |        |                                  |
| 385                                    | 1.72                                             | 1                    | .00                                        | 1.00               |                | 662            |                      |        |                                  |
| $N_{ba} = \lambda_{a} \tau_{cr} \pi d$ | <i>l<sub>a</sub>h<sub>ef</sub></i> (Eq. 17.4.5.2 | 2)                   |                                            |                    |                |                |                      |        |                                  |
| λa                                     | $\tau_{cr}$ (psi)                                | da (in)              | <i>h</i> ef (in)                           | N <sub>ba</sub> (I | b)             |                |                      |        |                                  |
| 1.00                                   | 662                                              | 0.75                 | 8.000                                      | 1248               | 2              |                |                      |        |                                  |
| $0.75\phi N_{ag}=0$                    | .75φ (A <sub>Na</sub> / A <sub>Na0</sub> )       | Ψec,Na Ψed,Na Ψ      | r <sub>cp,Na</sub> N <sub>ba</sub> (Sec. 1 | 17.3.1 & Eq.       | 17.4.5.1b)     |                |                      |        |                                  |
| $A_{Na}$ (in <sup>2</sup> )            | A <sub>Na0</sub> (in <sup>2</sup> )              | c <sub>Na</sub> (in) | c <sub>a,min</sub> (in)                    | $\Psi_{ec,Na}$     | $\Psi_{ed,Na}$ | $\Psi_{cp,Na}$ | N <sub>ba</sub> (lb) | $\phi$ | 0.75 <i>¢N<sub>ag</sub></i> (lb) |
| 364.26                                 | 341.26                                           | 9.24                 | 4.50                                       | 1.000              | 0.846          | 1.000          | 12482                | 0.55   | 4650                             |

| MPSON    | Anchor Designer™   | Co  |
|----------|--------------------|-----|
| rong-Tie | Software           | Pro |
|          | Version 2.5.6464.0 | Ad  |
| 0        |                    | Dh  |

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | CRF                | Page: | 4/5        |
| Project:  | Ski Lodge          |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

# 8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

| V <sub>sa</sub> (lb) | $\phi_{	ext{grout}}$ | $\phi$ | lphaV,seis | $\phi_{grout} lpha_{V,seis} \phi V_{sa}$ (lb) |
|----------------------|----------------------|--------|------------|-----------------------------------------------|
| 11625                | 1.0                  | 0.65   | 0.68       | 5138                                          |

# 10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

 $\phi V_{cpg} = \phi \min[k_{cp}N_{ag}; k_{cp}N_{cbg}] = \phi \min[k_{cp}(A_{Na}/A_{Na0}) \Psi_{ec,Na} \Psi_{ed,Na} \Psi_{cp,Na} N_{ba}; k_{cp}(A_{Nc}/A_{Nc0}) \Psi_{ec,N} \Psi_{cp,N} \Psi_{cp,Nb}] (Sec. 17.3.1 \& Eq. 17.5.3.1b)$ 

| <i>K</i> <sub>cp</sub> | A <sub>Na</sub> (in <sup>2</sup> ) | A <sub>Na0</sub> (in <sup>2</sup> ) | $\Psi_{ed,Na}$ | $\Psi_{ec,Na}$ |               | $arPsi_{cp,Na}$ | N <sub>ba</sub> (lb) | Na (lb) |
|------------------------|------------------------------------|-------------------------------------|----------------|----------------|---------------|-----------------|----------------------|---------|
| 2.0                    | 364.26                             | 341.26                              | 0.846          | 1.000          |               | 1.000           | 12482                | 11274   |
|                        |                                    |                                     |                |                |               |                 |                      |         |
| Anc (in²)              | Anco (in²)                         | $\Psi_{ec,N}$                       | $\Psi_{ed,N}$  | Ψc,N           | $\Psi_{cp,N}$ | N₂ (lb)         | Ncb (lb)             | $\phi$  |
| 378.00                 | 400.00                             | 1.000                               | 0.835          | 1.000          | 1.000         | 14631           | 11545                | 0.70    |

*φV<sub>cpg</sub>* (lb) 15783

S

# 11. Results

# Interaction of Tensile and Shear Forces (Sec. 17.6.)

| Tension           | Factored Load | , N <sub>ua</sub> (Ib) | Design Str | ength, øN <sub>n</sub> (lb) | Ratio | D           | Status         |   |
|-------------------|---------------|------------------------|------------|-----------------------------|-------|-------------|----------------|---|
| Steel             | 1125          |                        | 14528      |                             | 0.08  |             | Pass           | _ |
| Adhesive          | 4500          |                        | 4650       |                             | 0.97  |             | Pass (Governs) |   |
|                   |               |                        |            |                             |       |             |                |   |
| Shear             | Factored Load | , V <sub>ua</sub> (Ib) | Design Str | ength, øV <sub>n</sub> (lb) | Ratio | D           | Status         |   |
| Steel             | 885           |                        | 5138       |                             | 0.17  |             | Pass           | _ |
| Pryout            | 3538          |                        | 15783      |                             | 0.22  |             | Pass (Governs) |   |
| Interaction check | Nua/ \$Nn     | Vua∕øVn                |            | Combined Ratio              |       | Permissible | Status         |   |
| Sec. 17.63        | 0.97          | 0.22                   |            | 119.2 %                     |       | 1.2         | Pass           | _ |

## SET-XP w/ 3/4"Ø F1554 Gr. 36 with hef = 8.000 inch meets the selected design criteria.

# **Base Plate Thickness**

Required base plate thickness: 0.498 inch



| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | CRF                | Page: | 5/5        |
| Project:  | Ski Lodge          |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

# 12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Concrete breakout strength in shear has not been evaluated against applied shear load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

# **DRIFT LOADS**

# Height up to which Drift is NOT a factor

| Difference in height between upper and lower roof or deck -              |                    | $h_r := 1.5 \cdot ft$ |    |
|--------------------------------------------------------------------------|--------------------|-----------------------|----|
| Ground Snow Load -                                                       |                    | $P_g := 274 \cdot p$  | sf |
| Roof Snow Load -                                                         |                    | $P_f := 192 \cdot ps$ | sf |
| Height of balanced snow load on lower roof or deck - $${\rm h}_{\rm b}$$ | $:= \frac{P_f}{D}$ | $h_{b} = 5.5  ft$     |    |
| $(\mathbf{h} - \mathbf{h})$                                              |                    |                       |    |

 $\frac{(n_r - n_b)}{h_b} = -0.727$  (  $h_{r_consider} = 6.583 \text{ ft}$  )

# Drift Area 1

| Difference in height betw                       | ween upper and lower roof or dec         | ck -                   | $h_r := 5 \cdot ft$        |
|-------------------------------------------------|------------------------------------------|------------------------|----------------------------|
| Height of balanced snow                         | w load on lower roof or deck -           | $h_b := \frac{P_f}{D}$ | h <sub>b</sub> = 5.5 ft    |
| $\frac{\left(h_{r}-h_{b}\right)}{h_{b}}=-0.089$ | ( $h_{r\_consider} = 6.583 \text{ ft}$ ) | Drift = "DOES N        | NOT need to be considered" |

Horizontal dimension of upper roof normal to the line of change in roof level, but not less than 50 ft. or greater than 500 ft.

| Maximum height of drift surcharge - | $h_{d} := \left[ 0.43 \cdot \left(\frac{W_{b}}{ft}\right)^{.33} \cdot \left(\frac{P_{g}}{psf} + 10\right)^{.25} - 1.5 \right] \cdot ft$ | $h_{d} = 4.9  ft$ |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|

Width of the drift load - 
$$W_d := \min[4 \cdot h_d, 4 \cdot (h_r - h_b)]$$
  $W_d = -1.9 \text{ ft}$ 

Maximum intensity of the snow load at the highest point of drift -

$$P_{m} := \min \left[ D \cdot (h_{d} + h_{b}), D \cdot h_{r} \right] \qquad \qquad P_{m} = 175 \text{ psf}$$

# Drift Area 2

| Difference in height between upper and lower roof or deck | : -                    | $h_r := 6 \cdot ft$         |
|-----------------------------------------------------------|------------------------|-----------------------------|
| Height of balancedsnow load on lower roof or deck -       | $h_b := \frac{P_f}{D}$ | $h_{\rm b} = 5.5  {\rm ft}$ |

$$\frac{(h_r - h_b)}{h_b} = 0.094$$
 (  $h_{r\_consider} = 6.583 \text{ ft}$  )

Drift = "DOES NOT need to be considered"

Drift = "DOES NOT need to be considered"

 $W_h := 50 \cdot ft$ 

Maximum height of drift surcharge -

$$h_d := \left[ 0.43 \cdot \left(\frac{W_b}{ft}\right)^{.33} \cdot \left(\frac{P_g}{psf} + 10\right)^{.25} - 1.5 \right] \cdot ft \qquad h_d = 4.9 \text{ ft}$$

$$W_d := \min \left[ 4 \cdot h_d, 4 \cdot \left( h_r - h_b \right) \right] \qquad \qquad W_d = 2.1 \text{ ft}$$

Maximum intensity of the snow load at the highest point of drift -

$$P_{m} := \min \left[ D \cdot (h_{d} + h_{b}), D \cdot h_{r} \right] \qquad P_{m} = 210 \text{ psf}$$

# Maximum Drift

Difference in height between upper and lower roof or deck  $h_r := 7 \cdot ft$  $h_b := \frac{P_f}{D}$ 

Height of balancedsnow load on lower roof or deck -

$$\frac{\left(h_{r}-h_{b}\right)}{h_{b}}=0.276 \qquad (h_{r\_consider}=6.583 \, \mathrm{ft}$$

Maximum height of drift surcharge -

$$:= \left[0.43 \cdot \left(\frac{W_b}{ft}\right)^{.33} \cdot \left(\frac{P_g}{psf} + 10\right)^{.25} - 1.5\right] \cdot ft \qquad h_d = 4.9 \text{ ft}$$

Drift = "MUST be considered"

 $W_d := \min[4 \cdot h_d, 4 \cdot (h_r - h_b)]$ Width of the drift load -

Maximum intensity of the snow load at the highest point of drift -

$$P_{m} := \min \left[ D \cdot (h_{d} + h_{b}), D \cdot h_{r} \right]$$

h<sub>d</sub>



 $h_{b} = 5.5 \, ft$ 







| Review Q                              | uestion: S15             |
|---------------------------------------|--------------------------|
| Browning Ski Lodge (Part B)           |                          |
| Horizontal Seismic Force Distribution |                          |
| by Courtney R. Fleming                | 0.085 *W (Shearwall ASD) |

|          |          |        | Brownin<br>Horizontal S | g <i>Ski Lodge (</i><br>Seismic Force D | Part B)<br>Distribution        |            |                |                |         |                          |                | 11                       | 2017   |
|----------|----------|--------|-------------------------|-----------------------------------------|--------------------------------|------------|----------------|----------------|---------|--------------------------|----------------|--------------------------|--------|
|          |          |        | by C                    | ourtney R. Flem                         | iing                           |            | 0.085 *W       | (Shearwall A   | ASD)    |                          |                | ,                        | 2011   |
| Location | Area     | DL     | Seismic SL              | Seismic Wt., V                          | V. Level Force, V <sub>L</sub> | # of walls | Wall Length, L | Wall Height, H | Wall DL | Wall Wt., W <sub>w</sub> | Wall Force, Vy | <u>v Total Force, Vs</u> |        |
| 1        | 400 ft^2 | 15 psf | 37 psf                  | 20.8 kips                               | 1.8 kips                       | 2          | 38.0 ft        | 9.0 ft         | 8 psf   | 2.7 kips                 | 0.2 kips       | 2.0 kips                 |        |
| 2        | 400 ft^2 | 10 psf | 0 psf                   | 4.0 kips                                | 0.3 kips                       | 2          | 38.0 ft        | 9.0 ft         | 8 psf   | 2.7 kips                 | 0.2 kips       | 0.6 kips                 |        |
| 3        | 400 ft^2 | 78 psf | 0 psf                   | 31.2 kips                               | 2.7 kips                       | 2          | 40.0 ft        | 9.0 ft         | 95 psf  | 34.2 kips                | 5.4 kips       | 8.0 kips                 |        |
|          |          |        |                         |                                         |                                |            |                |                |         |                          |                | -                        |        |
|          |          |        |                         |                                         |                                |            |                |                |         | V=                       | 0.157          | For location 3           | Wall F |

Which Occur below Grade

٦

|          |                                       | B      | rowning SI | ki Lodge (Ter   | rrace Deck)        |            |                |                |         |                          |                |                 |
|----------|---------------------------------------|--------|------------|-----------------|--------------------|------------|----------------|----------------|---------|--------------------------|----------------|-----------------|
|          | Horizontal Seismic Force Distribution |        |            |                 |                    |            |                |                |         |                          |                |                 |
|          |                                       |        | by C       | ourtney R. Flen | ning               |            | 0.157 *W       | (Shearwall A   | ASD)    |                          |                |                 |
| Location | Area                                  | DL     | Seismic SL | Seismic Wt., V  | W. Level Force, V. | # of walls | Wall Length, L | Wall Height, H | Wall DL | Wall Wt., W <sub>w</sub> | Wall Force, Vw | Total Force, Vs |
| 1        | 375 ft^2                              | 78 psf | 37 psf     | 43.1 kips       | 3.7 kips           | 2          | 36.8 ft        | 9.0 ft         | 95 psf  | 31.5 kips                | 4.9 kips       | 8.6 kips        |
|          |                                       |        |            |                 |                    |            |                |                |         |                          |                |                 |

| Project                      | Browning Ski Lode  | ne (Part B)                                                                 |                                   |  |  |  |  |  |  |
|------------------------------|--------------------|-----------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|--|
| Engineer                     | Courtney P. Flomin | ng Draiagt Enginear                                                         |                                   |  |  |  |  |  |  |
| Engineer                     | Courtney R. Flemin | ng, Project Engineer                                                        |                                   |  |  |  |  |  |  |
| Date:                        | 11/23/2017         |                                                                             |                                   |  |  |  |  |  |  |
|                              | Equivalent Lat     | eral Force Procee                                                           | lure per latest version of ASCE 7 |  |  |  |  |  |  |
| Seismic Forces Equivalent La | ateral Force Proce | dure                                                                        |                                   |  |  |  |  |  |  |
| V =                          | 0.085W             | Base Shear ASCE 7-                                                          | 10 Equation 12.8-1 pg. 89         |  |  |  |  |  |  |
| Cs=                          | 0.085              | Seismic Response Coefficient (input from Code Search Spreadsheet: 'EQ'!F61) |                                   |  |  |  |  |  |  |
| T=                           | 0.230              | Building Period (input from Code Search Spreadsheet: 'EQ'!K56)              |                                   |  |  |  |  |  |  |
| Total Seismic loads:         | Diaphragm          | Wall                                                                        | <b>* -</b> <i>'</i>               |  |  |  |  |  |  |
|                              | 64 kips            | 11 kips                                                                     |                                   |  |  |  |  |  |  |
| Total Building wt. =         | 75 kips            |                                                                             |                                   |  |  |  |  |  |  |
| V, Seismic:                  | 6 kips             | Seismic Controls                                                            |                                   |  |  |  |  |  |  |
|                              | Seismic Controls   | for all wall designs                                                        |                                   |  |  |  |  |  |  |

#### Vertical Distribution of Forces: 1 k=

# 1.0 ASCE 7-10 Equation 12.8-12, pg. 91

| Location | wi             | hi       | wi*hi^k | wi*hi^k/Σwi*hi^k | Cs    | Fx        | Vx (kips) | ASD REDUCTION |
|----------|----------------|----------|---------|------------------|-------|-----------|-----------|---------------|
| 1        | <br>30 kips    | 30.0 ft. | 893     | 0.6              | 0.085 | 5.1 kips  | 5.1 kips  | 3.7 kips      |
| 2        | <br>7 kips     | 20.0 ft. | 134     | 0.1              | 0.085 | 0.8 kips  | 5.9 kips  | 4.2 kips      |
| 3        | <br>50 kips    | 10.0 ft. | 497     | 0.3              | 0.157 | 5.3 kips  | 11.2 kips | 8.0 kips      |
| Slab     | <br>17 kips    | 0.0 ft.  | 0       | 0.0              | 0.157 | 0.0 kips  | 0.0 kips  | 0.0 kips      |
|          |                | 0.0 ft.  | 0       | 0.0              | 0.085 | 0.0 kips  | 0.0 kips  | 0.0 kips      |
|          |                | 0.0 ft.  | 0       | 0.0              | 0.085 | 0.0 kips  | 0.0 kips  | 0.0 kips      |
| Σ        | <br>103.2 kips |          | 1523    |                  |       | 11.2 kips |           | 2             |

Vertical Distribution of Forces:

k= 1.0

Terrace

1.0 ASCE 7-10 Equation 12.8-12, pg. 91

| Location | wi            | hi       | wi*hi^k | wi*hi^k/Σwi*hi^k | Cs    | Fx       | Vx (kips) | ASD REDUCTION |
|----------|---------------|----------|---------|------------------|-------|----------|-----------|---------------|
| 1        | <br>59 kips   | 10.0 ft. | 588     | 0.4              | 0.157 | 6.3 kips | 6.3 kips  | 4.5 kips      |
| 2        | <br>16 kips   | 0.0 ft.  | 0       | 0.0              | 0.085 | 0.0 kips | 0.0 kips  | 0.0 kips      |
| 3        | <br>0 kips    | 0.0 ft.  | 0       | 0.0              | 0.157 | 0.0 kips | 0.0 kips  | 0.0 kips      |
| Slab     | <br>0 kips    | 0.0 ft.  | 0       | 0.0              | 0.157 | 0.0 kips | 0.0 kips  | 0.0 kips      |
|          |               | 0.0 ft.  | 0       | 0.0              | 0.085 | 0.0 kips | 0.0 kips  | 0.0 kips      |
|          |               | 0.0 ft.  | 0       | 0.0              | 0.085 | 0.0 kips | 0.0 kips  | 0.0 kips      |
| Σ        | <br>74.5 kips |          | 588     |                  |       | 6.3 kips |           | 1             |

|       |          |          |       | CRF                                        |               |             |         |             |            |         |        |             |             | 11/23/2017 |
|-------|----------|----------|-------|--------------------------------------------|---------------|-------------|---------|-------------|------------|---------|--------|-------------|-------------|------------|
|       |          |          |       | Elliot Group - Browning Ski Lodge (Part B) |               |             |         |             |            |         |        |             |             |            |
|       |          |          | -     |                                            | SUMMARY       | OF LATERA   | L FORCE | S (SEGMEN   | NTED DESIG | HN)     |        |             |             |            |
| Level | Line No. | Wall No. | Mark  | Force V(k)                                 | Wind/Seismic  | Length (ft) | v (plf) | Height (ft) | Reduction  | SW Type | Uplift | Uplift LEFT | Jplift RIGH | Holddowns  |
| R     | 1        | 2        | R.1.2 |                                            |               | 5           | 370     | 9           | 1.00       | С       | 3330   | 3006        | 3006        | CS14       |
|       |          |          |       |                                            |               |             |         |             |            |         |        |             |             |            |
|       |          | Totals   |       | 1.9                                        | Seismic       | 5           |         |             |            |         |        |             |             |            |
|       |          |          |       |                                            | wood/wood     |             |         |             |            |         |        |             |             |            |
|       |          |          |       |                                            |               |             |         |             |            |         |        |             |             |            |
| F     | 1        | 2        | F.1.2 |                                            |               | 5           | 420     | 9           | 1.00       | С       | 3780   | 6525        | 6525        | HDU 8      |
|       |          |          |       |                                            |               |             |         |             |            |         |        |             |             |            |
|       |          | Totals   |       | 2.1                                        | Seismic       | 5           |         |             |            |         |        |             |             |            |
|       |          |          |       |                                            | wood/concrete |             |         |             |            |         |        |             |             |            |
|       |          |          |       |                                            |               |             |         |             |            |         |        |             |             |            |
|       |          |          |       |                                            |               |             |         |             |            |         |        |             |             |            |

|                                              |          |          |       | CRF                                        |               |             |         |             |           |         |        |             |             | 11/23/2017 |
|----------------------------------------------|----------|----------|-------|--------------------------------------------|---------------|-------------|---------|-------------|-----------|---------|--------|-------------|-------------|------------|
|                                              |          |          |       | Elliot Group - Browning Ski Lodge (Part B) |               |             |         |             |           |         |        |             |             |            |
| SUMMARY OF LATERAL FORCES (SEGMENTED DESIGN) |          |          |       |                                            |               |             |         |             |           |         |        |             |             |            |
| Level                                        | Line No. | Wall No. | Mark  | Force V(k)                                 | Wind/Seismic  | Length (ft) | ν (plf) | Height (ft) | Reduction | SW Type | Uplift | Uplift LEFT | Jplift RIGH | Holddowns  |
| R                                            | 1        | 1        | R.1.1 |                                            |               | 14          | 132     | 9           | 1.00      | А       | 1189   | n/a         | n/a         | -          |
|                                              |          |          |       |                                            |               |             |         |             |           |         |        |             |             |            |
|                                              |          | Totals   |       | 1.9                                        | Seismic       | 14          |         |             |           |         |        |             |             |            |
|                                              |          |          |       |                                            | wood/wood     |             |         |             |           |         |        |             |             |            |
|                                              |          |          |       |                                            |               |             |         |             |           |         |        |             |             |            |
| F                                            | 1        | 1        | F.1.1 |                                            |               | 14          | 150     | 9           | 1.00      | А       | 1350   | n/a         | n/a         | -          |
|                                              |          |          |       |                                            |               |             |         |             |           |         |        |             |             |            |
|                                              |          | Totals   |       | 2.1                                        | Seismic       | 14          |         |             |           |         |        |             |             |            |
|                                              |          |          |       |                                            | wood/concrete |             |         |             |           |         |        |             |             |            |
|                                              |          |          |       |                                            |               |             |         |             |           |         |        |             |             |            |
|                                              |          |          |       |                                            |               |             |         |             |           |         |        |             |             |            |

# Holdown Note:

Many locations where holdowns should occur, steel columns are in their place for the gravity design of this house. Anchorage in these instances have checked for the worst possible uplift.

# Review Question: S15

|                 |           | ]      | <i>Browning</i><br>Horizontal S | g <i>Ski Lodge (I</i><br>eismic Force Di | Part A)<br>stribution               |                   |             |                |                |         |                                |                | 11                     |
|-----------------|-----------|--------|---------------------------------|------------------------------------------|-------------------------------------|-------------------|-------------|----------------|----------------|---------|--------------------------------|----------------|------------------------|
|                 |           |        | by Co                           | ourtney R. Flemin                        | ng                                  |                   | V=          | 0.157 *W       | (Shearwall     | ASD)    |                                |                |                        |
| <b>Location</b> | Area      | DL     | <u>Seismic SL</u>               | <u>Seismic Wt., W</u>                    | <u>s Level Force, V<sub>L</sub></u> | <u># of walls</u> | Eave length | Wall Length, L | Wall Height, H | Wall DL | <u>Wall Wt., W<sub>w</sub></u> | Wall Force, Vw | <b>Total Force, Vs</b> |
| 1               | 1600 ft^2 | 15 psf | 37 psf                          | 83.2 kips                                | 13.1 kips                           | 2                 | 5.00 ft     | 70.0 ft        | 10.0 ft        | 8 psf   | 5.6 kips                       | 0.9 kips       | 13.9 kips              |
| 2               | 1600 ft^2 | 25 psf | 0 psf                           | 40.0 kips                                | 6.3 kips                            | 1                 | 0.00 ft     | 44.0 ft        | 10.0 ft        | 8 psf   | 3.5 kips                       | 0.6 kips       | 6.8 kips               |
|                 |           |        |                                 |                                          |                                     |                   |             |                |                |         |                                |                |                        |

Supplemental Calcs 1 Page 25 of 37

11/2017

ASD REDUCTION 12.2 kips 14.8 kips 0.0 kips 0.0 kips 0.0 kips 0.0 kips

Vx (kips) 17.1 kips 20.8 kips 0.0 kips 0.0 kips 0.0 kips 0.0 kips

20.8 kips

| Project:                      | Browning Ski Lody | e (Part A)            |                       |                           |                  |       |           |
|-------------------------------|-------------------|-----------------------|-----------------------|---------------------------|------------------|-------|-----------|
| Engineer:                     | Courtney R Flemin | ng Project Engineer   |                       |                           |                  |       |           |
| Date:                         | 11/23/2017        | .8, 0, 8 8            |                       |                           |                  |       |           |
|                               | Equivalent Lat    | eral Force Proced     | lure per latest v     | ersion of ASCE 7          |                  |       |           |
| Seismic Forces Equivalent La  | teral Force Proce | lure                  |                       | <u></u>                   |                  |       |           |
| V =                           | 0.157W            | Base Shear ASCE 7-1   | 10 Equation 12.8-1    | pg. 89                    |                  |       |           |
| Cs=                           | 0.157             | Seismic Response Co   | efficient (input fron | n Code Search Spreadsheet | 'EQ'!F61)        |       |           |
| T=                            | 0.230             | Building Period (inpu | t from Code Search    | Spreadsheet: 'EQ'!K56)    |                  |       |           |
| Total Seismic loads:          | Diaphragm         | Wall                  |                       | 1 2 /                     |                  |       |           |
|                               | 123 kips          | 9 kips                |                       |                           |                  |       |           |
|                               |                   |                       |                       |                           |                  |       |           |
|                               |                   |                       |                       |                           |                  |       |           |
|                               |                   |                       |                       |                           |                  |       |           |
|                               |                   |                       |                       |                           |                  |       |           |
|                               |                   |                       |                       |                           |                  |       |           |
|                               |                   |                       |                       |                           |                  |       |           |
| Total Building wt. =          | 132 kips          |                       |                       |                           |                  |       |           |
| otal Base Shear, V            | · · ·             |                       |                       |                           |                  |       |           |
| V Saismic:                    | 21 kins           | Seismie Controls      |                       |                           |                  |       |           |
| v, seisinie.                  | 21 Kips           | Seisinie Controis     |                       |                           |                  |       |           |
|                               |                   |                       |                       |                           |                  |       |           |
|                               |                   |                       |                       |                           |                  |       |           |
|                               | Seismic Controls  | for all wall designs  |                       |                           |                  |       |           |
|                               |                   |                       |                       |                           |                  |       |           |
| ertical Distribution of Force | 25:               | 1                     |                       |                           |                  |       |           |
|                               |                   | k=                    | 1.0                   | ASCE 7-10 Equation 12.8   | -12, pg. 91      |       |           |
|                               |                   |                       |                       |                           |                  |       |           |
| Location                      |                   | wi                    | hi                    | wi*hi^k                   | wi*hi^k/Σwi*hi^k | Cs    | Fx        |
| 1                             |                   | 86 kips               | 24.0 ft.              | 2064                      | 0.8              | 0.157 | 17.1 kips |
| 2                             |                   | 45 kips               | 10.0 ft.              | 446                       | 0.2              | 0.157 | 3.7 kips  |
| Grade                         |                   | 2 kips                | 0.0 ft.               | 0                         | 0.0              | 0.157 | 0.0 kips  |
|                               |                   | 0 kips                | 0.0 ft.               | 0                         | 0.0              | 0.157 | 0.0 kips  |
|                               |                   |                       | 0.0 ft.               | 0                         | 0.0              | 0.157 | 0.0 kips  |
|                               |                   |                       | 0.0 ft.               | 0                         | 0.0              | 0.157 | 0.0 kips  |
| Σ                             |                   | 132.3 kips            |                       | 2510                      |                  |       | 20.8 kips |

132.3 kips

Σ

2510

|       |       |            |               |              |             |          |             |           |         |        |             |                          | 11/23/2017    |
|-------|-------|------------|---------------|--------------|-------------|----------|-------------|-----------|---------|--------|-------------|--------------------------|---------------|
|       |       |            |               | Elliot Group | - Browning  | Ski Lodg | e (Part A)  |           |         |        |             |                          |               |
|       |       |            |               | SUMMARY OF   | LATERAL F   | ORCES- S | EGMENTE     | D         |         |        |             |                          |               |
| Level | Mark  | Force V(k) | Wood/Conc.    | Wind/Seismic | Length (ft) | ν (plf)  | Height (ft) | Reduction | SW Type | Uplift | Uplift LEFT | <sup>-</sup> Jplift RIGH | Holddowns     |
| R     | R.1.2 | 6.10       | wood/concrete | Seismic      | 11.5        | 530      | 10          | 1.00      | D       | 5304   | 4366        | 4366                     | STL COL.      |
| R     | R.1.3 | 2.50       | wood/concrete | Seismic      | 6.6         | 379      | 10          | 1.00      | С       | 3788   | 3249        | 3249                     | STL COL.      |
| R     | R.1.4 | 1.14       | wood/concrete | Seismic      | 4.2         | 271      | 10          | 0.84      | В       | 2714   | 2372        | 2372                     | HDU2/STL COL. |
| R     | R.1.5 | 1.14       | wood/concrete | Seismic      | 4.2         | 271      | 10          | 0.84      | В       | 2714   | 2372        | 2372                     | HDU2/STL COL. |
| F     | F.1.3 | 1.52       | wood/concrete | Seismic      | 6.6         | 230      | 10          | 1.00      | Α       | 2297   | 4084        | 4084                     | STL COL.      |
| F     | F.1.4 | 7.4        | wood/concrete | Seismic      | 15.5        | 477      | 10          | 1.00      | D       | 4774   | 3937        | 3937                     | STL COL.      |

Holdown Note: Many locations where holdowns should occur, steel columns are in their place for the gravity design of this house. Anchorage in these instances have checked for the worst possible uplift.

# **Review Question: S16**

11/2017

# SIMPSON

Strong-J

# Anchor Designer™ Software Version 2.5.6464.0

# 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

## 2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.750 Effective Embedment depth, hef (inch): 14.000 Code report: ICC-ES ESR-2508 Anchor category: -Anchor ductility: Yes hmin (inch): 17.75 c<sub>ac</sub> (inch): 22.99 Cmin (inch): 1.75 Smin (inch): 3.00

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: 17.2.3.4.3 (b) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No

<Figure 1>

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | CRF                | Page: | 1/5        |
| Project:  | Ski Lodge          |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

Project description: HSS moment Frame Connection Location: Fastening description:

### **Base Material**

Concrete: Normal-weight Concrete thickness, h (inch): 36.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ<sub>c,V</sub>: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: Yes Hole condition: Dry concrete Inspection: Periodic Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

#### **Base Plate**

Length x Width x Thickness (inch): 14.00 x 14.00 x 0.50 Yield stress: 34084 psi

### Profile type/size: HSS8X8X1/2





# Anchor Designer™ Software Version 2.5.6464.0

| Company:  | Canyons Structural | Date: | 11/25/2017 |
|-----------|--------------------|-------|------------|
| Engineer: | CRF                | Page: | 2/5        |
| Project:  | Ski Lodge          |       |            |
| Address:  |                    |       |            |
| Phone:    |                    |       |            |
| E-mail:   |                    |       |            |

<Figure 2>



### **Recommended Anchor**

Anchor Name: SET-XP® - SET-XP w/ 3/4"Ø F1554 Gr. 36 Code Report: ICC-ES ESR-2508



| SIMPSON           |                    | TM Comp       | oany: ( | Canyons Structural | Date:        | 11/25/2017 |
|-------------------|--------------------|---------------|---------|--------------------|--------------|------------|
|                   |                    | Engir         | neer: ( | CRF                | Page         | 3/5        |
| Strong-Tie        | Software           | Proje         | ct: S   | Ski Lodge          |              |            |
|                   | Version 2.5.6464.0 | Addre         | ess:    |                    |              |            |
| e.                | y                  | Phon          | e:      |                    |              |            |
|                   |                    | E-ma          | il:     |                    |              |            |
| 3. Resulting Ancl | hor Forces         |               |         |                    |              |            |
| Anchor            | Tension load,      | Shear load x, |         | Shear load y,      | Shear load o | ombined,   |

| <u>. ה</u> | esuiting | AIICHOI | FUICES       |
|------------|----------|---------|--------------|
| Ancl       | nor      |         | Tension load |

|     | N <sub>ua</sub> (lb) | V <sub>uax</sub> (lb) | V <sub>uay</sub> (lb) | $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb) |  |
|-----|----------------------|-----------------------|-----------------------|-----------------------------------------|--|
| 1   | 1690.3               | 0.0                   | 884.5                 | 884.5                                   |  |
| 2   | 1690.3               | 0.0                   | 884.5                 | 884.5                                   |  |
| 3   | 1690.3               | 0.0                   | 884.5                 | 884.5                                   |  |
| 4   | 1690.3               | 0.0                   | 884.5                 | 884.5                                   |  |
| Sum | 6761.0               | 0.0                   | 3538.0                | 3538.0                                  |  |

<Figure 3>

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'<sub>Nx</sub> (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'<sub>Ny</sub> (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00



### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

| Nsa (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|----------|--------|--------------------|
| 19370    | 0.75   | 14528              |

# 6. Adhesive Strength of Anchor in Tension (Sec. 17.4.5)

| $\tau_{k,cr} = \tau_{k,cr} f_{shor}$        | t-term $old K$ sat $lpha$ N.seis             |                      |                                                       |                     |                       |                 |                      |        |                                  |
|---------------------------------------------|----------------------------------------------|----------------------|-------------------------------------------------------|---------------------|-----------------------|-----------------|----------------------|--------|----------------------------------|
| τ <sub>k,cr</sub> (psi)                     | <b>f</b> short-term                          | ĸ                    | sat                                                   | αN.seis             |                       | тк,cr (psi)     |                      |        |                                  |
| 385                                         | 1.72                                         | 1                    | .00                                                   | 1.00                |                       | 662             |                      |        |                                  |
| $N_{ba} = \lambda_{a} \tau_{cr} \pi \alpha$ | l <sub>a</sub> h <sub>ef</sub> (Eq. 17.4.5.) | 2)                   |                                                       |                     |                       |                 |                      |        |                                  |
| λa                                          | τ <sub>cr</sub> (psi)                        | da (in)              | h <sub>ef</sub> (in)                                  | N <sub>ba</sub> (Ib | ))                    |                 |                      |        |                                  |
| 1.00                                        | 662                                          | 0.75                 | 14.000                                                | 21844               | ł                     |                 |                      |        |                                  |
| $0.75\phi N_{ag}=0$                         | .75φ (A <sub>Na</sub> / A <sub>Na0</sub> )   | Ψec,Na Ψed,Na Ψ      | <sup>у</sup> <sub>ср,Na</sub> N <sub>ba</sub> (Sec. 1 | 7.3.1 & Eq. 1       | 17.4.5.1b)            |                 |                      |        |                                  |
| $A_{Na}$ (in <sup>2</sup> )                 | A <sub>Na0</sub> (in <sup>2</sup> )          | c <sub>Na</sub> (in) | c <sub>a,min</sub> (in)                               | $\Psi_{ec,Na}$      | $\Psi_{\text{ed,Na}}$ | $arPsi_{cp,Na}$ | N <sub>ba</sub> (lb) | $\phi$ | 0.75 <i>¢N<sub>ag</sub></i> (lb) |
| 324.00                                      | 341.26                                       | 9.24                 | 4.00                                                  | 1.000               | 0.830                 | 1.000           | 21844                | 0.55   | 7100                             |

# SIMPSON Anchor Designer™ Software Version 2.5.6464.0

| Company:  | Canvons Structural  | Date <sup>.</sup> | 11/25/2017 |
|-----------|---------------------|-------------------|------------|
| company.  | Ouriyons otractarai | Duic.             | 11/20/2011 |
| Engineer: | CRF                 | Page:             | 4/5        |
| Project:  | Ski Lodge           |                   |            |
| Address:  |                     |                   |            |
| Phone:    |                     |                   |            |
| E-mail:   |                     |                   |            |

# 8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

| V <sub>sa</sub> (lb) | $\phi_{	ext{grout}}$ | $\phi$ | lphaV,seis | $\phi_{	ext{grout}} lpha_{	ext{V,seis}} \phi_{	ext{Vsa}} 	ext{(lb)}$ |
|----------------------|----------------------|--------|------------|----------------------------------------------------------------------|
| 11625                | 1.0                  | 0.65   | 0.68       | 5138                                                                 |

# 10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

 $\phi V_{cpg} = \phi \min[k_{cp} N_{ag}; k_{cp} N_{cbg}] = \phi \min[k_{cp} (A_{Na} / A_{Na0}) \Psi_{ec,Na} \Psi_{ed,Na} \Psi_{cp,Na} N_{ba}; k_{cp} (A_{Nc} / A_{Nc0}) \Psi_{ec,N} \Psi_{cp,N} \Psi_{cp,N} N_b] (Sec. 17.3.1 \& Eq. 17.5.3.1b)$ 

| <i>K</i> <sub>cp</sub> | $A_{Na}$ (in <sup>2</sup> ) | A <sub>Na0</sub> (in <sup>2</sup> ) | $\Psi_{ed,Na}$ | $\Psi_{ec,Na}$   |               | $arPsi_{cp,Na}$ | N <sub>ba</sub> (lb) | Na (lb) |
|------------------------|-----------------------------|-------------------------------------|----------------|------------------|---------------|-----------------|----------------------|---------|
| 2.0                    | 324.00                      | 341.26                              | 0.830          | 1.000            |               | 1.000           | 21844                | 17211   |
|                        |                             |                                     |                |                  |               |                 |                      |         |
| Anc (in <sup>2</sup> ) | Anco (in²)                  | $\Psi_{ec,N}$                       | $\Psi_{ed,N}$  | Ψ <sub>c,N</sub> | $\Psi_{cp,N}$ | N₂ (lb)         | Ncb (lb)             | $\phi$  |
| 324.00                 | 100.00                      | 1.000                               | 0.940          | 1.000            | 1.000         | 5173            | 15755                | 0.70    |

*φV<sub>cpg</sub>* (lb) 22057

# 11. Results

# Interaction of Tensile and Shear Forces (Sec. 17.6.)

| Tension           | Factored Loa | d, N <sub>ua</sub> (Ib) | Design Stre | ength, øNn (lb)             | Ratio | D           | Status         |   |
|-------------------|--------------|-------------------------|-------------|-----------------------------|-------|-------------|----------------|---|
| Steel             | 1690         |                         | 14528       |                             | 0.12  |             | Pass           | _ |
| Adhesive          | 6761         |                         | 7100        |                             | 0.95  |             | Pass (Governs) |   |
|                   |              |                         |             |                             |       |             |                |   |
| Shear             | Factored Loa | d, V <sub>ua</sub> (Ib) | Design Stre | ength, øV <sub>n</sub> (lb) | Ratio | D           | Status         |   |
| Steel             | 885          |                         | 5138        |                             | 0.17  |             | Pass (Governs) | _ |
| Pryout            | 3538         |                         | 22057       |                             | 0.16  |             | Pass           |   |
|                   |              |                         |             |                             |       |             |                |   |
| Interaction check | Nua/øNn      | $V_{ua}/\phi V_n$       |             | Combined Ratio              |       | Permissible | Status         |   |
| Sec. 17.61        | 0.95         | 0.00                    |             | 95.2 %                      |       | 1.0         | Pass           |   |

## SET-XP w/ 3/4"Ø F1554 Gr. 36 with hef = 14.000 inch meets the selected design criteria.

# **Base Plate Thickness**

Required base plate thickness: 0.313 inch



| Company:  | Canyons Structural | Date: 11/25/2 |     |  |
|-----------|--------------------|---------------|-----|--|
| Engineer: | CRF                | Page:         | 5/5 |  |
| Project:  | Ski Lodge          |               |     |  |
| Address:  |                    |               |     |  |
| Phone:    |                    |               |     |  |
| E-mail:   |                    |               |     |  |

# 12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Concrete breakout strength in shear has not been evaluated against applied shear load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

| Printed: | 24 | NOV   | 2017  | 9.38AM   |
|----------|----|-------|-------|----------|
| i miteu. | 27 | 140 4 | 2017, | 7.30/411 |

| Concrete Column                                    |                                      |                  |                  | File = C:\Users\Courtney\DOWNLO~1\CALCS(-4\Calcs\beams.ec6<br>ENERCALC, INC. 1983-2016, Build:6.16.7.21, Ver:6.16.7.21 |
|----------------------------------------------------|--------------------------------------|------------------|------------------|------------------------------------------------------------------------------------------------------------------------|
| Lic. # : KW-06009078                               |                                      |                  |                  | Licensee : Canyons Structural Ind                                                                                      |
| Description : CC1, includes late                   | ral (Worst Case) - W                 | orks for all dir | mensions require | ed in this structure                                                                                                   |
| Cada Dafarancas                                    |                                      |                  |                  |                                                                                                                        |
| Coloulations par ACI 218 14                        |                                      | 2016 4           |                  |                                                                                                                        |
| Load Combinations Used : IE                        | BC 2015, CBC<br>SC 2015              | 2016, A          | SCE 7-10         |                                                                                                                        |
| General Information                                |                                      |                  |                  |                                                                                                                        |
| fc : Concrete 28 day strength =                    | 2.50 ksi                             |                  |                  | Overall Column Height = 10.0 ft                                                                                        |
| E = =                                              | 3,122.0 ksi<br>150.0 pcf             |                  |                  | End Fixity Top & Bottom Pinned                                                                                         |
| B =                                                | 0.850                                |                  |                  | Brace condition for deflection (buckling) along columns :                                                              |
| fy - Main Rebar =                                  | 60.0 ksi                             |                  |                  | $\Lambda$ - $\Lambda$ (with) axis .<br>Unbraced Length for X-X Axis buckling = 7.0 ft K = 0.70                         |
| É - Main Rebar =                                   | 29,000.0 ksi                         |                  |                  | Y-Y (depth) axis :                                                                                                     |
| Allow. Reinforcing Limits                          | ASTM A615 Bars Used                  |                  |                  | Unbraced Length for X-X Axis buckling = 7.0 ft, K = 1.0                                                                |
| Min. Reinf. =                                      | 1.0 %                                |                  |                  |                                                                                                                        |
|                                                    | <b>6.0</b> %                         |                  |                  |                                                                                                                        |
| Column Cross Section                               |                                      |                  |                  |                                                                                                                        |
| Column Dimensions : 12.0i                          | n Square Columi                      | n, Column        | Edge to          | Y                                                                                                                      |
| Reba                                               | ar Edge Cover = 2                    | 2.0in            |                  |                                                                                                                        |
|                                                    |                                      |                  |                  | •#4 •#4                                                                                                                |
| Column Doinforcing · / #                           | 1 hars @ cornors                     |                  |                  | v v                                                                                                                    |
| Column Reinforcing . 4 - #4                        |                                      | <b>)</b> 1       |                  | ^^                                                                                                                     |
|                                                    |                                      |                  |                  |                                                                                                                        |
|                                                    |                                      |                  |                  | <b>*</b> #4 <b>*</b> #4                                                                                                |
|                                                    |                                      |                  |                  |                                                                                                                        |
| Applied Loads                                      |                                      |                  |                  | Entered loads are factored per load combinations specified by user.                                                    |
| Column self weight included : 1,5<br>AXIAL LOADS   | 00.0 lbs * Dead Lo                   | ad Factor        |                  |                                                                                                                        |
| Axial Load at 10.0 ft above ba BENDING LOADS       | se, D = 8.0, S = 26                  | .0 k             |                  |                                                                                                                        |
| Lat. Point Load at 10.0 ft creat                   | ing My-y, E = 3.70                   | k                |                  |                                                                                                                        |
| DESIGN SUMMARY                                     |                                      |                  |                  |                                                                                                                        |
| Load Combination                                   | +                                    | .1.20D+1<br>م    | 60S<br>033#      | Maximum SERVICE Load Reactions                                                                                         |
| Maximum Strage Datie                               |                                      | 0.               | 200 · 4          | Top along X-X 0.0 k Bottom along X-X 0.0 k                                                                             |
| Ratio = $(Pu^2+Mu^2)^{.5}$ / $(PhiPi)$             | n^2+PhiMn^2)^.5                      | 0.               | 209.1            | ······································                                                                                 |
| Pu = 53.0  k                                       | φ*Pn                                 | = 183.           | 196 k            |                                                                                                                        |
| $M_{11-x} = 0.0 \text{ k-ft}$                      | Φ*Mn-x                               | =                | 0.0 k-ft         | Maximum SERVICE Load Deflections                                                                                       |
| Mu-y = 0.0 k-ft                                    | Φ*Mn-y                               | =                | 0.0 k-ft         | Along Y-Y 0.0 in at 0.0 ft above base<br>for load combination :                                                        |
| Mu Angle = 0.0 deg                                 |                                      |                  |                  | Along X-X 0.0 in at 0.0 ft above base                                                                                  |
| Mu at Angle = 0.0 k-ft                             | φMn at Angle                         | =                | 0.0 k-ft         | for load combination :                                                                                                 |
| Pn & Mn values located at Pu-Mu                    | vector intersection                  | n with capac     | ity curve        | General Section Information $\alpha = 0.650$ $\beta = 0.850$ $\beta = 0.80$                                            |
| Column Capacities<br>Remay : Nominal Max, Compress | civo Avial Canacity                  | 250              | 201              | $\rho$ : % Reinforcing 0.5556 % Rebar < Min of 1.0 %                                                                   |
| Primax : Normal Max. Comples                       | sive Axial Capacity<br>vial Canacity | 352<br>-4        | .30 K<br>8 O k   | Reinforcing Area 0.80 in^2                                                                                             |
| (0 Pn_max · Usable Compressi)                      | e Axial Capacity                     | 183.1            | 96 k             | Concrete Area 144.0 in^2                                                                                               |
| $\phi$ Pn, min : Usable Tension Axi                | al Capacity                          | -31              | .20 k            |                                                                                                                        |
| Governing Load Combination                         | n Results                            |                  |                  |                                                                                                                        |
| Governing Factored                                 | Moment                               | Dist. from       | Axial Load       | d Bending Analysis k-ft                                                                                                |
| Load Combination                                   | X-X Y-Y                              | base ft          | Pu on * Pr       | n δ× δ×*Mux δÿ δy*Muy Alpha (deg) δMu φMn Ratio                                                                        |
| +1.40D                                             |                                      | 9.93             | 13.30 183        | .20 0.000 0.07                                                                                                         |

Printed: 24 NOV 2017, 9:38AM

# **Concrete Column**

File = C:\Users\Courtney\DOWNLO-1\CALCS(-4\Calcs\beams.ec6 ENERCALC, INC. 1983-2016, Build:6.16.7.21, Ver.6.16.7.21 Licensee : Canyons Structural Inc

Lic. # : KW-06009078

Description : CC1, includes lateral (Worst Case) - Works for all dimensions required in this structure

# Governing Load Combination Results

| Governing Factored            | Mom    | ent     | Dist fr           | rom | Axia         | l Load       |              |             | B             | ending Ar    | nalysis             | k-ft           |             | 1.14         | l'      |
|-------------------------------|--------|---------|-------------------|-----|--------------|--------------|--------------|-------------|---------------|--------------|---------------------|----------------|-------------|--------------|---------|
| Load Combination              | X-X    | Y-Y     | base              | ft  | k<br>Pu q    | p*Pn         | δx           | δx * Mux    | δУ            | δy * Mu      | y Alpl              | ha (deg)       | $\delta$ Mu | φ Mn         | Ration  |
| +1.20D                        |        |         | 9.93              | 3   | 11.40        | 183.20       |              |             |               |              |                     | 0.000          |             | -            | 0.062   |
| +1.20D+0.50S                  |        |         | 9.93              | 3   | 24.40        | 183.20       |              |             |               |              |                     | 0.000          |             |              | 0.133   |
| +1.20D+1.60S                  |        |         | 9.93              | 3   | 53.00        | 183.20       |              |             |               |              |                     | 0.000          |             |              | 0.289   |
| +1 20D+0 70S+F                |        |         | 9.93              | 2   | 29.60        | 183 20       |              |             |               |              |                     | 0.000          |             |              | 0.162   |
| +1 20D+0 70S-F                |        |         | 9.93              | Ś   | 29.60        | 183 20       |              |             |               |              |                     | 0.000          |             |              | 0.162   |
| +0.90D                        |        |         | 0.03              | Ś   | 8 55         | 183.20       |              |             |               |              |                     | 0.000          |             |              | 0.102   |
| +0.90D+F                      |        |         | 0.03              | 2   | 0.55<br>8 55 | 183.20       |              |             |               |              |                     | 0.000          |             |              | 0.047   |
| +0.90D-E                      |        |         | 0.03              | 2   | 0.55<br>8 55 | 183.20       |              |             |               |              |                     | 0.000          |             |              | 0.047   |
| Maximum Deactions             |        |         | 7.73              | )   | 0.55         | 103.20       |              |             |               |              | Note <sup>.</sup> C | )<br>Doly non- | -zero rea   | ctions are   | listed  |
|                               |        |         |                   | Rea | action alor  | na X-X Axis  |              |             | Rea           | action along |                     |                | Axia        | al Reaction  | listed. |
| Load Combination              |        |         | (                 | @ B | ase          | @ Top        |              |             | @ B           | ase          | @ Toj               | p              | 7.040       | @ Base       |         |
| D Only                        |        |         |                   |     |              |              | k            |             |               |              |                     | k              |             | 9.500 k      |         |
| +D+S                          |        |         |                   |     |              |              | k            |             |               |              |                     | k              |             | 35.500 k     |         |
| +D+0.750S                     |        |         |                   |     |              |              | k            |             |               |              |                     | k              |             | 29.000 k     |         |
| +D+0.70E                      |        |         |                   |     |              | 2.590        | ) k          |             |               |              |                     | k              |             | 9.500 k      |         |
| +D+0.750S+0.5250E             |        |         |                   |     |              | 1.943        | k            |             |               |              |                     | k              |             | 29.000 k     |         |
| +0.60D                        |        |         |                   |     |              |              | k            |             |               |              |                     | ĸ              |             | 5.700 k      |         |
| +0.60D+0.70E                  |        |         |                   |     |              | 2.590        | ) k          |             |               |              |                     | K              |             | 5.700 K      |         |
| S Only                        |        |         |                   |     |              | 2 700        | k            |             |               |              |                     | K              |             | 26.000 K     |         |
| E Only<br>Maximum Momente     |        |         |                   |     |              | 3.700        | К            |             |               |              | Note C              | K<br>Nalv non  | -zero rea   | K<br>Are ano | listad  |
| Maximum Moments               |        |         |                   |     |              |              |              |             |               |              | 11010.0             |                | 2010 100    |              | noteu.  |
| Load Combination              |        | 0       | Moment            | Abc | OUT X-X AX   | llS          |              |             |               |              | Momen               | it Adout Y     | - Y AXIS    |              |         |
|                               |        | @       | Base              |     | @ 10p        |              |              |             |               | (            | @ Base              | (              | @ TOP       |              |         |
| D Only                        |        |         |                   |     |              |              | k-ft         |             |               |              |                     |                |             | k-ft         |         |
| +D+S                          |        |         |                   |     |              |              | K-TL         |             |               |              |                     |                |             | K-TL         |         |
| +D+0.7505                     |        |         |                   |     |              |              | K-IL<br>↓ ft |             |               |              |                     |                |             | K-IL<br>k ft |         |
| +D+0.70E<br>+D+0.750S+0.5250F |        |         |                   |     |              |              | k-ft         |             |               |              |                     |                |             | k-ft         |         |
| +0.60D                        |        |         |                   |     |              |              | k-ft         |             |               |              |                     |                |             | k-ft         |         |
| +0.60D+0.70E                  |        |         |                   |     |              |              | k-ft         |             |               |              |                     |                |             | k-ft         |         |
| S Only                        |        |         |                   |     |              |              | k-ft         |             |               |              |                     |                |             | k-ft         |         |
| E Only                        |        |         |                   |     |              |              | k-ft         |             |               |              |                     |                |             | k-ft         |         |
| Maximum Deflections for Load  | d Comb | inatior | 15                |     |              |              |              |             |               |              |                     |                |             |              |         |
|                               |        | Max. X- | -X Deflectio      | on  | Distar       |              |              | Max. Y-Y De | flectio       | n Di         | istance             | 6              |             |              |         |
|                               |        | 0.00    | 100 III<br>100 in |     | 0.000        | J IL<br>D fi |              | 0.000       | ן ך<br>זייר   | 1            | 0.000               | IL<br>ft       |             |              |         |
| +D+3                          |        | 0.00    | 100 III<br>100 in |     | 0.000        | J IL<br>D A  |              | 0.000       | וו כ<br>או כ  | 1            | 0.000               | IL<br>A        |             |              |         |
| +D+0.7505                     |        | 0.00    | 100 III<br>100 in |     | 0.000        | J IL<br>D fi |              | 0.000       | ן ך<br>זייר   | 1            | 0.000               | IL<br>ft       |             |              |         |
| +D+0.70E                      |        | 0.00    | 00 III<br>00 in   |     | 0.000        | ן וו<br>ה    |              | 0.000       | וו כ<br>ייו ר | 1            | 0.000               | it<br>ft       |             |              |         |
| +D+0.7505+0.5250E<br>+0.60D   |        | 0.00    | 00 III<br>100 in  |     | 0.000        | ) ff         |              | 0.000       | ו ג<br>וו ג   | 1<br>1       | 0.000               | ft             |             |              |         |
| +0.00D<br>+0.60D+0.70F        |        | 0.00    | 00 in             |     | 0.000        | ) ft         |              | 0.000       | ) lir         | 1            | 0.000               | ft             |             |              |         |
| S Only                        |        | 0.00    | 00 in             |     | 0.000        | ) ft         |              | 0.000       | ) ir          | 1            | 0.000               | ft             |             |              |         |
| E Only                        |        | 0.00    | 00 in             |     | 0.000        | ) ft         |              | 0.000       | ) ir          | 1            | 0.000               | ft             |             |              |         |

Printed: 24 NOV 2017. 9:38AM

|                |                                                      |                                      | THREE. 24 NOV 2017, 7.30/W                                                                                             |  |  |  |  |  |
|----------------|------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Concrete       | Column                                               |                                      | File = C:\Users\Courtney\DOWNLO-1\CALCS(-4\Calcs\beams.ec6<br>ENERCALC, INC. 1983-2016, Build:6.16.7.21, Ver:6.16.7.21 |  |  |  |  |  |
| CONCIELE       | Column                                               |                                      |                                                                                                                        |  |  |  |  |  |
| Lic. # : KW-06 | 009078                                               |                                      | Licensee : Canyons Structural Inc                                                                                      |  |  |  |  |  |
| Description :  | CC1, includes lateral (Worst Case) - Works for all d | imensions required in this structure |                                                                                                                        |  |  |  |  |  |
| Sketches       |                                                      |                                      |                                                                                                                        |  |  |  |  |  |
|                | Y                                                    | 34.04                                | ⊶∝ M-x Loads                                                                                                           |  |  |  |  |  |





Interaction Diagrams





Printed: 24 NOV 2017, 9:38AM

File = C:\Users\Courtney\DOWNLO-1\CALCS(-4\Calcs\beams.ec6 ENERCALC, INC. 1983-2016, Build:6.16.7.21, Ver:6.16.7.21 Licensee : Canyons Structural Inc

# Concrete Column Lic. # : KW-06009078



iption : CC1, includes lateral (Worst Case) - Works for all dimensions required in this structure











Printed: 24 NOV 2017, 9:38AM

File = C:\Users\Courtney\DOWNLO-1\CALCS(-4\Calcs\beams.ec6 ENERCALC, INC. 1983-2016, Build:6.16.7.21, Ver:6.16.7.21 Licensee : Canyons Structural Inc

# Concrete Column Lic. # : KW-06009078



iption : CC1, includes lateral (Worst Case) - Works for all dimensions required in this structure









