Yehuda Residence

Structural Calculations

Engineer's seal applies to this entire calculation packet. This packet is void if binding seal is broken or if engineer's seal is not an original signature in red ink.

This engineering report is valid only for the aforementioned building located at Lot \#65, Summit Powder Mountain Subdivision, Eden, Utah. This report is to be used only once and may not be copied or reproduced without the written consent of LEI Engineers and Surveyors, Inc.

ENGINEERS

SURVEYORS

PLANNERS

3302 N. Main Street
Spanish Fork, UT 84660
Phone: 801.798.0555
Fax: 801.798 .9393
office@lei-eng.com
www.lei-eng.com
LEI Project \#:
2017-2259

Locatlon:
Eden, Utah
Date:
7/20/2017
Engineered by:
K. Christensen

Structural Review for:Location:	Yehuda Residence
	Eden, Utah
Job \#:	2017-2259
Engineered by:	K. Christensen
Code:	2015 IBC
Loadings	
Risk Category:	II
Ground Snow Load:	
Elevation =	8580 ft
County $=$	Weber
$\mathrm{A}_{0}=$	4.5
$\mathrm{S}=$	63
$\mathrm{P}_{\mathrm{o}}=$	43
$\mathrm{P}_{\mathrm{g}}=$	260.6 psf
Roof Snow Load:	
$\mathrm{C}_{1}=$	1.1
Roof Exposure $\mathrm{C}_{\mathrm{e}}=$	0.9 Full
$1=$	1.0
$\mathrm{P}_{\mathrm{f}}=$	180.6 psf
Roof Dead Load:	
DL =	15 psf
Floor Loadings:	
Dead Load =	15 psf
Live Load =	40 psf

Wind Loading:

Roofing Material $=$ Shingle/Tile

Roof Pitch $=$	$0.5 / 12$
Roof Angle $=$	2.4 degrees

$\mathbf{p}_{\mathbf{s 3 0}}$ Horizontal Pressures				$\mathbf{p}_{\text {not30 }}$	
zone A	zone B	zone C	zone D	zone 4	zone 5
21.00	-10.90	13.90	-6.50	23.30	26.90

Exposure Category = C Mean Roof Height $=\quad 25$ Wind Speed V = 115

Height \& Exposure Factor $\lambda=\quad 1.35$

$\mathbf{p}_{\mathbf{g}}$ Horizontal Pressures				$\mathbf{p}_{\text {net }}$	
zone A	zone B	zone C	zone D	zone 4	zone 5
28.4	0.0	18.8	0.0	31.5	36.3

Seismic Loading:
Number of Stories $=\quad 2$
Roof diaphragm height $h_{r}=\quad 25 \mathrm{ft}$
$\mathrm{I}_{\mathrm{E}}=\quad 1.00$
Fundamental Period $\mathrm{T}_{\mathrm{a}}=0.224 \mathrm{sec}$.
$F=\quad 1.1$
Site Class $=\quad D$
R factor $=\quad$ 6.5 Structural Sheathing
R factor $=\quad 2$ Gypsum Sheathing
R factor $=\quad 5$ Masonry Shear Wall
R factor $=\quad 4$ Concrete Shear Wall
R factor $=\quad$ 2.5 Cantilever Steel Post R factor $=\quad$ 8.0 Special Moment Frame
$S_{S}=0.813$
$S_{1}=\quad 0.27$
$F_{a}=1.1748$
$F_{v}=\quad .1 .86$
$S_{M S}=0.9551124$
$S_{M 1}=0.5022$
$S_{D S}=0.637$
$S_{\text {D1 }}=\quad 0.335$
$T_{0}=0.1051604 \mathrm{sec}$.
$\mathrm{T}_{\mathrm{s}}=0.525802 \mathrm{sec}$.
Seismic Design Category $=\quad$ D

Snow Drift Calculations

Roofing Material $=$ Shingle/Tile		
Ground Snow Load $\mathrm{p}_{\mathrm{g}}=$	241 psf	
Flat Roof Snow Load $\mathrm{p}_{\mathrm{f}}=$	167 psf	
Roof Pitch =	0.5	
Angle $=$	2	
$\mathrm{C}_{\text {s }}=$	1.00	
Sloped Roof Snow Load $\mathbf{p}_{\mathbf{s}}=$	167 psf	
$\lambda=$	30.00	
Height of normal Snow Load $\mathrm{h}_{\mathrm{b}}=$	5.58 ft	
	Drift \#1	Not Used
Roof Height Difference $\mathbf{h}_{\mathbf{c}}(\mathrm{ft})=$	20	0
Does Drift Exist ($\mathrm{h}_{\mathrm{d}} / \mathrm{h}_{\mathrm{b}}<.2$)?	Yes	No
Length of upper roof $\mathrm{I}_{\mathrm{u}}(\mathrm{ft})=$	52	0
Height of Drift $\mathbf{h}_{\text {d }}(\mathrm{ft})=$	4.9	-1.5
$w(\mathrm{ft})=$	20	-6
Max drift width (ft)=	160	0
Drift tapers to zero @ w (ft)=	20	-6
Drift Load $\mathbf{p}_{\mathbf{d}}(\mathrm{psf})=$	147	0
Total load (psf) $=$	314	167

Siesmic Weight

Additional Seismic Weight	48.4 psf
Total Seismic Weight	63.4 psf

Yehuda Residence

Lot \#65, Summit Powder Mountain Subdivision, Eden, Utah

NOTE TO PLAN CHECKER AND BUILDING INSPECTOR:

If the above address does not match the intended building address, notify LEI immediately @ 801-798-0555 This engineering packet is to be used only once for the above mentioned location and is not to be copied or reproduced without written consent of LEI Consulting Engineers.

Structural Notes:

General Notes
1 If values and assumptions stated in this report are incorrect, or if changes in the field are noticed which are different from those stated in this report, the engineer must be notified in order for the necessary corrections to be made.
2 If there are any discrepancies between the calculations and the drawings, these calculations shall supercede.
3 This engineering report deals only with the structural parts of the building and does not provide liability to the non-structural parts.
4 If plans are stamped in conjunction with this engineering packet, certification pertains only to the structural elements of the plans.
5 The general contractor is responsible for the method, means, and sequence of all structural erection except when specifically noted otherwise on the drawings. He shall provide temporary shoring and bracing as his method of erection requires to provide adequate vertical and lateral support during erection. This shoring and bracing shall remain in place until all permanent members are placed and all final connetions are completed including all roof and floor attachments.
Site Preparation
1 Do not place footings or foundations on disturbed soils, undocumented fill, debris, frozen soil, or in ponded water.
2 All slabs on grade shall be underlain by 4 in. of free-draining granular material such as "pea" gravel or 3/4-1 in. minus clean gravel.
3 Footings, foundations, excavations, grading and fill shall be performed as per the geotechnical report.
Concrete
All concrete footings and slabs on grade shall have a 28 day minimum strength $=2500 \mathrm{psi}$.
2 All concrete foundation walls and retaining walls shall have a 28 day minimum strength $=3000 \mathrm{psi}$.
3 Concrete shall be thoroughly consolidated by suitable means during placement.
4 Footings shall be centered below the wall and/or column above, typical unless noted otherwise.
5 Exterior footings shall bear below the effects of frost.
6 Stagger footing construction joints from wall construction joints above by at least 6 feet.
7 Reinforcing in continuous footings shall be continuous at corners and/or intersections by providing proper lap lengths and/or corner bars.
8 Interior slabs on grade shall be a min. of 4 "thick.
9 Place vertical reinforcing in the center of the wall (except for retaining walls or when each face is specified).
10 Vertical reinforcing shall be dowelled to footing or structure below and to structure above with the same size bar and spacing, typical U.N.O.
11 Provide corner bars at all intersections and corners. Use same size bar and spacing as the horizontal reinforcing.
12 Horizontal reinforcing shall terminate at the ends of the walls and at openings with a standard hook.
13 Provide drainage at the base of retaining walls.
Reinforcing Steel
Reinforcing steel shall be new stock deformed bars and shall conform to ASTM A615, grade 60 , with a design yield strength $=60$ ksi.
2 Reinforcing steel shall be free of loose, flaky rust, scale, grease, oil, dirt, and other materials which might affect or impair bond.
3 Splices in continuous reinforcing shall be made on areas of compression and/or at points of minimum stress, typical U.N.O.
4 Lap splices shall be 40 bar diameters or $24^{\prime \prime}$ long in concrete. Dowels shall have a minimum of 30 bar diameters embedment.
5 Bends shall be made cold; do not use heat. Do not un-bend or re-bend a previously bent bar.
6 Reinforcing steel in concrete shall be securely anchored and tied in place prior to placing concrete and shall be positioned with the following minimum cover:
concrete cast against and permanently exposed to earth $=3^{\prime \prime}$
concrete exposed to earth or weather $=11 / 2^{\prime \prime}$
slabs on grade = center of slab

Structural Steel

1 Structural steel W-shapes shall conform to ASTM A992 grade 50 enhanced steel. Structural steel plates shall conform to ASTM A36.
2 Structural steel HSS-shapes shall conform to ASTM A500, grade B, with a min. yield strength $\mathrm{Fy}=46 \mathrm{ksi}$ (rectangular) or $\mathrm{Fy}=42 \mathrm{ksi}$ (round).
3 Structural pipe shall conform to ASTM A53, with a min. yield strength $\mathrm{Fy}=36 \mathrm{ksi}$.
4 High strength bolts shall conform to ASTM A325, all other bolts shall conform to ASTM A307 or better.
5 Welded anchor studs and deformed bar anchors shall conform to the manufacturer's specs.
6 Fabrication shall be done in an approved fabricator's shop.
7 Use high strength (8000 psi min. at 28 days), non shrink, liquid epoxy grout beneath all steel base plates and bearing plates.
8 Bolt shall be bearing type connections U.N.O.
9 Steel to steel bolted connections shall be made with ASTM A325 high strength bolts and nuts, U.N.O.
10 All other bolted connections shall be made with boits and nuts conforming to ASTM A307 U.N.O., including anchor bolts.
11 Bolted connections shall be tightened and shall have washers as required by AISC U.N.O.
12 Enlarging of holes shall be accomplished by means of reaming. Do not use a torch on any bolt holes.
13 Welded connections shall be made using low hydrogen matching filler material electrodes, U.N.O.
14 Welders shall be currently certified according to AWS within the last year. All welding procedures shall be pre-qualified. Welders shall follow welding procedures.
15 Welding and gas cutting shall be done per AWS.
16 Welds shall have the slag removed.

Structural Notes (cont):

Masonry Veneer Anchor Ties
1 Masonry veneer ties shall be one of the following:
a. Dovetail anchors
b. DX-10 seismic clip interlock system by Hohmann \& Barnard
c. Engineer approved 2 piece adjustable hot-dipped galvanized ties.

2 Maximum spacing shall be 16" o.c. horizontal and vertical.
3 Provide continuous horizontal galvanized \#9 wire in center third of mortar joints at 16" o.c. Engage \#9 wire with all anchor ties in seismic zone category E.
Wood Truss
1 Bottom chords of trusses, acting as ceiling members must be able to support a 10 psf live load per IBC requirements.
2 The truss manufacturer shall be responsible for the design and fabrication of the pre-engineered trusses.
3 The trusses shall be designed as per the attached engineering specs.
4 The trusses shall be designed to carry any additional loads due to mechanical units, overhead doors, roof overbuilds, etc.
5 The trusses shall be designed per the IBC and local ordinances.
6 All members shall be designed for combined stresses based on the worst loading condition.
7 The truss manufacturer shall indicate proper bracing of compression chord members @ 6' long (or longer), as well as bracing for truss erection.
8 All dimensions shall be field verified prior to fabrication.
9 The contractor shall be responsible for the installation of the trusses per the truss manufacturer's recommendations and specs.
10 No web or chord members shall be modified in the field without approval from the truss engineer.
11 The project engineer is not responsible for the pre-engineered trusses, nor for the installation of the trusses.
12 Contractor is to verify truss layout is consistent with these plans and notify engineer of any deviations.
General Framing
1 All joists, rafters, posts and headers shall be DF-L \#2 or equal U.N.O. If TJI's or equal are used, they must be installed per manufacturer's specs.
2 All joists and rafters shall have solid blocking at their bearing points.
3 All wood/lumber placed onto concrete shall be pressure treated or redwood.
4 Verify all beam sizes with engineering specs.
5 All beams and headers over 6'-0" shall be supported by double trimmer studs U.N.O.
6 All headers over $8^{\prime}-0{ }^{\prime \prime}$ shall shall have double king studs at each end U.N.O.
7 All over frame areas are to have full roof sheathing below.
8 Provide solid blocking and continuous bearing to foundation at all bearing point loads from above.
9 Provide double floor joists below all parallel bearing walls above.
10 Glulam beams shall be 24F-V4 DF/DF for single spans and 24F-V8 DF/DF for multiple spans and cantilevered spans.
11 Microllam beams shall be Laminated Veneer Lumber (LVL) with the following minimum design values: $E=1,900,000 \mathrm{psi}, \mathrm{Fb}=2,600 \mathrm{psi}, \mathrm{Fv}=285 \mathrm{psi}$.
12 Parallam beams shall be Parallel Strand Lumber (PSL) with the following minimum design values: $E=2,000,000 \mathrm{psi}, \mathrm{Fb}=2,900 \mathrm{psi}, \mathrm{Fv}=290 \mathrm{psi}$.
13 TimberStrand beams shall be Laminated Strand Lumber (LSL) w/ the following minimum design values:

- 1-1/4" wide (rim board): $E=1,300,000 \mathrm{psi}, \mathrm{Fb}=1,700 \mathrm{psi}, \mathrm{Fv}=425 \mathrm{psi}$.
$-1-3 / 4^{\prime \prime}$ wide: $E=1,550,000$ psi, $F b=2,325 \mathrm{psi}, F v=310 \mathrm{psi}$.
14 All rafters and joists over 3 ft long shall be hangered if not supported by bottom bearing.
15 All hangers and other wood connections must be designed to carry the capacity of the member that they are supporting.
16 No structural member shall be cut or notched unless specifically shown, noted or approved by engineer.
17 Lag screws shall be inserted in a drilled pilot hole 60-75\% of the shank diameter by turning with a wrench, not by driving with a hammer.
18 Nails are to be common wire U.N.O.
19 All bolt holes shall be drilled with a bit $1 / 32$ " to $1 / 16^{\prime \prime}$ larger than the nominal bolt diameter.
20 All joints in wall sheathing shall occur in the middle of a plate or block and nailed on each side of the joint w/ edge nailing per the shearwall schedult
21 All over built roof rafters shall be braced vertically to the trusses below at 4' o.c. max.
22 Double top plates are to have a minimum 48" lap splice w/ (8) 16 d nails U.N.O.
23 All fasteners and connectors in contact with treated lumber shall be galvanized G 90 or better.

Summary

Floor Joists: \quad FJ1: $117 / 8^{\prime \prime}$ TJI/210 @ 16" o.c. as noted on plans
FJ2: $117 / 8^{\prime \prime}$ TJI/560 @ 12" o.c. as noted on plans
3/4" APA rated T\&G flooring to be nailed with 10d nails @ 6" o.c. edge, 12" o.c. field

Deck Joists: DJ1: 2x8DF-L\#2 @ 16" o.c. as noted on plans
DJ2: 4x10 DF-L\#2 @ 12" o.c. as noted on plans

Roof: RR1: $117 / 8^{\prime \prime} T J / / 360 @ 12^{\prime \prime}$ o.c. as noted on plans
Trusses by others
Use 7/8" APA rated OSB sheathing w/ 10d nails @ 6" o.c. edge, 12" o.c. field Overbuild to be $2^{\prime \prime} \times 6^{\prime \prime}$ Timber @ 24" o.c.

Other:
All bearing headers to be (2) 2×10 (DF L \#2 or better) unless noted otherwise All exterior sheathing to be Shear Wall \#1 unless noted otherwise
All glulam beams are to be $24 \mathrm{~F}-\mathrm{V} 4$ unless noted otherwise
Strap end lengths for shear walls (see also Simpson Coiled strap specs.):
$\operatorname{CS} 16=14^{\prime \prime} \quad$ CMST14 $=34^{\prime \prime} \quad$ CMSTC16 $=25^{\prime \prime}$

Beam Schedule			
Desig.	Qty.	Size	Type
RB1	2	2×6	Timber
RB2	2	2×10	Timber
RB3	3	2×10	Timber
RB4	1	$W 10 \times 54$	A992-50
RB5	1	$51 / 8^{\prime \prime} \times 27^{\prime \prime}$	Glulam
RB6	1	$W 10 \times 54$	A992-50
RB7	1	$W 10 \times 54$	A992-50
RB8	1	$13 / 4^{\prime \prime} \times 117 / 8^{\prime \prime}$	Microllam

Beam Schedule			
Desig.	Qty.	Size	Type
SB1	2	2×6	Timber
SB2	2	2×10	Timber
SB3	1	W8×48	A992-50
SB4	2	$13 / 4^{\prime \prime} \times 117 / 8^{\prime \prime}$	Microllam
SB5	1	$W 10 \times 19$	A992-50
SB6	1	$W 10 \times 49$	A992-50
SB7	2	$13 / 4^{\prime \prime} \times 117 / 8^{\prime \prime}$	Microllam
SB8	2	$13 / 4^{\prime \prime} \times 91 / 2^{\prime \prime}$	Microllam
SB9	1	$W 8 \times 48$	A992-50
SB10	1	$W 8 \times 48$	A992-50

Beam Schedule			
Desig.	Qty.	Size	Type
MB1	2	2×6	Timber
MB2	3	$13 / 4^{\prime \prime} \times 117 / 8^{\prime \prime}$	Microllam
MB3	2	2×10	Timber
MB4	3	2×10	Timber
MB5	4	$13 / 4^{\prime \prime} \times 14^{\prime \prime}$	Microllam
MB6	1	W8×15	A992-50
MB7	1	W10×54	A992-50
MB8	1	W10×54	A992-50
MB9	1	W10×54	A992-50

Overall Length: 15' 11"

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.

Design Results	Actual © Location	Allowed	Result	LDF	Load: Comblnation (Pattern)
Member Reaction (lbs)	576 @ $41 / 2^{\prime \prime}$	1460 (3.50")	Passed (39\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	550 @ $51 / 2^{\prime \prime}$	1655	Passed (33\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	2109 @ 7' $111 / 2^{\prime \prime}$	3795	Passed (56\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.192 @ 7' 11 1/2"	0.379	Passed (L/950)	**	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	0.263 @ 7' 11 1/2"	0.758	Passed (L/691)	.	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	48	40	Passed	-	-

System: Floor
Member Type : Joist
BulldIng Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Bracing (Lu): All compression edges (top and bottom) must be braced at $4^{\prime} 411 / 16^{\prime \prime} \mathrm{o} / \mathrm{c}$ unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stabillity.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action wlth a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {rM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {m/ }}$ Rating Include: None

Supports	Bearing Length			Loads to Supports (lbs)			Accessorles
	Total	Avallable	Required	Dead	Floor Live	Total	
1 - Stud wall - SPF	5.50"	4.25 "	$1.75{ }^{\prime \prime}$	159	424	583	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - SPF	5.50"	$4.25{ }^{\prime \prime}$	$1.75{ }^{\prime \prime}$	159	424	583	1 1/4" Rim Board

- RIm Board Is assumed to carry all loads applied directly above it, bypassing the member being designed.

Loads	Location (SIde)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Lve $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $15^{\prime} 11^{\prime \prime}$	$16^{\prime \prime}$	15.0	40.0	Residential - Living Areas

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and publlshed design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser Ilterature for installatlon details.
(www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professlonal as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that thls calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facllltes are third-party certifled to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.
The product application, Input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes	
Kelly Christensen LEI Consulting Engineers (801) 798-0555 kchristensen@lei-eng.com		Page 6 of 112

Overall Length: 22' 7"

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.

Design Results	Actual © Location	Allowed	Result	LDF	Load: Comblnation (Pattern)
Member Reaction (lbs)	615 @ $41 / 2^{\prime \prime}$	1725 (3.50")	Passed (36\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	596 @ $51 / 2^{\prime \prime}$	2050	Passed (29\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	3277 @ 11' $31 / 2^{\prime \prime}$	9500	Passed (34\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.327 @ 11' $31 / 2^{\prime \prime}$	0.546	Passed (L/800)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (In)	0.450 @ 11' $31 / 2^{\prime \prime}$	1.092	Passed (L/582)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {M }}$ Rating	43	40	Passed	-*	--

- Deflection criteria: LL (L/480) and TL (L/240).
- Bracing (Lu): All compression edges (top and bottom) must be braced at $8^{\prime} 6^{\prime \prime}$ o/c unless detalled otherwlse. Proper attachment and positioning of lateral bracing Is required to achieve member stabllity.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {mm }}$ Panel (24 " Span Rating) that is glued and nalled down.
- Additional considerations for the $\mathrm{TJ}-\mathrm{Pro}^{\text {m }}$ Rating include: None

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Avallable	Required	Dead	Fiowr Live	Total	
1 - Stud wall - SPF	5.50"	4.25"	1.75"	169	452	621	$11 / 4$ " Rim Board
2-Stud wall - SPF	5.50"	4.25"	$1.75{ }^{\text {b }}$	169	452	621	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Loads	Location (SIde)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Uve (1.00)	Comments
1 - Uniform (PSF)	0 to $22^{\prime} 7^{\prime \prime}$	$12^{\prime \prime}$	15.0	40.0	Residential - Living Areas

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and publlshed design values. Weyerhaeuser expressly disclaims any other warrantles related to the software. Refer to current Weyerhaeuser literature for Installation details.
(www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certfied to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluaton reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.
The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

System : Floor
Member Type: Joist
BuildIng Use : Residential Building Code : IBC 2015 Design Methodology : ASD

All locations are measured from the outside face of left support (or left cantllever end). All dlmensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Comblnation (Pattem)
Member Reaction (lbs)	1357 @ $41 / 2^{\prime \prime}$	$1731\left(3.50^{\prime \prime}\right)$	Passed (78\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	1268 @ $51 / 2^{\prime \prime}$	1961	Passed (65\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Moment (Ft-lbs)	$4226 @ 6^{\prime} 111 / 2^{\prime \prime}$	7107	Passed (59\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.361 @ 6^{\prime} 111 / 2^{\prime \prime}$	0.439	Passed (L/438)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.391 @ 6^{\prime} 111 / 2^{\prime \prime}$	0.659	Passed (L/404)	-	$1.0 \mathrm{D}+1.0$ S (All Spans)

System: Roof
Member Type : Joist
Bullding Use : Residentlal Bullding Code : IBC 2015 Design Methodology : ASD Member Pitch: 0.5/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Bracing (Lu): All compression edges (top and bottom) must be braced at $3^{\prime} 1113 / 16 " \mathrm{o} / \mathrm{c}$ unless detailed otherwise. Proper attachment and positoning of lateral bracing is required to achieve member stability.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Avaliable	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - SPF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$2.16^{\prime \prime}$	104	1253	1357	Blocking
2 - Beveled Plate - SPF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$2.16^{\prime \prime}$	104	1253	1357	Blocking

- Blocking Panels are assumed to carry no loads applled directly above them and the full load Is applied to the member being designed.

Loads	Location (SIde)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $13^{\prime} 11^{\prime \prime}$	$12^{\prime \prime}$	15.0	180.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the slzing of its products will be in accordance wlth Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com) Accessorles (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdicton. The designer of record, builder or framer is responsible to assure that ttls calculation is compatble with the overall project. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx.

The product appllcation, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes	
Kelly Christensen LEI Consulting Engineers (801) $798-0555$ kchristensen@lei-eng.com		Page 8 of 112

Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah

Roof Rafter
[2015 International Building Code(2012 NDS)]
TJI 210 / 11.875 - iLevel Trus Joist x 5.0 FT ($2.5+2.5$) @ 16 O.C.
Section Adequate By: 11.7\%
Controlling Factor: End Reaction

DEFLECTIONS	Center	Right
Live Load	-0.01 IN L/2213	0.01 IN 2L/4640
Dead Load	0.00 in	0.00 in
Total Load	-0.01 IN L/2043	0.01 IN 2L/4286
Live Load Deflection Criteria: L/240		Total Load Deflection Criteria: L/180
REACTIONS B Live Load 1207 lb Dead Load 100 lb Total Load 1307 lb Bearing Length 5.50 in Web Stiffeners No		
SUPPORT LOADS B		
Live Load 905 plf		
Dead Load 75 plf		
Total Load 980 plf		

IJOIST PROPERTIES			
TJI 210 / 11.875-iLevel Trus Joist			
	Base Values	Adjusted	
Moment Cap:	Mcap $=3795 \mathrm{ft}-\mathrm{lb}$	Mcap' $=$	3795 ft -lb
	$C d=1.00$		
Shear Stress:	Vcap $=1655 \mathrm{lb}$	Vcap' =	1655 lb
	$C d=1.00$		
Reaction A:	Rcap $=00 \mathrm{lb}$	Rcap' =	
Reaction B:	Rcap $=1460 \mathrm{lb}$	Rcap' $=$	1460 lb
E.I.:	$\mathrm{El}=315 \mathrm{lb}-\mathrm{in} 2$	El' $=$	$315 \mathrm{lb}-\mathrm{in} 2$

Controlling Moment: $\quad-817 \mathrm{ft}-\mathrm{lb}$
2.5 Ft from left support of span 3 (Right Span)
Created by combining all dead loads and live loads on span(s) 2,3
Controlling Shear: 653 lb
0.0 Ft from left support of span 3 (Right Span)
Created by combining all dead loads and live loads on span(s) 2,3

Comparisons with required sections:
E.I.:
Moment:
Req'd
Shear:

LOADING DIAGRAM

NOTES

Location: Diag Outlooker
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2012 NDS)]
$1.75 \mathrm{IN} \times 11.875 \mathrm{IN} \times 7.08 \mathrm{FT}(3.5+3.5)$
1.9E Microllam - iLevel Prus Joist

Section Adequate By: 277.2\%
Controlling Factor: Shear

BEAM DATA	Center		Right	
Span Length	3.54	ft	3.54	ft
Unbraced Length-Top	0	ft	0	ft
Unbraced Length-Bottom	3.54	ft	3.54	ft
Live Load Duration Factor	1.00			
Notch Depth	0.00			

MATERIAL PROPERTIES

1.9E Microllam - iLevel Crus Joist

	Base Values		Adjusted	
Bending Stress:	$\mathrm{Fb}=2600 \mathrm{psi} \quad \mathrm{Fb}=$	2346 psi		
Shear Stress:	$\mathrm{Cd}=1.00 \mathrm{Cl}=0.90 \mathrm{CF}=1.00$			
	$\mathrm{Fv}=285 \mathrm{psi} \quad \mathrm{Fv}=$	285 psi		
Modulus of Elasticity:	$\mathrm{Cd}=1.00$	$\mathrm{E}=1900 \mathrm{ksi} \quad \mathrm{E}^{\prime}=$	1900 ksi	

Comp. \perp to Grain:	$\mathrm{FC}-\perp=750 \mathrm{psi}$	$\mathrm{Fc}-\perp^{\prime}=750 \mathrm{psi}$

Controlling Moment: -2088 ft-lb
Over right support of span 2 (Center Span)
Created by combining all dead loads and live loads on spans) 3

Controlling Shear:

$-1047 \mathrm{lb}$
At a distance d from right support of span 2 (Center Span)
Created by combining all dead loads and live loads on spans) 2,3

Comparisons with required sections:	Req'd	Provided
Section Modulus:	10.68 in 3	$41.13 \mathrm{in3}$
Area (Shear):	$5.51 \mathrm{in2}$	$20.78 \mathrm{in2}$
Moment of Inertia (deflection):	48.68 in 4	$244.21 \mathrm{in4}$
Moment:	$-2088 \mathrm{ft-lb}$	$8042 \mathrm{ft}-\mathrm{lb}$
Shear:	-1047 lb	3948 lb

Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah

StruCalc Version 10.0.1.4
6/2/2017 11:05:56 AM

LOADING DIAGRAM

UNIFORM LOADS	Center				Right	
Uniform Live Load	0	elf		0	pf	
Uniform Dead Load	0	pf		0	pf	
Beam Self Weight	6	pf		6	pl	
Total Uniform Load	6	pf		6	pf	

TRAPEZOIDAL LOADS - CENTER SPAN	
Load Number	$\underline{\text { One }}$
Left Live Load	905 plf
Left Dead Load	75 plf
Right Live Load	0 plf
Right Dead Load	0 plf
Load Start	0 ft
Load End	3.54 ft
Load Length	3.54 ft
RIGHT SPAN	
Load Number	One
Left Live Load	905 plf
Left Dead Load	75 plf
Right Live Load	0 plf
Right Dead Load	0 plf
Load Start	0 ft
Load End	3.54 ft
Load Length	3.54 ft

Project: 2017-2259

Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah
StruCalc Version 10.0.1.4 6/2/2017 11:05:47 AM

Multi-Loaded Multi-Span Beam
[2015 International Building Code(2012 NDS)]
$1.5 \mathrm{IN} \times 7.25 \mathrm{IN} \times 5.0 \mathrm{FT}(3.5+1.5)$
\#2 - Douglas-Fir-Larch - Dry Use
Section Adequate By: 104.2\%
Controlling Factor: Shear

MATERIAL PROPERTIES
 \#2 - Douglas-Fir-Larch

Bending Stress:		900 psi	Bending Stress: $\quad \mathrm{Fb}=10900 \mathrm{psi} \mathrm{Fb}=1043 \mathrm{psi}$	
	$C d=1.00 \mathrm{Cl}=0.97 \mathrm{CF}=1.20$			
Shear Stress:	$\mathrm{Fv}=$	180 psi	$\mathrm{Fv}^{\prime}=$	180 p
Modulus of Elasticity:	$\mathrm{E}=1600 \mathrm{ksi}$		$E^{\prime}=\quad 1600 \mathrm{ksi}$	

Comp. \perp to Grain:
Fc- $\boldsymbol{L}^{\prime}=625 \mathrm{psi} \quad \mathrm{Fc}-\mathrm{L}^{\prime}=625 \mathrm{psi}$

Controlling Moment:

$-464 \mathrm{ft}-\mathrm{lb}$
Over right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2,3
Controlling Shear:
-639 b b

At a distance d from right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2,3

Comparisons with required sections:	Req'd	Provided
Section Modulus:	5.34 in 3	$13.14 \mathrm{in3}$
Area (Shear):	$5.33 \mathrm{in2}$	$10.88 \mathrm{in2}$
Moment of Inertia (deflection):	$4.49 \mathrm{in4}$	$47.63 \mathrm{in4}$
Moment:	$-464 \mathrm{ft}-\mathrm{lb}$	$1142 \mathrm{ft}-\mathrm{lb}$
Shear:	-639 lb	1305 lb

UNIFORM LOADS	Center		Right	
Uniform Live Load	240	plf	240	plf
Uniform Dead Load	20	plf	20	
Beam Self Weight		plf	2	plf
Total Uniform Load	262	plf		plf

TRAPEZOIDAL LOADS - CENTER SPAN	
Load Number	One
Left Live Load	195 plf
Left Dead Load	0 plf
Right Live Load	160 plf
Right Dead Load	0 plf
Load Start	0 ft
Load End	3.5 ft
Load Length	3.5 ft
RIGHT SPAN	
Load Number	0 One
Left Live Load	160 plf
Left Dead Load	0 plf
Right Live Load	145 plf
Right Dead Load	0 plf
Load Start	0 ft
Load End	1.5 ft
Load Length	1.5 ft

Jack Miller LEI Surveyors and Engineers 3302 North Main Street Spanish Fork, Utah StruCalc Version 10.0.1.4

LOADING DIAGRAM

DEFLECTIONS Center			
Live Load	0.31	IN L/495	
Dead Load	0.03		
Total Load	0.34	IN L/458	
Live Load Deflec	tion C	riteria: L/480	Total Load Deflection Criteria: L/360

MATERIAL PROPERTIES				
\#2-Douglas-Fir-Larch				
	Base Values		Adjusted	
Bending Stress:	$\mathrm{Fb}=$	900 psi	$\mathrm{Fb}^{\prime}=$	1242 psi
	$C d=1.00 \quad C F=1.20 \quad \mathrm{Cr}=1.15$			
Shear Stress:	$\mathrm{Fv}=$	180 psi	Fv' $=$	180 psi
	Cd=1.00			
Modulus of Elasticity:	$\mathrm{E}=$	1600 ksi	$\mathrm{E}^{\prime}=$	1600 ksi
Comp. ${ }^{\text {to }}$ Grain:	Fc-	625 psi	Fc-	625 psi

Controlling Moment: $\quad 4141 \mathrm{ft}-\mathrm{lb}$

6.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: 1147 lb At a distance d from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	40 in 3	49.91 in 3
Area (Shear):	9.55 in 2	32.38 in 2
Moment of Inertia (deflection):	223.65 in 4	230.84 in 4
Moment:	$4141 \mathrm{ft}-\mathrm{lb}$	$5166 \mathrm{ft}-\mathrm{lb}$
Shear:	1147 lb	3885 lb

NOTES

Ledger L1 Calculations

Loads/Reactions	Roof		Floor	
Dead load:	15	psf	15	psf
Live load:	181	psf	40	psf
Increase for drift:	1.508			
Effective snow load:	272	psf		
Span length of rafter/truss/joist:	3.5	$f t$	0	ft
Roof rafter/truss/joist spacing:	1.33	ft	1.33	ft
Uniform load on rafter/truss/joist:	382.2	plf	73.2	plf
End reaction on rafter/truss/joist:	668.8	lbs	0.0	Ibs
Ledger loading:	502.8	plf	0.0	plf
Additional uniform load:	0	plf		
Final ledger loading:	502.8	plf		
Number of Required Screws				
SDWS22400DB Wood Screw	250	(per Simpson)		
$\mathrm{C}_{\mathrm{D}}=$	1.00			
SDWS22400DB Wood Screw	250	lb		
Number of required screws:	2.0	screws/ft		
Spacing:	1	$f t$		
Required screws at specified spacing:	2.0			
Use 2 SDWS22400DB	SDWS22400DB Wood Screws minimum at 12" o.c.			
Use 2x8 Ledger				

Beams

Project: 2017-2259
Location: RB8
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2012 NDS)]
$1.75 \mathrm{IN} \times 11.875 \mathrm{IN} \times 10.0 \mathrm{FT}(7+3)$
1.9E Microllam - iLevel Trus Joist

Section Adequate By: 506.1\%
Controlling Factor: Moment

NOTES

응
吻
思

用
suo！pe｜nэןе рөчэене өәડ

Location: SB5
Multi-Loaded Multi-Span Beam
[2015 International Building Code(AISC 14th Ed ASD)]
A992-50 W10×19 $\times 17.33 \mathrm{FT}$
Section Adequate By: 52.9\%
Controlling Factor: Deflection

DEFLECTIONS Center		
Live Load	0.38 IN L/550	
Dead Load	0.16 in	
Total Load	$0.53 \mathrm{IN} \mathrm{L/390}$	
Live Load Deflection Criteria: L/360		Total Load Deflection Criteria: L/240
REACTIONS	A B	
Live Load	4506 lb 4506 lb	
Dead Load	1854 lb 1854 lb	
Total Load	6360 lb 6360 lb	
Bearing Length	0.70 in 0.70 in	
BEAM DATA Center		
Span Length $\quad 17.33 \mathrm{ft}$		
Unbraced Length-Top 0 ft		
Unbraced Length-Bottom 17.33 ft		

STEEL PROPERTIES

W10x19-A992-50

Properties:

Yield Stress:
 Modulus of Elasticity:

Depth:
Web Thickness:
Flange Width:
Flange Thickness:
Distance to Web Toe of Fillet:
Moment of Inertia About X-X Axis:
Section Modulus About X-X Axis:
Plastic Section Modulus About X-X Axis:

Jack Miller
LEI Surveyors and Engineers
3302 North Main Street
Spanish Fork, Utah

UNIFORMLOADS	Center	
Uniform Live Load	520	plf
Uniform Dead Load	195	plf
Beam Self Weight	19	plf
Total Uniform Load	734	plf

Limiting height to thickness ratio for eqn. G2-2: h / w-limit $=53.95$
Cv Factor:
$\mathrm{Cv}=1$ Controlling Equation:
Nominal Shear Strength w/ safety factor:
$\mathrm{Vn}=51000 \mathrm{lb}$

Controlling Moment:

$27555 \mathrm{ft}-\mathrm{lb}$
8.66 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:	6360	
At left support of span 2 (Center Span)		
Created by combining all dead loads a	ve loads	an(s
Comparisons with required sections:	Req'd	Provided
Moment of Inertia (deflection):	62.98 in4	96.3 in4
Moment:	$27555 \mathrm{ft}-\mathrm{lb}$	$53892 \mathrm{ft-lb}$
Shear:	6360 lb	51000 lb

NOTES

Project: 2017-2259

	Jack Miller
LEI Surveyors and Engineers	
3302 North Main Street	
Spanish Fork, Utah	

Multi-Loaded Multi-Span Beam
[2015 International Building Code(AISC 14th Ed ASD)]
Spanish Fork, Utah
StruCalc Version 10.0.1.4 6/2/2017 11:06:05 AM
Section Adequate By: 131.6\%
Controlling Factor: Deflection

DEFLECTIONS Center		
Live Load	0.34 IN L/839	
Dead Load	0.18 in	
Total Load	0.52 IN L/556	
Live Load Deflection Criteria: L/360 Total Load Deflection Criteria: L/240		
REACTIONS	A B	
Live Load	2731 lb 5704 lb	
Dead Load	1612 lb 2728 lb	
Total Load	4343 lb 8432 lb	
Bearing Length	1.06 in 1.06 in	
BEAM DATA Center		
Span Length 24 ft		
Unbraced Length-Top 0 ft		
Unbraced Length	-Bottom 24 ft	

STEEL PROPERTIES

W10×49-A992-50

Properties:

Yield Stress:
Modulus of Elasticity:
Depth:
Web Thickness:
Flange Width:
Flange Thickness:
Distance to Web Toe of Fillet:
Moment of Inertia About X-X Axis:
Section Modulus About X-X Axis:
Plastic Section Modulus About X-X Axis:

$\mathrm{Fy}=$	50 ksi
$\mathrm{E}=$	29000 ksi
$\mathrm{d}=$	10 in
$\mathrm{tw}=$	0.34 in
$\mathrm{bf}=$	10 in
$\mathrm{tf}=$	0.56 in
$\mathrm{k}=$	1.06 in
$\mathrm{lx}=$	$272 \mathrm{in4}$
$\mathrm{Sx}=$	54.6 in 3
$\mathrm{Zx}=$	60.4 in 3

Design Properties per AISC 14th Edition Steel Manual:

Flange Buckling Ratio:	FBR $=$	8.93
Allowable Flange Buckling Ratio:	AFBR $=$	9.15
Web Buckling Ratio:	WBR $=$	23.18
Allowable Web Buckling Ratio:	AWBR $=$	90.55
Controlling Unbraced Length:	$\mathrm{Lb}=$	0 ft
Limiting Unbraced Length -		
\quad for lateral-torsional buckling:	$\mathrm{Lp}=$	8.97 ft
Nominal Flexural Strength w/ safety factor:	$\mathrm{Mn}=$	$150699 \mathrm{ft-lb}$
\quad Controlling Equation:	$\mathrm{F2-1}$	
Web height to thickness ratio:	$\mathrm{h} / \mathrm{tw}=$	23.18
Limiting height to thickness ratio for eqn. $\mathrm{G2-2}: \mathrm{h} / \mathrm{tw}$-limit $=$	53.95	
Cv Factor:	$\mathrm{CV}=$	1
\quad Controlling Equation:	$\mathrm{G2-2}$	
Nominal Shear Strength w/ safety factor:	$\mathrm{Vn}=$	68000 lb

LOADING DIAGRAM

UNIFORM LOADS	Center	
Uniform Live Load	40	plf
Uniform Dead Load	15	plf
Beam Self Weight	49	plf
Total Uniform Load	104	plf

POINT LOADS - CENTER SPAN		
Load Number	One	Iwo
Live Load	2932 lb	4543 lb
Dead Load	1100 lb	1704 lb
Location	11 ft	20.5 ft

Controlling Moment:

$41448 \mathrm{ft}-\mathrm{lb}$

11.04 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: -8432 lb

At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s

Comparisons with required sections:	Req'd	Provided
Moment of Inertia (deflection):	117.44 in 4	272 in 4
Moment:	$41448 \mathrm{ft-lb}$	$150699 \mathrm{ft-lb}$
Shear:	-8432 lb	68000 lb

NOTES

$$
\frac{\tilde{y}}{\underline{\sim}}
$$

Beams
Roofing material $=$
Roof Pitch=
Angle $=$
C $_{\text {s }}=$
Increase for Drift/Valley= Effective snow load (psf)= Roof dead load (psf)=
Floor live load (psf)= Floor live load $(\mathrm{psf})=$
Floor dead load (psf)=
Length (ft)=
Trib. Area roof $=$
Trib. Area ${ }_{\text {floor }}=$
$w_{S}(p \mid f)=$
11
3
3
$\frac{5}{a}$
3
w_{D} (plf) $=$
$w_{\text {self weight }}($ plif) $=$
Point Load (lb)=
Add. uniform load (plf)=
Allowable Total Deflection =
Weft Reaction (lb)=
Right Reaction (lb)
Right Reaction (lb)=
$\dot{d}_{\text {max }}(\mathrm{lb})=$ $\underset{ \pm}{\text { \# }}$ ocation of $M_{\text {max }}(\mathrm{ft})=$
高
Size Factor $\left(C_{F}\right)=$
Volume Factor $\left(C_{y}\right)=$
Duration Factor $\left(C_{d}\right)=$
Beam Type $(t, g, m, p, t s, r b)$

르르르를 플
Bearing Width (in)=
Req'd Bearing Length (in)=
$I^{\left(i n^{4}\right)=}$
F_{b}
$F_{b}^{\prime}=$
$S_{\left(i n^{3}\right)=}^{S_{\text {req }}=}$
$E_{(p s i)=}$
$F_{v}^{\prime}(p s i)=$
$f_{v}(p s i)=$

Location: MB2
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]

(3) $1.75 \mathrm{IN} \times 11.875 \mathrm{IN} \times 17.5 \mathrm{FT}(17+0.5)$

StruCalc Version 10.0.0.9
5/22/2017 3:30:32 PM
1.9E Microllam - iLevel Trus Joist

Section Adequate By: 9.3\%
Controlling Factor: Deflection

CAUTIONS

* Laminations are to be fully connected to provide uniform transfer of loads to all members

Project: 2017-2259

Location: MB6
Multi-Loaded Multi-Span Beam
[2015 International Building Code(AISC 14th Ed ASD)]
A992-50 W8x15 x $19.486 \mathrm{FT}(4.7+12.7+2.2)$
Section Adequate By: 25.5\%
Controlling Factor: Moment

DEFLECTIONS		Left	Center		Right	
Live Load	-0.13	IN 2L/888	0.26 IV	IN L/584	-0.14	IN 2L/372
Dead Load	-0.01 in		0.02 in		-0.01	in
Total Load	-0.14	IN 2L/826	0.28 IN	IN L/544	-0.15	IN 2L/346
Live Load Deflection Criteria: L/240 Total Load Deflection Criteria: L/180						
REACTIONS A B						
Live Load $\quad 12036 \mathrm{lb} 8074 \mathrm{lb}$						
Dead Load $\quad 886 \mathrm{lb} 595 \mathrm{lb}$						
Total Load 12922 lb 8669 lb						
Bearing Length 0.62 in 0.62 in						
BEAM DATA Left				Center	Right	
Span Length 4.66 ft			12.66	6 ft	2.17 ft	
Unbraced Length-Top		0 ft		0 ft	0 ft	
Unbraced Length-Bottom		m 4.66 ft	12.66	6 ft	2.17 ft	

STEEL PROPERTIES

W8x15-A992-50
 Properties:

Yield Stress:	$\mathrm{Fy}=$	50 ksi
Modulus of Elasticity:	$\mathrm{E}=$	29000 ksi
Depth:	$\mathrm{d}=$	8.11 in
Web Thickness:	$\mathrm{tw}=$	0.25 in
Flange Width:	$\mathrm{bf}=$	4.01 in
Flange Thickness:	$\mathrm{tf}=$	0.32 in
Distance to Web Toe of Fillet:	$\mathrm{k}=$	0.62 in
Moment of Inertia About X-X Axis:	$\mathrm{lx}=$	48 in 4
Section Modulus About X-X Axis:	$\mathrm{Sx}=$	11.8 in 3
Plastic Section Modulus About X-X Axis:	$\mathrm{Zx}=$	13.6 in 3

 Design Properties per AISC 14th Edition Steel Manual:

Flange Buckling Ratio:	FBR =	6.37
Allowable Flange Buckling Ratio:	AFBR =	9.15
Web Buckling Ratio:	WBR =	28.08
Allowable Web Buckling Ratio:	AWBR =	90.55
Controlling Unbraced Length:	$\mathrm{Lb}=$	12.66 ft
Limiting Unbraced Length for lateral-torsional buckling:	Lp $=$	3.09 ft
for Eqn. F2-2:	$\mathrm{Lr}=$	10.05
Elastic lateral-torsional buckling stress:	$\mathrm{Fcr}=$	25.64
Nominal Flexural Strength w/ safety factor: Controlling Equation:	$\begin{aligned} & \mathrm{Mn}= \\ & \mathrm{F} 2-3 \end{aligned}$	15095
Web height to thickness ratio:	$\mathrm{h} / \mathrm{tw}=$	28.08
Limiting height to thickness ratio for eqn. G2-2:	h / w-limit $=$	53.95
Cv Factor:	$\mathrm{Cv}=$	1
Controlling Equation:	G2-2	
Nominal Shear Strength w/ safety factor:	V n $=$	39739 lb

UNIFORM LOADS		Left				Center	Right	
Uniform Live Load	1032	plf	1032	plf	1032	plf		
Uniform Dead Load	61	plf	61	plf	61	plf		
Beam Self Weight	15	plf	15	plf	15	plf		
Total Uniform Load	1108	plf	1108	plf	1108	plf		

-12030 ft-lb
Controlling Moment:
Over left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 1, 2, 3 Controlling Shear: $\quad 7759 \mathrm{lb}$
At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s

Comparisons with required sections:	Req'd	Provided
Moment of Inertia (deflection):	$31.03 \mathrm{in4}$	$48 \mathrm{in4}$
Moment:	$-12030 \mathrm{ft}-\mathrm{lb}$	$15095 \mathrm{ft}-\mathrm{lb}$
Shear:	7759 lb	39739 lb

NOTES

Kelly Christensen
LEI Consulting Engineers and Surveyers Inc. 3302 N. Main St.
Spanish Fork, UT 84660
StruCalc Version 9.0.2.5
7/20/2017 9:53:21 AM

LOADING DIAGRAM

DEFLECTIONS	Center	
Live Load	0.04 in L/3077	
Dead Load	0.01 in	
Total Load	$0.05 \mathrm{IN} \mathrm{L/2348}$	
Live Load Deflection	tion Criteria: L/360	Total Load Deflection Criteria: L/240
REACTIONS	A B	
Live Load	7695 lb 7695	lb
Dead Load	2390 lb 2390	lb
Total Load	10085 lb 10085	lb
Bearing Length	1.12 in 1.12	in
BEAM DATA Center		
Span Length 9 ft		
Unbraced Length-Top 0 ft		
Unbraced Length	h-Bottom 9 ft	

STEEL PROPERTIES

W10x45-A992-50
Properties:
Yield Stress:
Modulus of Elasticity
Depth:
Web Thickness:
Flange Width:
Flange Thickness:
Distance to Web Toe of Fillet:
Moment of Inertia About X-X Axis:
Section Modulus About X-X Axis:
Plastic Section Modulus About X-X Axis:

Design Properties per AISC 14th Edition Steel Manual:

Flange Buckling Ratio:
Allowable Flange Buckling Ratio:
Web Buckling Ratio:
Allowable Web Buckling Ratio:
Controlling Unbraced Length:
Limiting Unbraced Length for lateral-torsional buckling:
Nominal Flexural Strength w/ safety factor: Controlling Equation:
Web height to thickness ratio: FBR =
6.47

AFBR $=\quad 9.15$
WBR $=\quad 22.46$
AWBR $=90.55$
$\mathrm{Lb}=$ 0 ft
$\mathrm{Lp}=\quad \quad 7.1 \mathrm{ft}$
$\mathrm{Mn}=\quad 136976 \mathrm{ft}-\mathrm{lb}$
F2-1
$\mathrm{h} / \mathrm{tw}=\quad 22.46$
Limiting height to thickness ratio for eqn. G2-2:
Cv Factor:
$\mathrm{Cv}=$
53.95

Controlling Equation:
Nominal Shear Strength w/ safety factor:
G2-2
$\mathrm{Vn}=70700 \mathrm{lb}$

TRAPEZOIDAL LOADS - CENTER SPAN			
Load Number	One	Two	Three
Left Live Load	1220 plf	490 plf	0 plf
Left Dead Load	102 plf	184 plf	200 plf
Right Live Load	1220 plf	490 plf	0 plf
Right Dead Load	102 plf	184 plf	200 plf
Load Start	0 ft	0 ft	0 ft
Load End	9 ft	9 ft	9 ft
Load Length	9 ft	9 ft	9 ft

Controlling Moment:

$22690 \mathrm{ft}-\mathrm{lb}$
4.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:

$-10085 \mathrm{lb}$
At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s

Comparisons with required sections:	$\underline{\text { Req'd }}$	Provided
Moment of Inertia (deflection):	$29.01 \mathrm{in4}$	248 in 4
Moment:	$22690 \mathrm{ft}-\mathrm{lb}$	$136976 \mathrm{ft}-\mathrm{lb}$
Shear:	-10085 lb	70700 lb

NOTES

Structural Sheathing
No anchor bolts

Structural Sheathing
1/2" anchor bolts

Shear Walls
Gridline 11
Rear Lower
Structural Sheathing
1/2" anchor bolts
Page 28 df 112

Current Date: 5/15/2017 1:41 PM
Units system: English
File name: T:IStructurall2017 Structural Jobs\2017-2259_BA 1606 Yehuda Res\2017-2259.etz

Current Date: 5/15/2017 1:40 PM
Units system: English
File name: T:IStructurall2017 Structural Jobs\2017-2259_BA 1606 Yehuda Res|2017-2259.etz)

\rightarrow

Bentley

Current Date: 5/15/2017 1:41 PM
Units system: English
File name: T:IStructurall2017 Structural Jobs\2017-2259_BA 1606 Yehuda Res\2017-2259.etz

Geometry data

GLOSSARY

Cb22, Cb33	: Moment gradient coefficients
Cm22, Cm33	: Coefficients applied to bending term in interaction formula
d0	: Tapered member section depth at J end of member
DJX	: Rigid end offset distance measured from J node in axis X
DJY	: Rigid end offset distance measured from J node in axis Y
DJZ	: Rigid end offset distance measured from J node in axis Z
DKX	: Rigid end offset distance measured from K node in axis X
DKY	: Rigid end offset distance measured from K node in axis Y
DKZ	: Rigid end offset distance measured from K node in axis Z
dL	: Tapered member section depth at K end of member
lg factor	: Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	: Effective length factor about axis 2
K33	: Effective length factor about axis 3
L22	: Member length for calculation of axial capacity
L33	: Member length for calculation of axial capacity
LB pos	: Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	: Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	: Rotation about X
RY	: Rotation about Y
RZ	: Rotation about Z
TO	: $=$ Tension only member $0=$ Normal member
TX	: Translation in X
TY	: Translation in Y
TZ	: Translation in Z

Nodes

Node	x [ft]	r [ft]	z [ft]	Rigid Floor
1	0.00	0.00	0.00	0
2	0.00	8.00	0.00	0
3	0.00	18.00	0.00	0
4	0.00	28.00	0.00	0
5	25.00	0.00	0.00	0
6	25.00	8.00	0.00	0
7	25.00	18.00	0.00	0
8	25.00	29.00	0.00	0
9	11.50	18.00	0.00	0
10	11.50	28.46	0.00	0
11	25.00	8.00	3.25	0
12	0.00	18.00	3.25	0
13	11.50	18.00	3.25	0
14	0.00	28.00	3.25	0
15	11.50	28.46	3.25	0
16	0.00	8.00	3.25	0
17	11.50	28.46	-7.50	0
18	11.50	18.00	-7.50	0
19	12.50	8.00	3.25	0
20	12.50	0.00	0.00	0
21	12.50	8.00	0.00	0
22	11.50	8.00	0.00	0
Page 31Paged				

Restraints

Node	TX	TY	TZ	RX	RY	RZ	
1	1	1	1	0	0	0	
2	0	0	1	0	0	0	
3	0	0	1	0	0	0	
4	0	0	1	0	0	0	
5	1	1	1	0	0	0	
6	0	0	1	0	0	0	*
7	0	0	1	0	0	0	
8	0	0	1	0	0	0	
17	0	1	1	0	0	0	
18	0	1	1	0	0	0	
20	1	1	1	0	0	0	

Members

Member	NJ	NK	Description	Section	Material	$\begin{gathered} \text { do } \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \mathbf{d L} \\ \text { [in] } \end{gathered}$	Ig factor
1	1	2	Column	W 10x54	A992 Gr50	0.00	0.00	0.00
2	2	3	Column	W 10X54	A992 Gr50	0.00	0.00	0.00
3	3	4	Column	W 10X54	A992 Gr50	0.00	0.00	0.00
4	5	6	Column	W 10X54	A992 Gr50	0.00	0.00	0.00
5	6	7	Column	W 10X54	A992 Gr50	0.00	0.00	0.00
6	7	8	Column	W 10X54	A992 Gr50	0.00	0.00	0.00
7	2	22	Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
8	3	9	Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
9	9	7	Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
10	4	10	Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
11	10	8	Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
12	6	11	Cantilever Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
13	3	12	Cantilever Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
14	9	13	Cantilever Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
15	4	14	Cantilever Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
16	10	15	Cantilever Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
17	2	16	Cantilever Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
18	10	17	Cantilever Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
19	9	18	Cantilever Beam	W 10x54	A992 Gr50	0.00	0.00	0.00
20	21	19	Cantilever Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
21	21	6	Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
22	20	21	Column	W 10x54	A992 Gr50	0.00	0.00	0.00
23	22	21	Beam	W 10X54	A992 Gr50	0.00	0.00	0.00
24	22	9	Wood Post	RcCol $8 \times 8 \mathrm{in}$	DFir-L_No2_col	0.00	0.00	0.00
25	9	10	Wood Post	RcCol $8 \times 8 \mathrm{in}$	DFir-L_No2_col	0.00	0.00	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes 23	NX	NY	NZ
16	2.3859	0	0.00	0.00	0.00

Hinges

Member	Node-J				Node-K				TOR	AXL	Axial rigidity
	M33	M22	V3	V2	M33	M22	V3	V2			
24	1	1	0	0	1	1	0	0	0	0	Full
25	1	1	0	0	1	1	0	0	0	0	Full

Current Date: 5/15/2017 1:41 PM
Units system: English
File name: T:IStructurall2017 Structural Jobs\2017-2259 BA 1606 Yehuda Res\2017-2259.etz)
Load data

GLOSSARY

Comb : Indicates if load condition is a load combination

Load conditions

Condition	Description	Comb.	Category
DL	Dead Load	No	DL
LL	Live Load	No	LL
SL	Snow Load	No	SNOW
Wx	Wind in X	No	WIND
EQx	Seismic in X	No	EQ

Load on nodes

Condition	Node	$\begin{array}{r} \text { FX } \\ {[\mathrm{Kip]}} \end{array}$	$\begin{array}{r} \text { FY } \\ {[\text { Kip] }} \end{array}$	$\begin{array}{r} \mathrm{FZ} \\ {[\mathrm{Kip]}} \end{array}$	$\begin{array}{r} \text { MX } \\ {\left[\text { Kip*ft }^{\text {M }}\right.} \end{array}$	$\begin{gathered} \text { MY } \\ {\left[\mathrm{Kip}^{* f t]}\right.} \end{gathered}$	$\begin{array}{r} \text { MZ } \\ {\left[\mathrm{Kip}^{*} \mathrm{ft}\right]} \end{array}$
Wx	2	5.687	0.00	0.00	0.00	0.00	0.00
	3	5.646	0.00	0.00	0.00	0.00	0.00
	4	1.768	0.00	0.00	0.00	0.00	0.00
	8	1.768	0.00	0.00	0.00	0.00	0.00
EQx	2	1.931	0.00	0.00	0.00	0.00	0.00
	3	1.832	0.00	0.00	0.00	0.00	0.00
	4	2.762	0.00	0.00	0.00	0.00	0.00
	8	2.762	0.00	0.00	0.00	0.00	0.00

Distributed force on members

Condition	Member	Dir1	Val1 [Kip/ft]	$\begin{array}{r} \text { Val2 } \\ {[\mathrm{Kip} / \mathrm{ft}]} \end{array}$	Dist1 [ft]	\%	Dist2 [ft]	\%
DL	7	y	-0.105	-0.105	0.00	No	100.00	Yes
	8	Y	-0.03	-0.03	0.00	No	100.00	Yes
	9	Y	-0.015	-0.015	0.00	No	100.00	Yes
	10	Y	-0.03	-0.03	0.00	No	100.00	Yes
	11	Y	-0.03	-0.03	0.00	No	100.00	Yes
	12	y	-0.383	-0.383	0.00	No	100.00	Yes
	13	y	-0.09	-0.09	0.00	No	100.00	Yes

	14	y	-0.09	-0.09	0.00	No	100.00	Yes
	15	y	-0.128	-0.125	0.00	No	100.00	Yes
	16	y	-0.188	-0.188	0.00	No	100.00	Yes
	17	y	-0.083	-0.083	0.00	No	100.00	Yes
	18	y	-0.188	-0.188	0.00	No	100.00	Yes
	19	y	-0.188	-0.188	0.00	No	100.00	Yes
	20	y	-0.188	-0.188	0.00	No	100.00	Yes
	21	y	-0.03	-0.03	0.00	No	100.00	Yes
	23	y	-0.03	-0.03	0.00	No	100.00	Yes
LL	9	y	-0.04	-0.04	0.00	No	100.00	Yes
	19	y	-0.26	-0.26	0.00	No	100.00	Yes
	21	y	-0.04	-0.04	0.00	No	100.00	Yes
	23	y	-0.04	-0.04	0.00	No	100.00	Yes
SL	7	y	-1.171	-1.171	0.00	No	100.00	Yes
	8	y	-0.335	-0.335	0.00	No	100.00	Yes
	10	y	-0.335	-0.335	0.00	No	100.00	Yes
	11	y	-0.335	-0.335	0.00	No	100.00	Yes
	12	y	-2.259	-2.259	0.00	No	100.00	Yes
	13	y	-1.004	-1.004	0.00	No	100.00	Yes
	14	y	-1.004	-1.004	0.00	No	100.00	Yes
	15	y	-1.422	-1.422	0.00	No	100.00	Yes
	16	y	-2.091	-2.091	0.00	No	100.00	Yes
	17	y	-0.921	-0.921	0.00	No	100.00	Yes
	18	y	-2.091	-2.091	0.00	No	100.00	Yes
	19	y	-1.004	-1.004	0.00	No	100.00	Yes
	20	y	-2.091	-2.091	0.00	No	100.00	Yes
	21	y	-0.167	-0.167	0.00	No	100.00	Yes
	23	y	-0.167	-0.167	0.00	No	100.00	Yes

Concentrated forces on members

Self weight multipliers for load conditions

Condition	Description				
		Comb.	MultX	MultY	MultZ
DL	Dead Load	No	0.00	0.00	0.00
LL	Live Load	No	0.00	0.00	0.00
SL	Snow Load	No	0.00	0.00	0.00
Wx	Wind in X	No	0.00	0.00	0.00

	EQx	Seismic in X	No	0.00	0.00	0.00

Earthquake (Dynamic analysis only)

Condition	a/g	Ang. [Deg]	Damp. [\%]
DL	0.00	0.00	0.00
LL	0.00	0.00	0.00
SL	0.00	0.00	0.00
Wx	0.00	0.00	0.00
EQx	0.00	0.00	0.00

Current Date: 5/15/2017 1:42 PM
Units system: English
File name: T:IStructurall2017 Structural Jobs\2017-2259 BA 1606 Yehuda Res\2017-2259.etz

Analysis result

Translations

Node	Translations [in]			Rotations [Rad]		
	TX	TY	TZ	RX	RY	RZ
Condition DL=Dead Load						
1	0.00000	0.00000	0.00000	-0.00001	-0.00023	0.00002
2	-0.00053	-0.00050	0.00000	0.00003	-0.00023	-0.00004
3	0.00182	-0.00085	0.00000	0.00000	0.00000	-0.00003
4	0.00323	-0.00104	0.00000	0.00008	0.00000	-0.00005
5	0.00000	0.00000	0.00000	-0.00007	0.00023	0.00001
6	-0.00050	-0.00039	0.00000	0.00014	0.00023	-0.00001
7	0.00186	-0.00054	0.00000	-0.00004	0.00000	0.00000
8	0.00311	-0.00064	0.00000	0.00002	0.00000	0.00004
9	0.00184	-0.00660	0.00000	0.00004	0.00000	0.00000
10	0.00349	-0.00894	0.00000	0.00009	0.00000	-0.00001
11	0.00857	-0.00739	0.00000	0.00017	0.00023	-0.00001
12	0.00182	-0.00134	0.00000	0.00001	0.00000	-0.00003
13	0.00182	-0.00854	0.00000	0.00005	0.00000	0.00000
14	0.00335	-0.00470	0.00000	0.00009	0.00000	-0.00005
15	0.00360	-0.01322	0.00000	0.00011	0.00000	-0.00001
16	-0.00963	-0.00192	0.00000	0.00003	-0.00023	-0.00004
17	0.00318	0.00000	0.00000	0.00014	0.00000	-0.00001
18	0.00190	0.00000	0.00000	0.00012	0.00000	0.00000
19	-0.00052	-0.01618	0.02340	0.00039	0.00000	0.00007
20	0.00000	0.00000	0.00000	0.00018	0.00000	-0.00002
21	-0.00054	-0.00089	0.02340	0.00037	0.00000	0.00007
22	-0.00054	-0.00283	0.02318	0.00034	-0.00004	0.00009
Condition LL=Live Load						
1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001
2	-0.00083	-0.00003	0.00000	0.00000	0.00000	0.00001
3	-0.00248	-0.00005	0.00000	0.00000	0.00000	0.00001
4	-0.00374	-0.00007	0.00000	0.00000	0.00000	0.00000
5	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001
6	-0.00081	-0.00012	0.00000	0.00000	0.00000	0.00001
7	-0.00248	-0.00021	0.00000	0.00000	0.00000	0.00003
8	-0.00377	-0.00022	0.00000	0.00000	0.00000	0.00001
9	-0.00248	-0.00226	0.00000	-0.00005	0.00000	-0.00003
10	-0.00367	-0.00212	0.00000	0.00002	0.00000	0.00000
11	-0.00081	-0.00012	0.00000	0.00000	0.00000	0.00001
12	-0.00248	-0.00005	0.00000	0.00000	0.00000	0.00001
13	-0.00248	-0.00031	0.00000	-0.00005	0.00000	-0.00003
14	-0.00374	-0.00007	0.00000	0.00000	0.00000	0.00000
15	-0.00364	-0.00304	0.00000	0.00002	0.00000	0.00000
16	-0.00083	-0.00003	0.00000	0.00000	0.00000	0.00001
17	-0.00376	0.00000	0.00000	0.00002	0.00000	0.00000
18	-0.00248	0.00000	0.00000	0.00010	0.00000	-0.00003
19	-0.00081	-0.00028	0.00000	0.00000	0.00000	0.00001
20	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001
21	-0.00081	-0.00028	0.00000	0.00000	0.00000	0.00001
22	-0.00082	-0.00070	0.00000	0.00000	0.00000	0.00001
Condition SL=Snow Load						
1	0.00000	0.00000	0.00000	-0.00015	-0.00290	0.00024

2	-0.00275	-0.00550	0.00000	0.00030	-0.00290	-0.00049
3	0.03020	-0.00933	0.00000	0.00003	0.00000	-0.00033
4	0.05092	-0.01140	0.00000	0.00091	0.00004	-0.00052
5	0.00000	0.00000	0.00000	-0.00040	0.00289	0.00010
6	-0.00249	-0.00255	0.00000	0.00081	0.00289	-0.00016
7	0.03067	-0.00381	0.00000	-0.00024	0.00001	-0.00012
8	0.04963	-0.00483	0.00000	0.00012	0.00001	0.00043
9	0.03042	-0.06398	-0.00001	0.00066	-0.00001	0.00015
10	0.05360	-0.09063	0.00000	0.00089	0.00003	-0.00009
11	0.11017	-0.04393	0.00000	0.00103	0.00289	-0.00016
12	0.03013	-0.01462	0.00000	0.00012	0.00000	-0.00033
13	0.03012	-0.09381	-0.00001	0.00075	-0.00001	0.00015
14	0.05234	-0.05279	0.00000	0.00104	0.00004	-0.00052
15	0.05458	-0.13435	0.00000	0.00109	0.00002	-0.00009
16	-0.11602	-0.02125	0.00000	0.00039	-0.00290	-0.00049
17	0.05046	0.00000	0.00000	0.00142	0.00003	-0.00009
18	0.03111	0.00000	0.00000	0.00091	-0.00001	0.00015
19	-0.00243	-0.19165	0.29100	0.00466	0.00001	0.00073
20	0.00000	0.00000	0.00000	0.00233	0.00001	-0.00025
21	-0.00293	-0.00873	0.29100	0.00446	0.00001	0.00073
22	-0.00291	-0.02864	0.28839	0.00413	-0.00043	0.00093
Condition $\mathbf{W} \mathbf{x}=$ Wind in \mathbf{X}						
1	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00420
2	0.35345	0.00220	0.00000	0.00000	0.00000	-0.00240
3	0.70687	0.00329	0.00000	0.00000	0.00000	-0.00202
4	0.93713	0.00368	0.00000	0.00000	0.00000	-0.00110
5	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00418
6	0.35161	-0.00195	0.00000	0.00000	0.00000	-0.00238
7	0.70473	-0.00273	0.00000	0.00000	0.00000	-0.00203
8	0.93773	-0.00300	0.00000	0.00000	0.00000	-0.00100
9	0.70589	0.00094	0.00000	-0.00001	0.00000	0.00090
10	0.93743	0.00014	0.00000	0.00000	0.00000	0.00045
11	0.35161	-0.00195	0.00000	0.00000	0.00000	-0.00238
12	0.70687	0.00329	0.00000	0.00000	0.00000	-0.00202
13	0.70589	0.00135	0.00000	-0.00001	0.00000	0.00090
14	0.93713	0.00368	0.00000	0.00000	0.00000	-0.00110
15	0.93743	0.00020	0.00000	0.00000	0.00000	0.00045
16	0.35345	0.00220	0.00000	0.00000	0.00000	-0.00240
17	0.93743	0.00000	0.00000	0.00000	0.00000	0.00045
18	0.70589	0.00000	0.00000	-0.00001	0.00000	0.00090
19	0.35122	-0.00025	0.00000	0.00000	0.00000	-0.00067
20	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00486
21	0.35122	-0.00025	0.00000	0.00000	0.00000	-0.00067
22	0.35140	0.00267	0.00000	0.00000	0.00000	-0.00020
Condition EQx $=$ Seismic in X						
1	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00276
2	0.23713	0.00185	0.00000	0.00000	0.00000	-0.00176
3	0.53101	0.00298	0.00000	0.00000	0.00000	-0.00197
4	0.79394	0.00345	0.00000	0.00000	0.00000	-0.00135
5	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00275
6	0.23653	-0.00161	0.00000	0.00000	0.00000	-0.00176
7	0.53004	-0.00243	0.00000	0.00000	0.00000	-0.00194
8	0.79459	-0.00278	0.00000	0.00000	0.00000	-0.00123
9	0.53056	-0.00078	0.00000	0.00001	0.00000	0.00087
10	0.79433	-0.00163	0.00000	0.00002	0.00000	0.00056
11	0.23653	-0.00161	0.00000	0.00000	0.00000	-0.00176
12	0.53101	0.00298	0.00000	0.00000	0.00000	-0.00197

13	0.53057	-0.00112	0.00000	0.00001	0.00000	0.00087
14	0.79394	0.00345	0.00000	0.00000	0.00000	-0.00135
15	0.79436	-0.00234	0.00000	0.00002	0.00000	0.00056
16	0.23713	0.00185	0.00000	0.00000	0.00000	-0.00176
17	0.79427	0.00000	0.00000	0.00002	0.00000	0.00056
18	0.53056	0.00000	0.00000	0.00001	0.00000	0.00087
19	0.23593	-0.00024	0.00000	0.00000	0.00000	-0.00040
20	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00329
21	0.23593	-0.00024	0.00000	0.00000	0.00000	-0.00040
22	0.23602	0.00093	0.00000	0.00000	0.00000	-0.00008
Condition S1=DL						
1	0.00000	0.00000	0.00000	-0.00001	-0.00023	0.00002
2	-0.00053	-0.00050	0.00000	0.00003	-0.00023	-0.00004
3	0.00182	-0.00085	0.00000	0.00000	0.00000	-0.00003
4	0.00323	-0.00104	0.00000	0.00008	0.00000	-0.00005
5	0.00000	0.00000	0.00000	-0.00007	0.00023	0.00001
6	-0.00050	-0.00039	0.00000	0.00014	0.00023	-0.00001
7	0.00186	-0.00054	0.00000	-0.00004	0.00000	0.00000
8	0.00311	-0.00064	0.00000	0.00002	0.00000	0.00004
9	0.00184	-0.00660	0.00000	0.00004	0.00000	0.00000
10	0.00349	-0.00894	0.00000	0.00009	0.00000	-0.00001
11	0.00857	-0.00739	0.00000	0.00017	0.00023	-0.00001
12	0.00182	-0.00134	0.00000	0.00001	0.00000	-0.00003
13	0.00182	-0.00854	0.00000	0.00005	0.00000	0.00000
14	0.00335	-0.00470	0.00000	0.00009	0.00000	-0.00005
15	0.00360	-0.01322	0.00000	0.00011	0.00000	-0.00001
16	-0.00963	-0.00192	0.00000	0.00003	-0.00023	-0.00004
17	0.00318	0.00000	0.00000	0.00014	0.00000	-0.00001
18	0.00190	0.00000	0.00000	0.00012	0.00000	0.00000
19	-0.00052	-0.01618	0.02340	0.00039	0.00000	0.00007
20	0.00000	0.00000	0.00000	0.00018	0.00000	-0.00002
21	-0.00054	-0.00089	0.02340	0.00037	0.00000	0.00007
22	-0.00054	-0.00283	0.02318	0.00034	-0.00004	0.00009
Condition S2=DL+LL						
1	0.00000	0.00000	0.00000	-0.00001	-0.00023	0.00003
2	-0.00136	-0.00053	0.00000	0.00003	-0.00023	-0.00004
3	-0.00067	-0.00091	0.00000	0.00000	0.00000	-0.00002
4	-0.00052	-0.00111	0.00000	0.00008	0.00000	-0.00005
5	0.00000	0.00000	0.00000	-0.00007	0.00023	0.00002
6	-0.00130	-0.00051	0.00000	0.00014	0.00023	0.00000
7	-0.00062	-0.00075	0.00000	-0.00004	0.00000	0.00003
8	-0.00066	-0.00085	0.00000	0.00002	0.00000	0.00005
9	-0.00064	-0.00885	0.00000	-0.00001	0.00000	-0.00003
10	-0.00018	-0.01107	0.00000	0.00011	0.00000	-0.00002
11	0.00780	-0.00751	0.00000	0.00017	0.00023	0.00000
12	-0.00067	-0.00139	0.00000	0.00001	0.00000	-0.00002
13	-0.00067	-0.00886	0.00000	0.00000	0.00000	-0.00003
14	-0.00039	-0.00477	0.00000	0.00009	0.00000	-0.00005
15	-0.00005	-0.01626	0.00000	0.00013	0.00000	-0.00002
16	-0.01049	-0.00195	0.00000	0.00003	-0.00023	-0.00004
17	-0.00058	0.00000	0.00000	0.00016	0.00000	-0.00002
18	-0.00059	0.00000	0.00000	0.00022	0.00000	-0.00003
19	-0.00133	-0.01651	0.02350	0.00039	0.00000	0.00007
20	0.00000	0.00000	0.00000	0.00018	0.00000	-0.00001
21	-0.00136	-0.00117	0.02350	0.00037	0.00000	0.00007
22	-0.00136	-0.00353	0.02328	0.00034	-0.00004	0.00010

Condition S3=DL+SL						
1	0.00000	0.00000	0.00000	-0.00016	-0.00321	0.00026
2	-0.00327	-0.00600	0.00000	0.00033	-0.00321	-0.00053
3	0.03210	-0.01018	0.00000	0.00003	0.00000	-0.00035
4	0.05427	-0.01245	0.00000	0.00099	0.00004	-0.00057
5	0.00000	0.00000	0.00000	-0.00047	0.00319	0.00011
6	-0.00297	-0.00294	0.00000	0.00095	0.00319	-0.00017
7	0.03261	-0.00435	0.00000	-0.00028	0.00001	-0.00012
8	0.05286	-0.00546	0.00000	0.00014	0.00001	0.00047
9	0.03233	-0.07058	-0.00001	0.00070	-0.00001	0.00016
10	0.05721	-0.09957	0.00000	0.00098	0.00004	-0.00010
11	0.12151	-0.05134	0.00000	0.00120	0.00319	-0.00017
12	0.03202	-0.01595	0.00000	0.00013	0.00000	-0.00035
13	0.03200	-0.10236	-0.00001	0.00080	-0.00001	0.00016
14	0.05582	-0.05750	0.00000	0.00113	0.00004	-0.00057
15	0.05830	-0.14757	0.00000	0.00120	0.00002	-0.00010
16	-0.12846	-0.02318	0.00000	0.00042	-0.00321	-0.00053
17	0.05377	0.00000	0.00000	0.00155	0.00004	-0.00010
18	0.03310	0.00000	0.00000	0.00103	-0.00001	0.00016
19	-0.00288	-0.21084	0.32159	0.00512	0.00001	0.00080
20	0.00000	0.00000	0.00000	0.00258	0.00001	-0.00027
21	-0.00346	-0.00962	0.32159	0.00491	0.00001	0.00080
22	-0.00344	-0.03147	0.31871	0.00454	-0.00048	0.00101
Condition S4=DL+0.75LL						
1	0.00000	0.00000	0.00000	-0.00001	-0.00023	0.00003
2	-0.00115	-0.00053	0.00000	0.00003	-0.00023	-0.00004
3	-0.00004	-0.00089	0.00000	0.00000	0.00000	-0.00002
4	0.00042	-0.00109	0.00000	0.00008	0.00000	-0.00005
5	0.00000	0.00000	0.00000	-0.00007	0.00023	0.00002
6	-0.00110	-0.00048	0.00000	0.00014	0.00023	0.00000
7	0.00000	-0.00070	0.00000	-0.00004	0.00000	0.00002
8	0.00028	-0.00080	0.00000	0.00002	0.00000	0.00005
9	-0.00002	-0.00829	0.00000	0.00000	0.00000	-0.00002
10	0.00074	-0.01053	0.00000	0.00011	0.00000	-0.00001
11	0.00799	-0.00748	0.00000	0.00017	0.00023	0.00000
12	-0.00005	-0.00138	0.00000	0.00001	0.00000	-0.00002
13	-0.00005	-0.00878	0.00000	0.00001	0.00000	-0.00002
14	0.00055	-0.00475	0.00000	0.00009	0.00000	-0.00005
15	0.00086	-0.01550	0.00000	0.00012	0.00000	-0.00001
16	-0.01028	-0.00194	0.00000	0.00003	-0.00023	-0.00004
17	0.00036	0.00000	0.00000	0.00015	0.00000	-0.00001
18	0.00003	0.00000	0.00000	0.00019	0.00000	-0.00002
19	-0.00113	-0.01643	0.02347	0.00039	0.00000	0.00007
20	0.00000	0.00000	0.00000	0.00018	0.00000	-0.00001
21	-0.00115	-0.00110	0.02347	0.00037	0.00000	0.00007
22	-0.00115	-0.00335	0.02326	0.00034	-0.00004	0.00009
Condition S5=DL+0.75SL						
1	0.00000	0.00000	0.00000	-0.00012	-0.00239	0.00020
2	-0.00260	-0.00463	0.00000	0.00025	-0.00239	-0.00041
3	0.02444	-0.00785	0.00000	0.00002	0.00000	-0.00027
4	0.04136	-0.00960	0.00000	0.00076	0.00003	-0.00044
5	0.00000	0.00000	0.00000	-0.00037	0.00238	0.00009
6	-0.00237	-0.00231	0.00000	0.00075	0.00238	-0.00013
7	0.02484	-0.00340	0.00000	-0.00022	0.00001	-0.00009
8	0.04028	-0.00425	0.00000	0.00011	0.00000	0.00036
9	0.02462	-0.05458	-0.00001	0.00053	-0.00001	0.00012
10	0.04364	-0.07691	0.00000	0.00076	0.00003	-0.00008
11	0.09047	-0.04034	0.00000	0.00094	0.00238	-0.00013

12	0.02438	-0.01231	0.00000	0.00010	0.00000	-0.00027
13	0.02438	-0.07890	-0.00001	0.00061	-0.00001	0.00012
14	0.04256	-0.04429	0.00000	0.00087	0.00003	-0.00044
15	0.04448	-0.11397	0.00000	0.00092	0.00002	-0.00008
16	-0.09591	-0.01785	0.00000	0.00033	-0.00239	-0.00041
17	0.04098	0.00000	0.00000	0.00120	0.00003	-0.00008
18	0.02519	0.00000	0.00000	0.00080	-0.00001	0.00012
19	-0.00236	-0.15914	0.23977	0.00386	0.00001	0.00062
20	0.00000	0.00000	0.00000	0.00191	0.00001	-0.00021
21	-0.00274	-0.00744	0.23977	0.00370	0.00001	0.00062
22	-0.00273	-0.02431	0.23761	0.00342	-0.00036	0.00078
Condition S6=DL+0.75LL+0.75SL						
1	0.00000	0.00000	0.00000	-0.00013	-0.00240	0.00021
2	-0.00323	-0.00465	0.00000	0.00025	-0.00240	-0.00041
3	0.02256	-0.00789	0.00000	0.00002	0.00000	-0.00027
4	0.03853	-0.00965	0.00000	0.00076	0.00003	-0.00044
5	0.00000	0.00000	0.00000	-0.00037	0.00239	0.00009
6	-0.00299	-0.00240	0.00000	0.00075	0.00239	-0.00012
7	0.02296	-0.00356	0.00000	-0.00022	0.00001	-0.00007
8	0.03743	-0.00442	0.00000	0.00011	0.00000	0.00037
9	0.02274	-0.05627	-0.00001	0.00049	-0.00001	0.00010
10	0.04086	-0.07850	0.00000	0.00078	0.00003	-0.00008
11	0.09018	-0.04043	0.00000	0.00094	0.00239	-0.00012
12	0.02250	-0.01235	0.00000	0.00010	0.00000	-0.00027
13	0.02250	-0.07914	-0.00001	0.00057	-0.00001	0.00010
14	0.03973	-0.04434	0.00000	0.00087	0.00003	-0.00044
15	0.04173	-0.11626	0.00000	0.00094	0.00002	-0.00008
16	-0.09687	-0.01787	0.00000	0.00033	-0.00240	-0.00041
17	0.03813	0.00000	0.00000	0.00122	0.00003	-0.00008
18	0.02332	0.00000	0.00000	0.00088	-0.00001	0.00010
19	-0.00298	-0.15970	0.24061	0.00387	0.00001	0.00062
20	0.00000	0.00000	0.00000	0.00192	0.00001	-0.00020
21	-0.00336	-0.00765	0.24061	0.00371	0.00001	0.00062
22	-0.00335	-0.02483	0.23844	0.00343	-0.00036	0.00079
Condition S7=DL+0.6Wx						
1	0.00000	0.00000	0.00000	-0.00001	-0.00024	-0.00250
2	0.21198	0.00082	0.00000	0.00003	-0.00024	-0.00148
3	0.42672	0.00112	0.00000	0.00000	0.00000	-0.00124
4	0.56648	0.00117	0.00000	0.00008	0.00000	-0.00071
5	0.00000	0.00000	0.00000	-0.00007	0.00023	-0.00250
6	0.21090	-0.00157	0.00000	0.00014	0.00023	-0.00144
7	0.42548	-0.00218	0.00000	-0.00004	0.00000	-0.00122
8	0.56672	-0.00244	0.00000	0.00002	0.00000	-0.00056
9	0.42615	-0.00603	0.00000	0.00003	0.00000	0.00054
10	0.56693	-0.00886	0.00000	0.00009	0.00000	0.00026
11	0.22004	-0.00857	0.00000	0.00017	0.00023	-0.00144
12	0.42672	0.00064	0.00000	0.00001	0.00000	-0.00124
13	0.42613	-0.00773	0.00000	0.00004	0.00000	0.00054
14	0.56661	-0.00249	0.00000	0.00009	0.00000	-0.00071
15	0.56703	-0.01309	0.00000	0.00011	0.00000	0.00026
16	0.20280	-0.00059	0.00000	0.00003	-0.00024	-0.00148
17	0.56662	0.00000	0.00000	0.00014	0.00000	0.00026
18	0.42621	0.00000	0.00000	0.00011	0.00000	0.00054
19	0.21066	-0.01641	0.02358	0.00039	0.00000	-0.00033
20	0.00000	0.00000	0.00000	0.00018	0.00000	-0.00294
21	0.21063	-0.00104	0.02358	0.00037	0.00000	-0.00033
22	0.21074	-0.00122	0.02337	0.00035	-0.00004	-0.00003

Condition S8=DL+0.7EQx						
1	0.00000	0.00000	0.00000	-0.00001	-0.00023	-0.00191
2	0.16582	0.00079	0.00000	0.00003	-0.00023	-0.00128
3	0.37422	0.00124	0.00000	0.00000	0.00000	-0.00141
4	0.55990	0.00137	0.00000	0.00008	0.00000	-0.00100
5	0.00000	0.00000	0.00000	-0.00007	0.00023	-0.00192
6	0.16543	-0.00152	0.00000	0.00014	0.00023	-0.00124
7	0.37358	-0.00225	0.00000	-0.00004	0.00000	-0.00136
8	0.56023	-0.00259	0.00000	0.00002	0.00000	-0.00082
9	0.37392	-0.00714	0.00000	0.00005	0.00000	0.00061
10	0.56044	-0.01008	0.00000	0.00010	0.00000	0.00038
11	0.17454	-0.00852	0.00000	0.00017	0.00023	-0.00124
12	0.37421	0.00075	0.00000	0.00001	0.00000	-0.00141
13	0.37390	-0.00933	0.00000	0.00005	0.00000	0.00061
14	0.56003	-0.00228	0.00000	0.00009	0.00000	-0.00100
15	0.56056	-0.01485	0.00000	0.00012	0.00000	0.00038
16	0.15667	-0.00062	0.00000	0.00003	-0.00023	-0.00128
17	0.56008	0.00000	0.00000	0.00015	0.00000	0.00038
18	0.37398	0.00000	0.00000	0.00013	0.00000	0.00061
19	0.16500	-0.01640	0.02351	0.00039	0.00000	-0.00021
20	0.00000	0.00000	0.00000	0.00018	0.00000	-0.00233
21	0.16497	-0.00106	0.02351	0.00037	0.00000	-0.00021
22	0.16504	-0.00218	0.02330	0.00035	-0.00004	0.00003
Condition S9=DL+0.75LL+0.45Wx+0.75SL						
1	0.00000	0.00000	0.00000	-0.00012	-0.00242	-0.00171
2	0.15863	-0.00364	0.00000	0.00025	-0.00242	-0.00150
3	0.34574	-0.00639	0.00000	0.00002	0.00000	-0.00119
4	0.46672	-0.00797	0.00000	0.00076	0.00003	-0.00094
5	0.00000	0.00000	0.00000	-0.00037	0.00240	-0.00182
6	0.15804	-0.00329	0.00000	0.00075	0.00240	-0.00121
7	0.34517	-0.00480	0.00000	-0.00022	0.00001	-0.00100
8	0.46589	-0.00579	0.00000	0.00011	0.00000	-0.00009
9	0.34548	-0.05585	-0.00001	0.00049	-0.00001	0.00051
10	0.46919	-0.07844	0.00000	0.00078	0.00003	0.00012
11	0.25176	-0.04134	0.00000	0.00094	0.00240	-0.00121
12	0.34568	-0.01085	0.00000	0.00010	0.00000	-0.00119
13	0.34523	-0.07853	-0.00001	0.00057	-0.00001	0.00051
14	0.46792	-0.04266	0.00000	0.00087	0.00003	-0.00094
15	0.47006	-0.11617	0.00000	0.00094	0.00002	0.00012
16	0.06433	-0.01686	0.00000	0.00033	-0.00242	-0.00150
17	0.46646	0.00000	0.00000	0.00122	0.00003	0.00012
18	0.34605	0.00000	0.00000	0.00087	-0.00001	0.00051
19	0.15793	-0.16044	0.24214	0.00389	0.00001	0.00032
20	0.00000	0.00000	0.00000	0.00193	0.00001	-0.00243
21	0.15748	-0.00776	0.24214	0.00372	0.00001	0.00032
22	0.15758	-0.02361	0.23998	0.00345	-0.00036	0.00070
Condition S10=DL+0.525EQx						
1	0.00000	0.00000	0.00000	-0.00001	-0.00023	-0.00143
2	0.12423	0.00047	0.00000	0.00003	-0.00023	-0.00097
3	0.28111	0.00071	0.00000	0.00000	0.00000	-0.00106
4	0.42073	0.00077	0.00000	0.00008	0.00000	-0.00076
5	0.00000	0.00000	0.00000	-0.00007	0.00023	-0.00144
6	0.12395	-0.00124	0.00000	0.00014	0.00023	-0.00093
7	0.28064	-0.00182	0.00000	-0.00004	0.00000	-0.00102
8	0.42095	-0.00210	0.00000	0.00002	0.00000	-0.00060
9	0.28090	-0.00701	0.00000	0.00004	0.00000	0.00046

10	0.42120	-0.00980	0.00000	0.00010	0.00000	0.00028
11	0.13305	-0.00824	0.00000	0.00017	0.00023	-0.00093
12	0.28111	0.00023	0.00000	0.00001	0.00000	-0.00106
13	0.28087	-0.00913	0.00000	0.00005	0.00000	0.00046
14	0.42085	-0.00289	0.00000	0.00009	0.00000	-0.00076
15	0.42132	-0.01444	0.00000	0.00012	0.00000	0.00028
16	0.11510	-0.00094	0.00000	0.00003	-0.00023	-0.00097
17	0.42085	0.00000	0.00000	0.00015	0.00000	0.00028
18	0.28095	0.00000	0.00000	0.00012	0.00000	0.00046
19	0.12362	-0.01635	0.02349	0.00039	0.00000	-0.00014
20	0.00000	0.00000	0.00000	0.00018	0.00000	-0.00175
21	0.12359	-0.00102	0.02349	0.00037	0.00000	-0.00014
22	0.12364	-0.00234	0.02327	0.00034	-0.00004	0.00004
Condition S11=DL+0.75SL						
1	0.00000	0.00000	0.00000	-0.00012	-0.00239	0.00020
2	-0.00260	-0.00463	0.00000	0.00025	-0.00239	-0.00041
3	0.02444	-0.00785	0.00000	0.00002	0.00000	-0.00027
4	0.04136	-0.00960	0.00000	0.00076	0.00003	-0.00044
5	0.00000	0.00000	0.00000	-0.00037	0.00238	0.00009
6	-0.00237	-0.00231	0.00000	0.00075	0.00238	-0.00013
7	0.02484	-0.00340	0.00000	-0.00022	0.00001	-0.00009
8	0.04028	-0.00425	0.00000	0.00011	0.00000	0.00036
9	0.02462	-0.05458	-0.00001	0.00053	-0.00001	0.00012
10	0.04364	-0.07691	0.00000	0.00076	0.00003	-0.00008
11	0.09047	-0.04034	0.00000	0.00094	0.00238	-0.00013
12	0.02438	-0.01231	0.00000	0.00010	0.00000	-0.00027
13	0.02438	-0.07890	-0.00001	0.00061	-0.00001	0.00012
14	0.04256	-0.04429	0.00000	0.00087	0.00003	-0.00044
15	0.04448	-0.11397	0.00000	0.00092	0.00002	-0.00008
16	-0.09591	-0.01785	0.00000	0.00033	-0.00239	-0.00041
17	0.04098	0.00000	0.00000	0.00120	0.00003	-0.00008
18	0.02519	0.00000	0.00000	0.00080	-0.00001	0.00012
19	-0.00236	-0.15914	0.23977	0.00386	0.00001	0.00062
20	0.00000	0.00000	0.00000	0.00191	0.00001	-0.00021
21	-0.00274	-0.00744	0.23977	0.00370	0.00001	0.00062
22	-0.00273	-0.02431	0.23761	0.00342	-0.00036	0.00078
Condition S12=DL+0.525EQx+0.75SL						
1	0.00000	0.00000	0.00000	-0.00012	-0.00240	-0.00127
2	0.12412	-0.00364	0.00000	0.00025	-0.00240	-0.00135
3	0.30755	-0.00626	0.00000	0.00002	0.00000	-0.00132
4	0.46405	-0.00776	0.00000	0.00076	0.00003	-0.00116
5	0.00000	0.00000	0.00000	-0.00037	0.00239	-0.00138
6	0.12403	-0.00316	0.00000	0.00075	0.00239	-0.00107
7	0.30743	-0.00469	0.00000	-0.00022	0.00001	-0.00112
8	0.46330	-0.00573	0.00000	0.00011	0.00000	-0.00029
9	0.30749	-0.05499	-0.00001	0.00054	-0.00001	0.00058
10	0.46653	-0.07778	0.00000	0.00077	0.00003	0.00022
11	0.21721	-0.04121	0.00000	0.00094	0.00239	-0.00107
12	0.30749	-0.01073	0.00000	0.00010	0.00000	-0.00132
13	0.30725	-0.07949	-0.00001	0.00062	-0.00001	0.00058
14	0.46524	-0.04245	0.00000	0.00087	0.00003	-0.00116
15	0.46739	-0.11521	0.00000	0.00093	0.00002	0.00022
16	0.03039	-0.01686	0.00000	0.00033	-0.00240	-0.00135
17	0.46383	0.00000	0.00000	0.00121	0.00003	0.00022
18	0.30806	0.00000	0.00000	0.00081	-0.00001	0.00058
19	0.12377	-0.15966	0.24073	0.00387	0.00001	0.00040
20	0.00000	0.00000	0.00000	0.00192	0.00001	-0.00197

21	0.12334	-0.00756	0.24073	0.00371	0.00001	0.00040
22	0.12340	-0.02381	0.23857	0.00343	-0.00036	0.00074
Condition S13 $=0.6 \mathrm{DL}+0.6 \mathrm{Wx}$						
1	0.00000	0.00000	0.00000	-0.00001	-0.00014	-0.00251
2	0.21201	0.00102	0.00000	0.00002	-0.00014	-0.00146
3	0.42567	0.00146	0.00000	0.00000	0.00000	-0.00123
4	0.56478	0.00158	0.00000	0.00005	0.00000	-0.00069
5	0.00000	0.00000	0.00000	-0.00004	0.00014	-0.00250
6	0.21092	-0.00141	0.00000	0.00008	0.00014	-0.00144
7	0.42441	-0.00196	0.00000	-0.00002	0.00000	-0.00122
8	0.56507	-0.00218	0.00000	0.00001	0.00000	-0.00058
9	0.42509	-0.00339	0.00000	0.00002	0.00000	0.00054
10	0.56512	-0.00528	0.00000	0.00005	0.00000	0.00026
11	0.21638	-0.00561	0.00000	0.00010	0.00014	-0.00144
12	0.42567	0.00117	0.00000	0.00001	0.00000	-0.00123
13	0.42508	-0.00431	0.00000	0.00002	0.00000	0.00054
14	0.56486	-0.00061	0.00000	0.00006	0.00000	-0.00069
15	0.56518	-0.00781	0.00000	0.00006	0.00000	0.00026
16	0.20653	0.00017	0.00000	0.00002	-0.00014	-0.00146
17	0.56494	0.00000	0.00000	0.00008	0.00000	0.00026
18	0.42513	0.00000	0.00000	0.00007	0.00000	0.00054
19	0.21068	-0.00987	0.01408	0.00023	0.00000	-0.00036
20	0.00000	0.00000	0.00000	0.00011	0.00000	-0.00293
21	0.21067	-0.00068	0.01408	0.00022	0.00000	-0.00036
22	0.21077	-0.00009	0.01395	0.00021	-0.00002	-0.00007
Condition S14 $=0.6 \mathrm{LL+0.7EQx}$						
1	0.00000	0.00000	0.00000	-0.00001	-0.00014	-0.00192
2	0.16589	0.00099	0.00000	0.00002	-0.00014	-0.00126
3	0.37321	0.00158	0.00000	0.00000	0.00000	-0.00139
4	0.55824	0.00179	0.00000	0.00005	0.00000	-0.00098
5	0.00000	0.00000	0.00000	-0.00004	0.00014	-0.00192
6	0.16549	-0.00136	0.00000	0.00008	0.00014	-0.00124
7	0.37255	-0.00203	0.00000	-0.00002	0.00000	-0.00136
8	0.55862	-0.00233	0.00000	0.00001	0.00000	-0.00084
9	0.37291	-0.00450	0.00000	0.00003	0.00000	0.00061
10	0.55867	-0.00651	0.00000	0.00007	0.00000	0.00039
11	0.17092	-0.00556	0.00000	0.00010	0.00014	-0.00124
12	0.37321	0.00128	0.00000	0.00001	0.00000	-0.00139
13	0.37289	-0.00591	0.00000	0.00004	0.00000	0.00061
14	0.55832	-0.00040	0.00000	0.00006	0.00000	-0.00098
15	0.55875	-0.00957	0.00000	0.00008	0.00000	0.00039
16	0.16043	0.00014	0.00000	0.00002	-0.00014	-0.00126
17	0.55844	0.00000	0.00000	0.00009	0.00000	0.00039
18	0.37294	0.00000	0.00000	0.00008	0.00000	0.00061
19	0.16506	-0.00988	0.01404	0.00023	0.00000	-0.00024
20	0.00000	0.00000	0.00000	0.00011	0.00000	-0.00232
21	0.16504	-0.00070	0.01404	0.00022	0.00000	-0.00024
22	0.16511	-0.00104	0.01391	0.00021	-0.00002	0.00000

Direction of positive forces and moments

Node	Forces [Kipl			Moments [Kip*ft]		
	FX	FY	FZ	MX	MY	MZ
Condition DL=Dead Load						
1	0.12743	2.40190	0.02619	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.05250	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.06534	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.10098	0.00000	0.00000	0.00000
5	0.03928	1.88452	0.13272	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.07582	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.13935	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.02044	0.00000	0.00000	0.00000
17	0.00000	0.57273	-0.00002	0.00000	0.00000	0.00000
18	0.00000	0.64180	-0.00036	0.00000	0.00000	0.00000
20	-0.16671	4.25367	0.12433	0.00000	0.00000	0.00000
SUM	0.00000	9.75463	0.00000	0.00000	0.00000	0.00000
Condition LL=Live Load						
1	0.00945	0.14254	0.00001	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.00007	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.00005	0.00000	0.00000	0.00000
4	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
5	-0.01451	0.56131	0.00001	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.00006	0.00000	0.00000	0.00000
7	0.00000	0.00000	0.00006	0.00000	0.00000	0.00000
8	0.00000	0.00000	-0.00001	0.00000	0.00000	0.00000
17	0.00000	0.00007	0.00000	0.00000	0.00000	0.00000
18	0.00000	0.97485	0.00000	0.00000	0.00000	0.00000
20	0.00506	1.35123	0.00000	0.00000	0.00000	0.00000
SUM	0.00000	3.03000	0.00000	0.00000	0.00000	0.00000
Condition SL=Snow Load						
1	1.38455	26.24058	0.29118	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.67044	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.74510	0.00000	0.00000	0.00000
4	0.00000	0.00000	-1.13771	0.00000	0.00000	0.00000
5	0.49429	12.16879	0.78406	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.85311	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.82294	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.12032	0.00000	0.00000	0.00000
17	0.00000	6.36994	-0.00022	0.00000	0.00000	0.00000
18	0.00000	3.06029	0.04812	0.00000	0.00000	0.00000
20	-1.87884	41.65439	1.49564	0.00000	0.00000	0.00000
SUM	0.00000	89.49400	0.00000	0.00000	0.00000	0.00000

Condi	Nind in X					
1	-3.48186	-10.50497	0.00000	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.00001	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
4	0.00000	0.00000	0.00001	0.00000	0.00000	0.00000
5	-3.39287	9.32712	0.00000	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.00001	0.00000	0.00000	0.00000
7	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.00001	0.00000	0.00000	0.00000
17	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
18	0.00000	-0.00003	0.00000	0.00000	0.00000	0.00000
20	-7.99427	1.17789	0.00000	0.00000	0.00000	0.00000
SUM	-14.86900	0.00000	0.00000	0.00000	0.00000	0.00000
Condi	$\mathrm{x}=$ Seismic in					
1	-1.91768	-8.80800	0.00000	0.00000	0.00000	0.00000
2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.00003	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.00003	0.00000	0.00000	0.00000
5	-1.87047	7.66068	0.00000	0.00000	0.00000	0.00000
6	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
7	0.00000	0.00000	0.00003	0.00000	0.00000	0.00000
8	0.00000	0.00000	-0.00003	0.00000	0.00000	0.00000
17	0.00000	0.00006	0.00000	0.00000	0.00000	0.00000
18	0.00000	0.00003	0.00000	0.00000	0.00000	0.00000
20	-5.49885	1.14724	0.00000	0.00000	0.00000	0.00000
SUM	-9.28700	0.00000	0.00000	0.00000	0.00000	0.00000
Condi						
1	0.12743	2.40190	0.02619	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.05250	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.06534	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.10098	0.00000	0.00000	0.00000
5	0.03928	1.88452	0.13272	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.07582	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.13935	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.02044	0.00000	0.00000	0.00000
17	0.00000	0.57273	-0.00002	0.00000	0.00000	0.00000
18	0.00000	0.64180	-0.00036	0.00000	0.00000	0.00000
20	-0.16671	4.25367	0.12433	0.00000	0.00000	0.00000
SUM	0.00000	9.75463	0.00000	0.00000	0.00000	0.00000
Condi	DL+LL					
1	0.13688	2.54449	0.02620	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.05285	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.06540	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.10097	0.00000	0.00000	0.00000
5	0.02477	2.44578	0.13273	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.07614	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.13929	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.02043	0.00000	0.00000	0.00000
17	0.00000	0.57280	-0.00002	0.00000	0.00000	0.00000
18	0.00000	1.61665	-0.00015	0.00000	0.00000	0.00000
20	-0.16165	5.60491	0.12466	0.00000	0.00000	0.00000
SUM	0.00000	12.78463	0.00000	0.00000	0.00000	0.00000

Condition S3=DL+SL						
1	1.51193	28.64127	0.31738	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.74256	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.81061	0.00000	0.00000	0.00000
4	0.00000	0.00000	-1.23869	0.00000	0.00000	0.00000
5	0.53379	14.05409	0.91667	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.94777	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.96259	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.14085	0.00000	0.00000	0.00000
17	0.00000	6.94267	-0.00024	0.00000	0.00000	0.00000
18	0.00000	3.70209	0.06010	0.00000	0.00000	0.00000
20	-2.04572	45.90850	1.64624	0.00000	0.00000	0.00000
SUM	0.00000	99.24863	0.00000	0.00000	0.00000	0.00000
Condition S4=DL+0.75LL						
1	0.13452	2.50884	0.02620	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.05276	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.06538	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.10097	0.00000	0.00000	0.00000
5	0.02840	2.30547	0.13273	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.07606	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.13931	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.02044	0.00000	0.00000	0.00000
17	0.00000	0.57279	-0.00002	0.00000	0.00000	0.00000
18	0.00000	1.37294	-0.00020	0.00000	0.00000	0.00000
20	-0.16292	5.26710	0.12458	0.00000	0.00000	0.00000
SUM	0.00000	12.02713	0.00000	0.00000	0.00000	0.00000
Condition S5=DL+0.75SL						
1	1.16584	22.08286	0.24457	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.55025	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.62413	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.95425	0.00000	0.00000	0.00000
5	0.40993	11.01073	0.72071	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.71053	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.75661	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.11070	0.00000	0.00000	0.00000
17	0.00000	5.35018	-0.00019	0.00000	0.00000	0.00000
18	0.00000	2.93702	0.03269	0.00000	0.00000	0.00000
20	-1.57577	35.49434	1.23903	0.00000	0.00000	0.00000
SUM	0.00000	76.87513	0.00000	0.00000	0.00000	0.00000
Condition S6=DL+0.75LL+0.75SL						
1	1.17289	22.19004	0.24459	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.55267	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.62418	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.95425	0.00000	0.00000	0.00000
5	0.39908	11.43143	0.72072	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.71275	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.75660	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.11070	0.00000	0.00000	0.00000
17	0.00000	5.35024	-0.00019	0.00000	0.00000	0.00000
18	0.00000	3.66816	0.03442	0.00000	0.00000	0.00000
20	-1.57197	36.50776	1.24186	0.00000	0.00000	0.00000
SUM	0.00000	79.14763	0.00000	0.00000	0.00000	0.00000

Condi	0.6Wx					
1	-1.95185	-3.91212	0.02620	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.05232	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.06535	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.10097	0.00000	0.00000	0.00000
5	-2.00567	7.49062	0.13268	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.07626	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.13942	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.02047	0.00000	0.00000	0.00000
17	0.00000	0.57273	-0.00002	0.00000	0.00000	0.00000
18	0.00000	0.64178	-0.00022	0.00000	0.00000	0.00000
20	-4.96388	4.96162	0.12451	0.00000	0.00000	0.00000
SUM	-8.92140	9.75463	0.00000	0.00000	0.00000	0.00000
Condi	L+0.7EQx					
1	-1.20980	-3.77370	0.02619	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.05240	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.06537	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.10099	0.00000	0.00000	0.00000
5	-1.27452	7.25587	0.13269	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.07621	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.13940	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.02044	0.00000	0.00000	0.00000
17	0.00000	0.57277	-0.00002	0.00000	0.00000	0.00000
18	0.00000	0.64182	-0.00020	0.00000	0.00000	0.00000
20	-4.01658	5.05787	0.12453	0.00000	0.00000	0.00000
SUM	-6.50090	9.75462	0.00000	0.00000	0.00000	0.00000
Condi	L+0.75LL+	+0.75SL				
1	-0.37654	17.39172	0.24466	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.55156	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.62428	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.95426	0.00000	0.00000	0.00000
5	-1.14823	15.69173	0.72055	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.71680	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.75692	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.11079	0.00000	0.00000	0.00000
17	0.00000	5.35024	-0.00019	0.00000	0.00000	0.00000
18	0.00000	3.66814	0.03572	0.00000	0.00000	0.00000
20	-5.16628	37.04580	1.24373	0.00000	0.00000	0.00000
SUM	-6.69105	79.14763	0.00000	0.00000	0.00000	0.00000
Condi	DL+0.525E					
1	-0.87348	-2.22979	0.02619	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.05243	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.06536	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.10099	0.00000	0.00000	0.00000
5	-0.94783	5.91304	0.13270	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.07612	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.13938	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.02044	0.00000	0.00000	0.00000
17	0.00000	0.57276	-0.00002	0.00000	0.00000	0.00000
18	0.00000	0.64181	-0.00024	0.00000	0.00000	0.00000
20	-3.05437	4.85680	0.12448	0.00000	0.00000	0.00000
SUM	-4.87568	9.75463	0.00000	0.00000	0.00000	0.00000

	+0.75S					
1	1.16584	22.08286	0.24457	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.55025	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.62413	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.95425	0.00000	0.00000	0.00000
5	0.40993	11.01073	0.72071	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.71053	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.75661	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.11070	0.00000	0.00000	0.00000
17	0.00000	5.35018	-0.00019	0.00000	0.00000	0.00000
18	0.00000	2.93702	0.03269	0.00000	0.00000	0.00000
20	-1.57577	35.49434	1.23903	0.00000	0.00000	0.00000
SUM	0.00000	76.87513	0.00000	0.00000	0.00000	0.00000
Cond	DL+0.525E	SL				
1	0.17196	17.39505	0.24463	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.54970	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.62419	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.95427	0.00000	0.00000	0.00000
5	-0.58497	15.08873	0.72057	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.71406	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.75689	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.11077	0.00000	0.00000	0.00000
17	0.00000	5.35021	-0.00019	0.00000	0.00000	0.00000
18	0.00000	2.93703	0.03406	0.00000	0.00000	0.00000
20	-4.46266	36.10410	1.24087	0.00000	0.00000	0.00000
SUM	-4.87568	76.87513	0.00000	0.00000	0.00000	0.00000
Condi	0.6DL+0.6					
1	-2.00302	-4.86843	0.01572	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.03120	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.03921	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.06058	0.00000	0.00000	0.00000
5	-2.02106	6.73287	0.07961	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.04558	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.08365	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.01228	0.00000	0.00000	0.00000
17	0.00000	0.34364	-0.00001	0.00000	0.00000	0.00000
18	0.00000	0.38506	-0.00025	0.00000	0.00000	0.00000
20	-4.89731	3.25964	0.07445	0.00000	0.00000	0.00000
SUM	-8.92140	5.85278	0.00000	0.00000	0.00000	0.00000
Cond	0.6DL+0.7					
1	-1.26100	-4.73043	0.01572	0.00000	0.00000	0.00000
2	0.00000	0.00000	-0.03125	0.00000	0.00000	0.00000
3	0.00000	0.00000	0.03923	0.00000	0.00000	0.00000
4	0.00000	0.00000	-0.06060	0.00000	0.00000	0.00000
5	-1.29005	6.49851	0.07962	0.00000	0.00000	0.00000
6	0.00000	0.00000	-0.04555	0.00000	0.00000	0.00000
7	0.00000	0.00000	-0.08362	0.00000	0.00000	0.00000
8	0.00000	0.00000	0.01226	0.00000	0.00000	0.00000
17	0.00000	0.34368	-0.00001	0.00000	0.00000	0.00000
18	0.00000	0.38510	-0.00024	0.00000	0.00000	0.00000
20	-3.94986	3.35593	0.07447	0.00000	0.00000	0.00000
SUM	-6.50090	5.85278	0.00000	0.00000	0.00000	0.00000

Page 58agell 4

Current Date: 5/15/2017 1:42 PM
Units system: English
File name: T:IStructural\2017 Structural Jobs\2017-2259_BA 1606 Yehuda Res\2017-2259.etz\
Steel Code Check

Report: Summary - For all selected load conditions

Load conditions to be included in design :
D1 $=1.4 \mathrm{DL}$
D2=1.2DL+1.6LL
D3 $=1.2 \mathrm{DL}+0.5 \mathrm{SL}$
D4=1.2DL+1.6LL+0.5SL
D5=1.2DL+1.6SL
D6=1.2DL+0.5Wx
D7=1.2DL+1.6SL+LL
$\mathrm{D} 8=1.2 \mathrm{DL}+1.6 \mathrm{SL}+0.5 \mathrm{Wx}$
D9 $=1.2 \mathrm{DL}+\mathrm{Wx}$
D10=1.2DL+Wx+0.5SL
D11=1.2DL+Wx+LL
D12=1.2DL+Wx+LL+0.5SL
D13=1.2DL+0.2SL
D14=1.2DL+EQx
D15=1.2DL+LL+0.2SL
D16=1.2DL+EQx+0.2SL
D17=1.2DL+EQx+LL
D18=1.2DL+EQx+LL+0.2SL
D19 $=0.9 \mathrm{DL}+\mathrm{Wx}$
D20=0.9DL+EQx

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
Beam	W 10X54	7	D1 at 75.00\%	0.02	OK	Eq. H1-1b
			D10 at 0.00\%	0.24	OK	Eq. H1-1b
			D11 at 0.00\%	0.29	OK	Eq. H1-1b
			D12 at 0.00\%	0.24	OK	Eq. H1-1b
			D13 at 75.00\%	0.05	OK	Eq. H1-1b
			D14 at 0.00\%	0.20	OK	Eq. H1-1b
			D15 at 75.00\%	0.05	OK	Eq. H1-1b
			D16 at 0.00\%	0.18	OK	Eq. H1-1b
			D17 at 0.00\%	0.20	OK	Eq. H1-1b
			D18 at 0.00\%	0.18	OK	Eq. H1-1b
			D19 at 0.00\%	0.29	OK	Eq. H1-1b
			D2 at 81.25\%	0.02	OK	Eq. H1-1b
			D20 at 0.00\%	0.20	OK	Eq. H1-1b
			D3 at 75.00\%	0.10	OK	Eq. H1-1b
			D4 at 75.00\%	0.11	OK	Eq. H1-1b
			D5 at 75.00\%	0.31	OK	Eq. H1-1b
			D6 at 0.00\%	0.14	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
			D7 at 81.25\%	0.32	OK	Eq. H1-1b
			D8 at 62.50%	0.31	OK	Eq. H1-1b
			D9 at 0.00\%	0.29	OK	Eq. H1-1b
		8		0.01		Eq. H1-1b
			D10 at 0.00\%	0.15	OK	Eq. H1-1b
			D11 at 0.00\%	0.18	OK	Eq. H1-1b
			D12 at 0.00\%	0.15	OK	Eq. H1-1b
			D13 at 0.00\%	0.02	OK	Eq. H1-1b
			D14 at 0.00\%	0.17	OK	Eq. H1-1b
			D15 at 0.00\%	0.02	OK	Eq. H1-1b
			D16 at 0.00\%	0.16	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$

	D17 at 0.00\%	0.17	OK	Eq. H1-1b
	D18 at 0.00\%	0.16	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D19 at 0.00\%	0.18	OK	Eq. H1-1b
	D2 at 0.00\%	0.01	OK	Eq. H 1 -1b
	D20 at 0.00\%	0.18	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D3 at 0.00\%	0.04	OK	Eq. H 1 -1b
	D4 at 0.00\%	0.04	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D5 at 0.00\%	0.10	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D6 at 0.00\%	0.09	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D7 at 0.00\%	0.11	OK	Eq. H1-1b
	D8 at 68.75\%	0.10	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D9 at 0.00\%	0.18	OK	Eq. H1-1b
9	D1 at 100.00\%	0.01	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D10 at 100.00\%	0.20	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D11 at 100.00\%	0.18	OK	Eq. H1-1b
	D12 at 100.00\%	0.21	OK	Eq. H1-1b
	D13 at 100.00\%	0.02	OK	Eq. H1-1b
	D14 at 100.00\%	0.16	OK	Eq. H1-1b
	D15 at 100.00\%	0.02	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D16 at 100.00\%	0.18	OK	Eq. H1-1b
	D17 at 100.00\%	0.17	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D18 at 100.00\%	0.18	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D19 at 100.00\%	0.17	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D2 at 100.00\%	0.01	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D20 at 100.00\%	0.16	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D3 at 100.00\%	0.04	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D4 at 100.00\%	0.05	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D5 at 100.00\%	0.11	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D6 at 100.00\%	0.09	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D7 at 100.00\%	0.11	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D8 at 100.00\%	0.19	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D9 at 100.00\%	0.17	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
10	D1 at 0.00\%	0.01	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D10 at 18.75\%	0.07	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D11 at 0.00\%	0.09	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D12 at 25.00%	0.07	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D13 at 0.00\%	0.02	OK	Eq. H 1 -1b
	D14 at 0.00\%	0.12	OK	Eq. H1-1b
	D15 at 0.00\%	0.02	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D16 at 0.00\%	0.11	OK	Eq. H1-1b
	D17 at 0.00\%	0.11	OK	Eq. H1-1b
	D18 at 0.00\%	0.10	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D19 at 0.00\%	0.10	OK	Eq. H1-1b
	D2 at 0.00\%	0.01	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D20 at 0.00\%	0.12	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D3 at 0.00\%	0.03	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D4 at 0.00\%	0.04	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D5 at 0.00\%	0.10	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D6 at 0.00\%	0.04	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D7 at 0.00\%	0.10	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D8 at 75.00\%	0.08	OK	Eq. H1-1b
	D9 at 0.00\%	0.09	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
11	D1 at 100.00\%	0.01	OK	Eq. H 1 -1b
	D10 at 100.00\%	0.12	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D11 at 100.00\%	0.09	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D12 at 100.00\%	0.12	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D13 at 100.00\%	0.02	OK	Eq. H1-1b
	D14 at 100.00\%	0.11	OK	Eq. H1-1b
	D15 at 100.00\%	0.02	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D16 at 100.00\%	0.12	OK	Eq. H 1 -1b

		D17 at 100.00\%	0.11	OK	Eq. H1-1b
		D18 at 100.00\%	0.12	OK	Eq. H1-1b
		D19 at 100.00\%	0.08	OK	Eq. H1-1b
		D2 at 100.00\%	0.01	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		D20 at 100.00\%	0.10	OK	Eq. H1-1b
		D3 at 100.00\%	0.04	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		D4 at 100.00\%	0.05	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		D5 at 100.00\%	0.12	OK	Eq. H1-1b
		D6 at 100.00\%	0.05	OK	Eq. H1-1b
		D7 at 100.00\%	0.12	OK	Eq. H1-1b
		D8 at 100.00\%	0.16	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		D9 at 100.00\%	0.09	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	21	D1 at 0.00\%	0.03	OK	Eq. H1-1b
		D10 at 100.00\%	0.30	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		D11 at 100.00\%	0.29	OK	Eq. H1-1b
		D12 at 100.00\%	0.30	OK	Eq. H1-1b
		D13 at 0.00\%	0.06	OK	Eq. H1-1b
		D14 at 100.00\%	0.21	OK	Eq. H1-1b
		D15 at 0.00\%	0.07	OK	Eq. H 1 -1b
		D16 at 100.00\%	0.21	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		D17 at 100.00\%	0.21	OK	Eq. H 1 -1b
		D18 at 100.00\%	0.22	OK	Eq. H1-1b
		D19 at 100.00\%	0.29	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		D2 at 0.00\%	0.03	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		D20 at 100.00\%	0.21	OK	Eq. H1-1b
		D3 at 0.00\%	0.12	OK	Eq. H1-1b
		D4 at 0.00\%	0.13	OK	Eq. H1-1b
		D5 at 0.00\%	0.37	OK	Eq. H1-1b
		D6 at 100.00\%	0.15	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		D7 at 0.00\%	0.38	OK	Eq. H1-1b
		D8 at 0.00\%	0.27	OK	Eq. H1-1b
		D9 at 100.00\%	0.29	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	23	D1 at 100.00\%	0.06	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D10 at 100.00\%	0.38	OK	Eq. H1-1b
		D11 at 100.00\%	0.23	OK	Eq. H1-1b
		D12 at 100.00\%	0.39	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D13 at 100.00\%	0.14	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D14 at 100.00\%	0.17	OK	Eq. H1-1b
		D15 at 100.00\%	0.16	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D16 at 100.00\%		OK	Eq. H1-1b
		D17 at 100.00\%	0.17	OK	Eq. H1-1b
		D18 at 100.00\%	0.23	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D19 at 100.00\%	0.22	OK	Eq. H1-1b
		D2 at 100.00\%	0.08	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D20 at 100.00\%	0.16	OK	Eq. H1-1b
		D3 at 100.00\%	0.27	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D4 at 100.00\%	0.30	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D5 at 100.00\%	0.75	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D6 at 100.00\%	0.13	OK	Eq. H1-1b
		D7 at 100.00\%	0.77	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D8 at 100.00\%	0.81	OK	Sec. G2, Sec. G2.1(a), T.

B4.1					
		D9 at 100.00\%	0.23	OK	Eq. H1-1b
Cantilever Beam	12	D1 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D10 at 0.00\%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D11 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D12 at 0.00\%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D13 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D14 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D15 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D16 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D17 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D18 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D19 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T,
B4.1					
		D2 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D20 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D3 at 0.00\%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D4 at 0.00\%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D5 at 0.00\%	0.18	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D6 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D7 at 0.00\%	0.18	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D8 at 0.00\%	0.18	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D9 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
	13	D1 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D10 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D11 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D12 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D13 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D14 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D15 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D16 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D17 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D18 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.

B4. 1 B4.1 B4. 1 B4. 1 B4. 1 B4. 1 B4. 1

D19 at 0.00%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D2 at 0.00%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D20 at 0.00%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D3 at 0.00%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
D4 at 0.00%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
D5 at 0.00%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
D6 at 0.00%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D7 at 0.00%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
D8 at 0.00%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
D9 at 0.00%	0.00	OK	Sec. G2, Sec. G2.1(a), T.

D1 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
D10 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
D11 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D12 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
D13 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
D14 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D15 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
D16 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
D17 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D18 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
D19 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D2 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D20 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D3 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
D4 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
D5 at 0.00\%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
D6 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
D7 at 0.00\%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
D8 at 0.00\%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
D9 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.

		D2 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D20 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D3 at 0.00\%	0.06	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D4 at 0.00\%	0.06	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D5 at 0.00\%	0.16	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D6 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D7 at 0.00\%	0.16	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D8 at 0.00\%	0.16	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D9 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
	17	D1 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D10 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D11 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D12 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D13 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D14 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D15.at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D16 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D17 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D18 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D19 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D2 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D20 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D3 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D4 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D5 at 0.00\%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D6 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T,
B4.1					
		D7 at 0.00\%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D8 at 0.00\%	0.07	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D9 at 0.00\%	0.00	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
	18	D1 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D10 at 0.00\%	0.08	OK	Sec. G2, Sec. G2.1(a), T.

B4.1					
		D11 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D12 at 0.00\%	0.08	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D13 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D14 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D15 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D16 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D17 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D18 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D19 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D2 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D20 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D3 at 0.00\%	0.08	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D4 at 0.00\%	0.08	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D5 at 0.00\%	0.21	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D6 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D7 at 0.00\%	0.21	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D8 at 0.00\%	0.21	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D9 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
	19	D1 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D10 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D11 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D12 at 0.00\%	0.06	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D13 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D14 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D15 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D16 at 0.00\%	0.02	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D17 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D18 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D19 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D2 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D20 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.

B4.1					
		D3 at 0.00\%	0.04	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D4 at 0.00\%	0.06	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D5 at 0.00\%	0.11	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D6 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D7 at 0.00\%	0.12	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D8 at 0.00\%	0.11	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D9 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
	20	D1 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D10 at 0.00\%	0.06	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D11 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D12 at 0.00\%	0.06	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D13 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D14 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D15 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D16 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D17 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D18 at 0.00\%	0.03	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D19 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D2 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D20 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D3 at 0.00\%	0.06	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D4 at 0.00\%	0.06	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D5 at 0.00\%	0.16	OK	Sec. G2, Sec. G2.1(a), T.
84.1					
		D6 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D7 at 0.00\%	0.16	OK	Sec. G2, Sec. G2.1(a), T.
B4. 1					
		D8 at 0.00\%	0.16	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
		D9 at 0.00\%	0.01	OK	Sec. G2, Sec. G2.1(a), T.
B4.1					
Column	1	D1 at 100.00\%	0.01	OK	Eq. H1-1b
		D10 at 100.00\%	0.15	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
		D11 at 100.00\%	0.17	OK	Eq. H1-1b
		D12 at 100.00\%	0.15	OK	Eq. H1-1b
		D13 at 100.00\%	0.03	OK	Eq. H1-1b
		D14 at 100.00\%	0.09	OK	Eq. H1-1b

	D15 at 100.00\%	0.03	OK	Eq. H1-1b
	D16 at 100.00\%	0.08	OK	Eq. H1-1b
	D17 at 100.00\%	0.09	OK	Eq. H1-1b
	D18 at 100.00\%	0.08	OK	Eq. H1-1b
	D19 at 100.00\%	0.17	OK	Eq. H1-1b
	D2 at 100.00\%	0.01	OK	Eq. H1-1b
	D20 at 100.00\%	0.10	OK	Eq. H1-1b
	D3 at 100.00\%	0.06	OK	Eq. H1-1b
	D4 at 100.00\%	0.06	OK	Eq. H1-1b
	D5 at 100.00\%	0.22	OK	Eq. H1-1b
	D6 at 100.00\%	0.08	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D7 at 100.00\%	0.22	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D8 at 100.00\%	0.13	OK	Eq. H1-1b
	D9 at 100.00\%	0.17	OK	Eq. H1-1b
2	D1 at 0.00\%	0.01	OK	Eq. H1-1b
	D10 at 100.00\%	0.15	OK	Eq. H1-1b
	D11 at 100.00\%	0.15	OK	Eq. H1-1b
	D12 at 100.00\%	0.15	OK	Eq. H1-1b
	D13 at 0.00\%	0.02	OK	Eq. H1-1b
	D14 at 0.00\%	0.12	OK	Eq. H1-1b
	D15 at 0.00\%	0.02	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D16 at 0.00\%	0.12	OK	Eq. H1-1b
	D17 at 0.00\%	0.12	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D18 at 0.00\%	0.12	OK	Eq. H1-1b
	D19 at 100.00\%	0.15	OK	Eq. H1-1b
	D2 at 0.00\%	0.01	OK	Eq. H1-1b
	D20 at 0.00\%	0.12	OK	Eq. H1-1b
	D3 at 0.00\%	0.04	OK	Eq. H1-1b
	D4 at 0.00\%	0.04	OK	Eq. H1-1b
	D5 at 0.00\%	0.14	OK	Eq. H1-1b
	D6 at 100.00\%	0.08	OK	Eq. H1-1b
	D7 at 0.00\%	0.14	OK	Eq. H1-1b
	D8 at 100.00\%	0.10	OK	Eq. H1-1b
	D9 at 100.00\%	0.15	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
3	D1 at 100.00\%	0.02	OK	Eq. H1-1b
	D10 at 100.00\%	0.13	OK	Eq. H1-1b
	D11 at 100.00\%	0.10	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D12 at 100.00\%	0.13	OK	Eq. H1-1b
	D13 at 100.00\%	0.05	OK	Eq. H1-1b
	D14 at 100.00\%	0.13	OK	Eq. H1-1b
	D15 at 100.00\%	0.05	OK	Eq. H1-1b
	D16 at 100.00\%	0.13	OK	Eq. H1-1b
	D17 at 100.00\%	0.12	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D18 at 100.00\%	0.13	OK	Eq. H1-1b
	D19 at 100.00\%	0.10	OK	Eq. H1-1b
	D2 at 100.00\%	0.02	OK	Eq. H1-1b
	D20 at 100.00\%	0.13	OK	Eq. H1-1b
	D3 at 100.00\%	0.10	OK	Eq. H1-1b
	D4 at 100.00\%	0.10	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D5 at 100.00\%	0.27	OK	Eq. H1-1b
	D6 at 100.00\%	0.05	OK	Eq. H1-1b
	D7 at 100.00\%	0.28	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D8 at 100.00\%	0.22	OK	Eq. H1-1b
	D9 at 100.00\%	0.10	OK	Eq. H1-1b
4	D1 at 100.00\%	0.02	OK	Eq. H 1 -1b
	D10 at 100.00\%	0.23	OK	Eq. H1-1b
	D11 at 100.00\%	0.18	OK	Eq. H1-1b
	D12 at 100.00\%	0.23	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
	D13 at 100.00\%	0.04	OK	Eq. H1-1b
	D14 at 100.00\%	0.11	OK	Eq. H1-1b

D15 at 100.00\%	0.04	OK	Eq. H 1 -1b
D16 at 100.00\%	0.12	OK	Eq. H1-1b
D17 at 100.00\%	0.11	OK	Eq. H1-1b
D18 at 100.00\%	0.12	OK	Eq. H1-1b
D19 at 100.00\%	0.18	OK	Eq. H1-1b
D2 at 100.00\%	0.02	OK	Eq. H1-1b
D20 at 100.00\%	0.10	OK	Eq. H1-1b
D3 at 100.00\%	0.08	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
D4 at 100.00\%	0.08	OK	Eq. H1-1b
D5 at 100.00\%	0.21	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
D6 at 100.00\%	0.10	OK	Eq. H1-1b
D7 at 100.00\%	0.21	OK	Eq. H 1 -1b
D8 at 100.00\%	0.22	OK	Eq. H1-1b
D9 at 100.00\%	0.18	OK	Eq. H 1 -1b
D1 at 0.00\%	0.02	OK	Eq. H1-1b
D10 at 0.00\%	0.20	OK	Eq. H1-1b
D11 at 100.00\%	0.16	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
D12 at 0.00\%	0.20	OK	Eq. H1-1b
D13 at 0.00\%	0.04	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
D14 at 0.00\%	0.14	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
D15 at 0.00\%	0.04	OK	Eq. H1-1b
D16 at 0.00\%	0.16	OK	Eq. H1-1b
D17 at 0.00\%	0.14	OK	Eq. H1-1b
D18 at 0.00\%	0.16	OK	Eq. H 1 -1b
D19 at 100.00\%	0.16	OK	Eq. H 1 -1b
D2 at 0.00\%	0.02	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
D20 at 0.00\%	0.13	OK	Eq. H1-1b
D3 at 0.00\%	0.07	OK	Eq. H1-1b
D4 at 0.00\%	0.07	OK	Eq. H1-1b
D5 at 0.00\%	0.18	OK	Eq. H 1 -1b
D6 at 100.00\%	0.08	OK	Eq. H1-1b
D7 at 0.00\%	0.19	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
D8 at 0.00\%	0.25	OK	Eq. H1-1b
D9 at 100.00\%	0.16	OK	Eq. H 1 -1b
D1 at 100.00\%	0.01	OK	Eq. H 1 -1b
D10 at 100.00\%	0.13	OK	Eq. H1-1b
D11 at 100.00\%	0.09	OK	Eq. H 1 -1b
D12 at 100.00\%	0.13	OK	Eq. H1-1b
D13 at 100.00\%	0.02	OK	Eq. H 1 -1b
D14 at 100.00\%	0.11	OK	Eq. H 1 -1b
D15 at 100.00\%	0.02	OK	Eq. H 1 -1b
D16 at 100.00\%	0.12	OK	Eq. H 1 -1b
D17 at 100.00\%	0.11	OK	Eq. H1-1b
D18 at 100.00\%	0.12	OK	Eq. H1-1b
D19 at 100.00\%	0.09	OK	Eq. H1-1b
D2 at 0.00\%	0.01	OK	Eq. H1-1b
D20 at 100.00\%	0.11	OK	Eq. H1-1b
D3 at 100.00\%	0.05	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
D4 at 100.00\%	0.05	OK	Eq. H1-1b
D5 at 100.00\%	0.13	OK	Eq. H1-1b
D6 at 100.00\%	0.05	OK	Eq. H1-1b
D7 at 100.00\%	0.13	OK	Eq. H1-1b
D8 at 100.00\%	0.17	OK	Eq. $\mathrm{H} 1-1 \mathrm{~b}$
D9 at 100.00\%	0.09	OK	Eq. H1-1b
D1 at 100.00\%	0.03	OK	Eq. H1-1b
D10 at 100.00\%	0.56	OK	Eq. H1-1b
D11 at 100.00\%	0.41	OK	Eq. H1-1b
D12 at 100.00\%	0.56	OK	Eq. H1-1b
D13 at 100.00\%	0.07	OK	Eq. H1-1b
D14 at 100.00\%	0.29	OK	Eq. H1-1b

D15 at 100.00%	0.07	OK	Eq. H1-1b
D16 at 100.00%	0.34	OK	Eq. H1-1b
D17 at 100.00%	0.29	OK	Eq. H1-1b
D18 at 100.00%	0.34	OK	Eq. H1-1b
D19 at 100.00%	0.40	OK	Eq. H1-1b
D2 at 100.00%	0.02	OK	Eq. H1-1b
D20 at 100.00%	0.28	OK	Eq. H1-1b
D3 at 100.00%	0.17	OK	Eq. H1-1b
D4 at 100.00%	0.17	OK	Eq. H1-1b
D5 at 100.00%	0.48	OK	Eq. H1-1b
D6 at 100.00%	0.22	OK	Eq. H1-1b
D7 at 100.00%	0.48	OK	Eq. H1-1b
D8 at 100.00%	0.68	OK	Eq. H1-1b
D9 at 100.00%	0.41	OK	Eq. H1-1b

Current Date: 5/15/2017 1:43 PM
Units system: English
File name: T:\Structural\2017 Structural Jobs\2017-2259_BA 1606 Yehuda Res\2017-2259.etz

Steel connections

Results

Connection name Connection ID	$: 14$

Family: Beam - Column flange (BCF)
Type: Directly welded flanges
Description: Smart DW 1
Design code: AISC 360-10 LRFD

DEMANDS

Description	Beam			Right beam		Left beam		$\begin{array}{r} \text { Column } \\ \begin{aligned} \mathrm{Pu} \\ {[\mathrm{Kip}] } \end{aligned} \end{array}$	$\frac{\text { Panel }}{\mathrm{Vu}}$ [Kip]	Load type
	$\begin{array}{r} \mathrm{Ru} \\ {[\mathrm{Kip]}} \end{array}$	$\begin{array}{r} \mathrm{Pu} \\ {[\mathrm{Kip]}} \end{array}$	$\begin{array}{r} \mathrm{Mu} \\ {\left[\mathrm{Kip}^{*} \times t\right]} \end{array}$	PufTop [Kip]	PufBot [Kip]	PufTop [Kip]	PufBot [Kip]			
DL	0.00	-0.04	-1.57	1.97	-2.01	0.00	0.00	-2.40	1.88	Design
LL	0.00	0.03	-0.31	0.41	-0.38	0.00	0.00	-0.14	0.41	Design
SL	0.00	-0.55	-16.25	20.28	-20.83	0.00	0.00	-26.24	19.44	Design
Wx	0.00	-6.81	48.20	-64.39	57.58	0.00	0.00	10.50	60.90	Design
EQx	0.00	-3.66	34.62	-45.63	41.97	0.00	0.00	8.81	43.71	Design
D1	0.00	-0.05	-2.20	2.76	-2.81	0.00	0.00	-3.36	2.63	Design
D2	0.00	0.01	-2.39	3.03	-3.02	0.00	0.00	-3.11	2.86	Design
D3	0.00	-0.32	-10.01	12.51	-12.83	0.00	0.00	-16.00	11.98	Design
D4	0.00	-0.26	-10.52	13.17	-13.44	0.00	0.00	-16.23	12.58	Design
D5	0.00	-0.92	-27.84	34.76	-35.68	0.00	0.00	-44.86	33.31	Design
D6	0.00	-3.46	22.27	-29.90	26.45	0.00	0.00	2.38	28.33	Design
D7	0.00	-0.89	-28.16	35.18	-36.07	0.00	0.00	-45.00	33.69	Design
D8	0.00	-4.37	-2.98	1.59	-5.96	0.00	0.00	-39.45	5.30	Design
D9	0.00	-6.86	46.42	-62.16	55.31	0.00	0.00	7.64	58.83	Design
D10	0.00	-7.15	38.73	-52.57	45.42	0.00	0.00	-5.39	49.95	Design
D11	0.00	-6.82	46.13	-61.78	54.95	0.00	0.00	7.51	58.46	Design
D12	0.00	-7.12	38.44	-52.19	45.07	0.00	0.00	-5.52	49.57	Design
D13	0.00	-0.15	-5.14	6.42	-6.58	0.00	0.00	-8.13	6.15	Design
D14	0.00	-3.71	32.81	-43.37	39.66	0.00	0.00	5.94	41.60	Design
D15	0.00	-0.12	-5.45	6.84	-6.96	0.00	0.00	-8.27	6.52	Design
D16	0.00	-3.83	29.68	-39.47	35.64	0.00	0.00	0.72	37.99	Design
D17	0.00	-3.68	32.51	-42.98	39.30	0.00	0.00	5.80	41.22	Design
D18	0.00	-3.79	29.39	-39.08	35.28	0.00	0.00	0.58	37.60	Design
D19	0.00	-6.84	46.87	-62.72	55.87	0.00	0.00	8.36	59.35	Design
D20	0.00	-3.70	33.26	-43.93	40.23	0.00	0.00	6.66	42.13	Design

GEOMETRIC CONSIDERATIONS

Dimensions	Unit	Value	Min. value	Max. value	Sta.	References
Transverse stiffeners						
Length	[in]	8.87	4.43	--	\checkmark	Sec. J10.8
Width	[in]	4.50	3.15	--	\checkmark	Sec. J10.8
Thickness	[in]	0.38	0.31	--	\checkmark	Sec. J10.8
Weld size	[1/16in]	4	3	--	\checkmark	DG 13 Eq. 4.3-6
Doublers						
Recommended thickness for beveling and welding	[in]	0.50	0.26	--	\checkmark	Sec. G2.1,

- Width of beam flange should be shorter than available with on support

DESIGN CHECK Verification	Unit	Capacity	Demand	Ctrl EQ	Ratio	References
Support						
Panel web shear	[Kip]	327.58	60.90	Wx	0.19 ¢	Sec. J10-6, Eq. J10-11
Support - right side						
Top local flange bending	[Kip]	191.43	35.18	D7	0.18 ©	Eq. J10-1
Bottom local flange bending	[Kip]	191.43	57.58	Wx	0.30)	Eq. J10-1
Local web yielding	[Kip]	423.77	64.39	Wx	0.15 (Eq. J10-2
Transverse stiffeners - top						
Yielding strength due to axial load	[Kip]	85.05	0.00	DL	0.00 (Eq. J4-1
Compression	[Kip]	73.25	0.00	DL	0.00 (Sec. J4.4
Flange weld capacity	[Kip]	108.59	0.00	DL	0.00 (Eq. J2-4
Web weld capacity	[Kip]	169.73	0.00	DL	0.00 ©	Eq. J2-4
Transverse stiffeners - bottom						
Yielding strength due to axial load	[Kip]	85.05	0.00	DL	0.00 ()	Eq. J4-1
Compression	[Kip]	73.25	0.00	DL	0.00 ©	Sec. J4.4
Flange weld capacity	[Kip]	108.59	0.00	DL	0.00 (Eq. J2-4
Web weld capacity	[Kip]	169.73	0.00	DL	0.00 (Eq. J2-4
Global critical strength ratio	0.30					

Current Date: 5/15/2017 1:43 PM
Units system: English
File name: T:\Structurall2017 Structural Jobs\2017-2259_BA 1606 Yehuda Res\2017-2259.etz\
Steel comnections

Results

	$:$ DW BCF
Connection name	$: 14$
Connection ID	

Family: Beam - Column flange (BCF)
Type: Directly welded flanges
Description: Smart DW 1
Design code: AISC 360-10 LRFD, AISC 341-10 LRFD

DEMANDS				Right beam		Left beam		$\begin{gathered} \text { Column } \\ \hline \mathbf{P u} \\ {[\mathrm{Kip}]} \end{gathered}$	Panel	Load type
Description	$\begin{array}{r} \mathrm{Ru} \\ {[\mathrm{Kip]}} \end{array}$	$\begin{gathered} \mathrm{Pu} \\ {[\mathrm{Kip]}} \end{gathered}$	$\begin{array}{r} \mathrm{Mu} \\ {[\text { Kip*tt] }} \end{array}$	Puftop [Kip]	PufBot [Kip]	PufTop [Kip]	PufBot [Kip]		$\begin{array}{r} \mathrm{Vu} \\ {[\mathrm{Kip]}} \end{array}$	
DL	0.00	-0.04	-1.57	1.97	-2.01	0.00	0.00	-2.40	341.70	Design
LL	0.00	0.03	-0.31	0.41	-0.38	0.00	0.00	-0.14	341.70	Design
SL	0.00	-0.55	-16.25	20.28	-20.83	0.00	0.00	-26.24	341.70	Design
Wx	0.00	-6.81	48.20	-64.39	57.58	0.00	0.00	10.50	341.70	Design
EQx	0.00	-3.66	34.62	-45.63	41.97	0.00	0.00	8.81	341.70	Design
D1	0.00	-0.05	-2.20	2.76	-2.81	0.00	0.00	-3.36	341.70	Design
D2	0.00	0.01	-2.39	3.03	-3.02	0.00	0.00	-3.11	341.70	Design
D3	0.00	-0.32	-10.01	12.51	-12.83	0.00	0.00	-16.00	341.70	Design
D4	0.00	-0.26	-10.52	13.17	-13.44	0.00	0.00	-16.23	341.70	Design
D5	0.00	-0.92	-27.84	34.76	-35.68	0.00	0.00	-44.86	341.70	Design
D6	0.00	-3.46	22.27	-29.90	26.45	0.00	0.00	2.38	341.70	Design
D7	0.00	-0.89	-28.16	35.18	-36.07	0.00	0.00	-45.00	341.70	Design
D8	0.00	-4.37	-2.98	1.59	-5.96	0.00	0.00	-39.45	341.70	Design
D9	0.00	-6.86	46.42	-62.16	55.31	0.00	0.00	7.64	341.70	Design
D10	0.00	-7.15	38.73	-52.57	45.42	0.00	0.00	-5.39	341.70	Design
D11	0.00	-6.82	46.13	-61.78	54.95	0.00	0.00	7.51	341.70	Design
D12	0.00	-7.12	38.44	-52.19	45.07	0.00	0.00	-5.52	341.70	Design
D13	0.00	-0.15	-5.14	6.42	-6.58	0.00	0.00	-8.13	341.70	Design
D14	0.00	-3.71	32.81	-43.37	39.66	0.00	0.00	5.94	341.70	Design
D15	0.00	-0.12	-5.45	6.84	-6.96	0.00	0.00	-8.27	341.70	Design
D16	0.00	-3.83	29.68	-39.47	35.64	0.00	0.00	0.72	341.70	Design
D17	0.00	-3.68	32.51	-42.98	39.30	0.00	0.00	5.80	341.70	Design
D18	0.00	-3.79	29.39	-39.08	35.28	0.00	0.00	0.58	341.70	Design
D19	0.00	-6.84	46.87	-62.72	55.87	0.00	0.00	8.36	341.70	Design
D20	0.00	-3.70	33.26	-43.93	40.23	0.00	0.00	6.66	341.70	Design

GEOMETRIC CONSIDERATIONS

Dimensions	Unit	Value	Min. value	Max. value	Sta.	References
Transverse stiffeners						
Length	[in]	8.87	4.43	-	\checkmark	Sec. J10.8
Width	[in]	4.50	3.15	--	\checkmark	Sec. J10.8
Thickness	[in]	0.38	0.31	--	\checkmark	Sec. J10.8
Weld size	[1/16in]	4	3	-	\checkmark	DG 13 Eq. 4.3-6
Doublers						
Recommended thickness for beveling and welding	[in]	0.50	0.26	--	\checkmark	Sec. G2.1,

SEISMIC PREQUALIFICATION REQUIREMENTS (ANSI/AISC 358-10)

Beam

Beam weight	[Kip/ft]	0.05	--	0.30	\checkmark
Reduced beam section (RBS)					
Horizontal distance to start of RBS cut (a)	[in]	6.00	5.00	7.50	\checkmark
Length of R8S cut (b)	[in]	7.60	6.57	8.58	\checkmark
Length of RBS cut (b)	[in]	2.00	1.00	2.50	\checkmark

4 WARNINGS

- Width of beam flange should be shorter than available with on support

Requirement	Value	Allowable values	Sta.
Beam			No
Material	A992	A36, A529, A572 Grade 42/50/55, A588, A913 Grade 50/60/65, A992	Yes
Support			No
Material	A992	A36, A529, A572 Grade 42/50/55, A588, A913 Grade 50/60/65, A992	Yes

Protected zone from column face $=\mathbf{1 3 . 6}[\mathrm{in}]$ DESIGN CHECK Verification	Unit	Capacity	Demand	Ctrl EQ	Ratio	References
Panel web shear	[Kip]	363.97	341.70	DL	$0.94 \bigcirc$	$\begin{aligned} & \text { Sec. J10-6, } \\ & \text { Eq. J10-11 } \end{aligned}$
Support - right side						
Top local flange bending	[Kip]	212.70	35.18	D7	$0.17 \bigcirc$	Eq. J10-1
Bottom local flange bending	[Kip]	212.70	57.58	Wx	0.27 (Eq. J10-1
Local web yielding	[Kip]	433.22	64.39	Wx	0.15 (Eq. J10-2
Transverse stiffeners - top						
Yielding strength due to axial load	[Kip]	94.50	0.00	DL	0.00 (1)	Eq. J4-1
Compression	[Kip]	81.39	0.00	DL	$0.00 \bigcirc$	Sec. J4.4
Flange weld capacity	[Kip]	130.30	0.00	DL	0.00 (Eq. J2-4
Web weld capacity	[Kip]	203.67	0.00	DL	0.00 (Eq. J2-4
Transverse stiffeners - bottom						
Yielding strength due to axial load	[Kip]	94.50	0.00	DL	0.00 (Eq. J4-1
Compression	[Kip]	81.39	0.00	DL	0.00 (Sec. J4.4
Flange weld capacity	[Kip]	130.30	0.00	DL	0.00 ©	Eq. J2-4
Web weld capacity	[Kip]	203.67	0.00	DL	$0.00 \bigcirc$	Eq. J2-4
Seismic forces						
Mf vs. Mpe at column face	[Kip*ft]	305.25	270.08	DL	0.88 O	AISC 358-10 Eq. 5.8-7, AISC 358-05 Eq. 2.4.3-1, AISC 358 -05 Eq. $5.8-6$
Mpr: Probable peak plastic hinge moment	[Kip*tt]	228.05				AISC 358-05 Eq. 2.4.3-1
Mc: Maximum probable moment at column centerline	[Kip*ft]	291.74				AISC 358-05 Eq. 2.4.3-1
Vp : Plastic hinge shear force	[Kip]	51.47				AISC 358-10 Eq. 5.8-9
Mf: Maximum probable moment at column face	[Kip*ft]	270.08				AISC 358-05 Eq. 2.4.3-1, AISC $358-05$ Eq. 5.8-6
Global critical strength ratio	0.94					

NOTES

CJP groove welds are required for the beam web to column connection, Sec. 5.6 (a) of AISC 358

Current Date: 5/15/2017 1:43 PM
Units system: English
File name: T:|Structurall2017 Structural Jobs\2017-2259_BA 1606 Yehuda Res\2017-2259.etz\}

Steel connections

Results

Connection name	$: S P _B C F _1 / 4 P L _2 B 3 / 4$
Connection ID	$: 1$

Family: Beam - Column flange (BCF)
Type: Single plate
Description: Basic SP 2
Design code: AISC 360-10 LRFD
DEMANDS

Description	Beam		Column			Load type
	$\begin{array}{r} \mathrm{Ru} \\ {[\mathrm{Kip}]} \end{array}$	$\begin{array}{r} \mathrm{Pu} \\ {[\mathrm{Kip}]} \end{array}$	$\begin{array}{r} \mathrm{Pu} \\ {[\mathrm{Kip]}} \end{array}$	$\begin{array}{r} \text { Mu22 } \\ \text { [Kip*tt] } \end{array}$	$\begin{array}{r} \text { Mu33 } \\ {\left[\mathrm{Kip}^{*} \neq t\right]} \end{array}$	
DL	0.79	-0.04	-2.40	0.00	1.02	Design
LL	0.06	0.03	-0.14	0.00	0.08	Design
SL	8.62	-0.55	-26.24	0.00	11.08	Design
Wx	-6.36	-6.81	10.50	0.00	-27.55	Design
EQx	-4.47	-3.66	8.81	0.00	-15.17	Design
D1	1.11	-0.05	-3.36	0.00	1.43	Design
D2	1.05	0.01	-3.11	0.00	1.34	Design
D3	5.26	-0.32	-16.00	0.00	6.76	Design
D4	5.36	-0.26	-16.23	0.00	6.89	Design
D5	14.74	-0.92	-44.86	0.00	18.96	Design
D6	-2.23	-3.46	2.38	0.00	-12.59	Design
D7	14.80	-0.89	-45.00	0.00	19.04	Design
D8	11.46	-4.37	-39.45	0.00	4.66	Design
D9	-5.42	-6.86	7.64	0.00	-26.40	Design
D10	-1.17	-7.15	-5.39	0.00	-21.16	Design
D11	-5.36	-6.82	7.51	0.00	-26.34	Design
D12	-1.11	-7.12	-5.52	0.00	-21.10	Design
D13	2.68	-0.15	-8.13	0.00	3.44	Design
D14	-3.53	-3.71	5.94	0.00	-13.99	Design
D15	2.74	-0.12	-8.27	0.00	3.52	Design
D16	-1.82	-3.83	0.72	0.00	-11.85	Design
D17	-3.47	-3.68	5.80	0.00	-13.93	Design
D18	-1.76	-3.79	0.58	0.00	-11.79	Design
D19	-5.65	-6.84	8.36	0.00	-26.69	Design
D20	-3.76	-3.70	6.66	0.00	-14.29	Design

GEOMETRIC CONSIDERATIONS

Dimensions	Unit	Value	Min. value	Max. value	Sta.	References
Shear plate						
Length	[in]	6.00	3.93	7.86	\checkmark	p. 10-104
Thickness	[in]	0.38	--	0.44	\checkmark	p. 10-102
Number of bolts		2	2	12	\checkmark	p 10-102
Distance from the bolt line to the weld line	[in]	3.00	--	3.50	\checkmark	p 10-102
Minimum plate or beam web thickness	[in]	0.37	--	0.44	\checkmark	Table 10-9
Vertical edge distance	[in]	1.50	1.00	--	\checkmark	Tables J3.4,

Current Date: 5/15/2017 1:44 PM
Units system: English
File name: T:IStructurall2017 Structural Jobsl2017-2259_BA 1606 Yehuda Res|2017-2259.etz

Steel connections

Results

Connection name	$:$ SP_BCF_1/2PL_3B1
Connection ID	$: 13$

Family: Beam - Column flange (BCF)
Type: Single plate
Description: Basic SP 2
Design code: AISC 360-10 LRFD
DEMANDS

Description	Beam		Column			Load type
	$\begin{array}{r} \mathrm{Ru} \\ {[\mathrm{Kip]}} \end{array}$	$\begin{array}{r} \mathrm{Pu} \\ {[\mathrm{Kip}]} \end{array}$	$\begin{array}{r} \mathrm{Pu} \\ {[\mathrm{Kip}]} \end{array}$	$\begin{gathered} \text { Mu22 } \\ {\left[\mathrm{Kip}^{*} f t\right]} \end{gathered}$	$\begin{array}{r} \text { Mu33 } \\ {\left[\mathrm{Kip}^{*} \mathrm{ft]}\right.} \end{array}$	
DL	-3.35	-0.04	-4.25	0.00	-1.33	Design
LL	-1.06	0.03	-1.35	0.00	0.04	Design
SL	-32.78	-0.54	-41.65	0.00	-15.02	Design
Wx	-7.56	-6.80	-1.18	0.00	-63.99	Design
EQx	-5.66	-3.66	-1.15	0.00	-44.01	Design
D1	-4.68	-0.05	-5.96	0.00	-1.87	Design
D2	-5.72	0.01	-7.27	0.00	-1.53	Design
D3	-20.40	-0.31	-25.93	0.00	-9.11	Design
D4	-22.10	-0.26	-28.09	0.00	-9.04	Design
D5	-56.46	-0.90	-71.75	0.00	-25.63	Design
D6	-7.80	-3.45	-5.69	0.00	-33.67	Design
D7	-57.53	-0.87	-73.11	0.00	-25.58	Design
D8	-60.36	-4.28	-72.36	0.00	-58.64	Design
D9	-11.59	-6.84	-6.28	0.00	-65.73	Design
D10	-28.05	-7.10	-27.12	0.00	-73.82	Design
D11	-12.66	-6.81	-7.64	0.00	-65.72	Design
D12	-29.11	-7.06	-28.47	0.00	-73.81	Design
D13	-10.57	-0.15	-13.44	0.00	-4.60	Design
D14	-9.69	-3.70	-6.25	0.00	-45.72	Design
D15	-11.63	-0.12	-14.79	0.00	-4.56	Design
D16	-16.26	-3.80	-14.59	0.00	-48.88	Design
D17	-10.75	-3.66	-7.61	0.00	-45.70	Design
D18	-17.33	-3.77	-15.94	0.00	-48.86	Design
D19	-10.58	-6.83	-5.01	0.00	-65.30	Design
D20	-8.68	-3.69	-4.98	0.00	-45.29	Design

GEOMETRIC CONSIDERATIONS

Dimensions	Unit	Value	Min. value	Max. value	Sta.	References
Shear plate						
Length	[in]	7.50	3.93	7.86	\checkmark	p. 10-104
Thickness	[in]	0.63	--	0.69	\checkmark	p. 10-102
Number of bolts		2	2	12	\checkmark	p 10-102
Distance from the bolt line to the weld line	[in]	3.00	--	3.50	\checkmark	p 10-102
Minimum plate or beam web thickness	[in]	0.37	--	0.69	\checkmark	Table 10-9
Vertical edge distance	[in]	2.00	1.63	--	\checkmark	Tables J3.4,

Page 69 Page1

Description:

Code References

Calculations per AISC Design Guide \# 1, IBC 2012, CBC 2013, ASCE 7-10
Load Combination Set : IBC 2015

GOVERNING DESIGN LOAD CASE SUMMARY	
Plate Design Summary	
Design Method	Load Resistance Factor Design
Governing Load Combination	$+1.20 \mathrm{D}+0.50 \mathrm{Lr}+0.50 \mathrm{~L}+\mathrm{W}+1.60 \mathrm{H}$
Governing Load Case Type	Axial Load Only
Design Plate Size	1'-0" $\times 1$ 1'-0" $\times 0-5 / 8$
Pu: Axial	13.380 k
Mu : Moment	0.000 k -ft

Mu : Max. Moment \qquad fb: Max. Bending Stress \qquad Fb : Allowable :	0.186 k -in 1.903 ksi 32.400 ksi
Bending Stress Ratio	0.059
	Bending Stress OK
fu : Max. Plate Bearing Stress	0.093 ksi
Fp : Allowable :	1.500 ksi
Bearing Stress Ratio	0.062
Bearing Stress OK	

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Strongtie
 Software

Version 2.3.5555.2

Company:		Date:	$5 / 15 / 2017$
Engineer:		Page:	$1 / 5$
Project:			
Address:			
Phone:			
E-mail:			

1.Prolect information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-11
Units: Imperial units
Anchor Information:
Anchor type: Cast-in-place
Material: AB
Diameter (inch): 0.750
Effective Embedment depth, hol (inch): 8.000
Anchor category: -
Anchor ductility: Yes
$h_{\text {min }}$ (inch): 10.13
$\mathrm{C}_{\text {min }}$ (inch): 1.50
$\mathrm{S}_{\text {min }}$ (inch): 3.00
Load and Geometry
Load factor source: ACI 318 Section 9.2
Load combination: $\mathrm{U}=0.9 \mathrm{D}+1.0 \mathrm{E}$
Seismic design: Yos
Anchors subjected to sustained tension: Not applicable
Ductility section for tension: D.3.3.4.2 not applicable
Ductility section for shear: D.3.3.5.2 not applicable
Ω_{0} factor: 2.5
Apply entire shear load at front row: No

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibillty. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560 .9000 Fax: 925.847 .3871 www.strongtie.com

Company:		Date:	$5 / 15 / 2017$
Engineer:		Page:	$2 / 5$
Project:			
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB6 (3/4"Ø)

SIMPSON

Strong4te
Anchor Designer ${ }^{\text {TM }}$
Software
Version 2.3.5555.2

Company:		Date:	$5 / 15 / 2017$
Engineer:		Page:	$3 / 5$
Project:			
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N_{ua} (lb)	Shear load x , $V_{\text {uax }}$ (b)	Shear load y, $V_{\text {uay }}$ (Ib)	Shear load combined, $\sqrt{\left(V_{u a x}\right)^{2}+\left(V_{u a y}\right)^{2}(\mathrm{lb})}$
1	4966.3	0.0	1200.0	1200.0
2	4966.3	0.0	1200.0	1200.0
3	4966.3	0.0	1200.0	1200.0
4	4966.3	0.0	1200.0	1200.0
Sum	19865.0	0.0	4800.0	4800.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 19865
Resultant compression force (b): 0
Eccentricity of resultant tension forces in x -axis, $\mathrm{e}^{\prime} \mathrm{Nx}_{\mathrm{x}}$ (inch): 0.00 Eccentricity of resultant tension forces in y -axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, $e^{\prime} v x$ (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

$N_{s a}(\mathrm{lb})$	ϕ	$\phi N_{s a}(\mathrm{lb})$
19370	0.75	14528

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

$N_{b}=k_{c} \lambda_{\mathrm{a}} \sqrt{ } f_{c} h_{\text {of }}{ }^{1.5}$ (Eq. D-6)

k_{c}	λ_{a}	$\boldsymbol{f}_{c}(\mathrm{psi})$	$\boldsymbol{h}_{\mathrm{et}}(\mathrm{in})$	$N_{\mathrm{b}}(\mathrm{lb})$
24.0	1.00	2500	8.000	27153

$0.75 \phi N_{c b g}=0.75 \phi\left(A_{N G} / A_{c c o}\right) Y_{a c, N} \Psi^{f}{ }_{\sigma d, N} \Psi_{G}, N \Psi_{c p, N} N_{b}($ Sec. D.4.1 \& Eq. D-4)

$A_{N c}\left(\right.$ in $\left.^{2}\right)$	$A_{N c o}\left(\right.$ in $\left.^{2}\right)$	$\Psi_{e c, N}$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c p, N}$	$N_{b}(\mathrm{lb})$	ϕ	$0.75 \phi N_{c b g}(\mathrm{lb})$
1024.00	576.00	1.000	1.000	1.00	1.000	27153	0.75	27153

6. Pullout Strength of Anchor in Tension (Sec. D.5.3)

$0.75 \phi N_{\rho n}=0.75 \phi \Psi_{G}, P N_{p}=0.75 \phi \Psi_{c, p 8} A_{b r g} f_{c}$ (Sec. D.4.1, Eq. D-13 \& D-14)

$\Psi_{c, P}$	$A_{b r g}\left(\mathrm{in}^{2}\right)$	$f_{c}(\mathrm{psi})$	ϕ	$0.75 \phi \mathrm{~N}_{\mathrm{on}}(\mathrm{lb})$
1.0	3.56	2500	0.70	37361

SIMPSON

Stronghtic
Anchor Designer ${ }^{\text {TM }}$
Software
Version 2.3.5555.2

Company:		Date:	$5 / 15 / 2017$
Engineer:		Page:	$4 / 5$
Project:			
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

$V_{\text {sa }}(\mathrm{lb})$	$\phi_{\text {grout }}$	ϕ	$\phi_{\text {grout }} \phi V_{\text {sa }}(\mathrm{lb})$
11625	0.8	0.65	6045

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendlcular to edge In y-direction:

$l_{a}(\mathrm{in})$	$d_{a}(\mathrm{in})$	λ_{a}	$f_{c}(\mathrm{psi})$	$C_{a 1}$ (in)	$V_{b y}(\mathrm{lb})$
6.00	0.75	1.00	2500	10.00	14230

$\phi V_{c b g y}=\phi\left(A v_{c} / A V_{c o}\right) \Psi_{e c, V} \Psi_{e d, V} \Psi_{0, V} \cup \Psi_{h, V} V_{b y}($ Sec. D.4.1 \& Eq. D-31)

$A v c$								
$\left(\mathrm{in}^{2}\right)$	$A_{V c o}\left(\mathrm{in}^{2}\right)$	$\Psi_{o c, V}$	$\Psi_{\theta d, V}$	$\Psi_{c, V}$	$\Psi_{h, V}$	$V_{b y}(\mathrm{lb})$	ϕ	$\phi V_{c b g y}(\mathrm{lb})$
432.00	450.00	1.000	1.000	1.000	1.118	14230	0.75	11455

Shear parallel to edge in y-direction:

$I f B^{\text {(}}$ (in)	d_{a} (in)	λ_{a}	f_{c} (psi)	$\mathrm{CaO}^{\text {(}}$ (in)	$V_{\text {bx }}$ (lb)			
6.00	0.75	1.00	2500	10.00	14230			
$A v a c_{(i n}{ }^{2}$)	$A_{\text {voo }}\left(\mathrm{in}^{2}\right)$	$\Psi_{\theta c, V}$	$\Psi \Psi_{\text {od, }, ~}$	$\Psi_{c, v}$	$\Psi_{h, V}$	$V_{b x}(\mathrm{lb})$	ϕ	$\phi V_{\text {cbgy }}$ (Ib)
432.00	450.00	1.000	1.000	1.000	1.118	14230	0.75	22910

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{c p g}=\phi k_{c p} N_{c b g}=\phi k_{c p}\left(A_{N_{c}} / A_{c o c}\right) \Psi_{\theta c, N} \Psi_{\theta d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Eq. D-41)

$k_{c p}$	$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$\Psi_{q c, N}$	$\Psi_{\theta d, N}$	$\Psi_{c, N}$	$\Psi_{c p, N}$	$N_{b}(\mathrm{lb})$	ϕ	$\phi V_{c p g}(\mathrm{lb})$
2.0	1024.00	576.00	1.000	1.000	1.000	1.000	27153	0.70	67581

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, $\mathrm{Nua}^{\text {(}} \mathrm{l}$)	Design Strength, N l (b)	Ratio	Status	
Steel	4966	14528	0.34	Pass	
Concrete breakout	19865	27153	0.73	Pass (Governs)	
Pullout	4966	37361	0.13	Pass	
Shear	Factored Load, $\mathrm{V}_{\text {ua }}(\mathrm{lb})$	Design Strength, $\otimes \mathrm{V}_{\mathrm{n}}$ (lb$)$	Ratio	Status	
Steel	1200	6045	0.20	Pass	
T Concrete breakout $\mathrm{y}+$	4800	11455	0.42	Pass (Governs)	
\|	Concrete breakout x -	2400	22910	0.10	Pass (Governs)
Pryout	4800	67581	0.07	Pass	
Interaction check Nuo/	$N_{n} \quad V_{u a} / \phi V_{n}$	Combined Ratio	Permissible	Status	
Sec. D.7.3 0.73	0.42	115.1 \%	1.2	Pass	

PAB6 (3/4"Ø) with hef $=\mathbf{8 . 0 0 0}$ inch meets the selected design criteria.

SIMPSON	Anchor Designer ${ }^{T M}$ Software Version 2.3.5555.2	Company:		Date:	5/15/2017
Strongutic		Engineer:		Page:	5/5
		Project:			
		Address:			
		Phone:			
		E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACl 318 Sections D.8.1 and D.8.2 for torqued cast-in-place anchor is waived per designer option.
- Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of D.3.3.4.3 for tension need not be satisfied - designer to verify.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of D.3.3.5.3 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:		Date:	$5 / 15 / 2017$
Engineer:		Page:	$1 / 4$
Project:			
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Project description: Moment Frame Center Column
Location:
Customer contact name:
Fastening description:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-11
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB
Diameter (inch): 0.750
Effective Embedment depth, her (inch): 8.000
Anchor category: -
Anchor ductility: Yes
$h_{\text {min }}$ (inch): 10.13
$\mathrm{C}_{\text {min }}$ (inch): 1.50
$\mathrm{S}_{\mathrm{mln}}$ (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2
Load combination: $\mathrm{U}=0.9 \mathrm{D}+1.0 \mathrm{E}$
Seismic design: Yes
Anchors subjected to sustained tension: Not applicable
Ductility section for tension: D.3.3.4.2 not applicable
Ductility section for shear: D.3.3.5.2 not applicable
Ω_{0} factor: 2.5

SIMPSON	Anchor Designer ${ }^{\text {TM }}$ Software Version 2.3.5555.2	Company:		Date:	5/15/2017
Strongric		Engineer:		Page:	2/4
		Project:			
		Address:			
		Phone:			
		E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB6 (3/4"Ø)

SIMPSON

Stronghtic
Anchor Designer ${ }^{\text {TM }}$
Software
Version 2.3.5555.2

Company:		Date:	$5 / 15 / 2017$
Engineer:		Page:	$3 / 4$
Project:			
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, Vuax $^{(\mathrm{lb})}$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $\left.V_{(\text {Vax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	0.0	0.0	3437.5	3437.5
2	0.0	0.0	3437.5	3437.5
3	0.0	0.0	3437.5	3437.5
4	0.0	0.0	3437.5	3437.5
Sum	0.0	0.0	13750.0	13750.0

Maximum concrete compression strain (\%)): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 0
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, $e^{\prime}{ }^{\prime} x$ (inch): 0.00
Eccentricity of resultant tension forces in \mathbf{y}-axis, e' ${ }^{\prime}$ y (inch): $\mathbf{0 . 0 0}$
Eccentricity of resultant shear forces in x-axis, $e^{\prime} v_{x}$ (inch): 0.00
Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

$V_{\text {sa }}(\mathrm{lb})$	$\phi_{\text {grout }}$	ϕ	$\phi_{\text {grout }} \phi V_{s a}(\mathrm{lb})$
11625	0.8	0.65	6045

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:
$V_{b y}=\min \mid 7\left(I_{a} / d_{a}\right)^{0.2} \sqrt{ } d_{d} \lambda_{a} V f_{c} C_{a 1}{ }^{1.5} ; 9 \lambda_{a} V f_{c} C_{a 1}{ }^{1.5}$ (Eq. D-33 \& Eq. D-34)

$I_{\theta}(\mathrm{in})$	$d_{\theta}(\mathrm{in})$	λ_{θ}	$f_{c}(\mathrm{psi})$	$C_{a t}(\mathrm{in})$	$V_{b y}(\mathrm{lb})$
6.00	0.75	1.00	2500	14.00	23572

$\phi V_{c b g y}=\phi\left(A v_{c} / A v_{c o}\right) \Psi_{a c, V} \Psi_{a d, V} \Psi_{c, V}, \Psi_{h, V} V_{b y}$ (Sec. D.4.1 \& Eq. D-31)

$A_{v c}\left(i \mathrm{in}^{2}\right)$	$A_{v o c}\left(\mathrm{in}^{2}\right)$	$\Psi_{\theta c, V}$	$\Psi_{\text {өd, }}$	$\Psi_{c, V}$	$\Psi_{h, V}$	$V_{b y}(\mathrm{lb})$	ϕ	$\phi V_{c b g y}(\mathrm{lb})$
576.00	882.00	1.000	1.000	1.000	1.323	23572	0.75	15274

Shear parallel to edge in \boldsymbol{y}-direction:

10 (in)	d_{0} (in)	λ_{0}	$f_{c}(\mathrm{psi})$	Cal_{41} (in)	$V_{\text {bx }}(\mathrm{lb})$
6.00	0.75	1.00	2500	14.00	23572

$\phi V_{c b g y}=\phi(2)\left(A v_{c} / A v_{c o}\right) \Psi_{o c, V} \Psi_{\theta d, V} \Psi_{c, V} \Psi_{h, V} V_{b x}(S e c . ~ D .4 .1 \& E q . ~ D-31)$

$A_{V c}\left(\mathrm{in}^{2}\right)$	$A_{V c o}\left(\mathrm{in}^{2}\right)$	$\Psi_{o c, V}$	$\Psi_{\text {od, }}$	$\Psi_{c, V}$	$\Psi_{h, V}$	$V_{b x}(\mathrm{lb})$	ϕ	$\phi V_{c b g y}(\mathrm{lb})$
576.00	882.00	1.000	1.000	1.000	1.323	23572	0.75	30547

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$k_{c p}$	$A_{\text {Nc }}\left(\mathrm{in}^{2}\right)$	$A_{\text {Nos }}\left(\mathrm{in}^{2}\right)$	$\Psi_{\text {ec, }}$	$\Psi_{o d, N}$	$\Psi_{\text {c, }}$	$\Psi_{\text {cp, }}{ }^{\text {N }}$	N_{b} (lb)	ϕ	$\phi V_{\text {cpg }}(\mathrm{lb})$
2.0	1024.00	576.00	1.000	1.000	1.000	1.000	27153	0.70	67581

11. Results

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560 .9000 Fax: 925.847 .3871 www.strongtie.com

Company:		Date:	$5 / 15 / 2017$
Engineer:		Page:	$4 / 4$
Project:			
Address:			
Phone:			
E-mail:			

Interaction of Tensile and Shear Forces (Sec. D.7)				
Shear	Factored Load, $V_{u a}(\mathrm{lb})$	Design Strength, $\varnothing V_{n}(\mathrm{lb})$	Ratio	Status
Steel	3438	6045	0.57	Pass
T Concrete breakout y+	13750	15274	0.90	Pass (Governs)
II Concrete breakout $x-$	6875	30547	0.23	Pass (Governs)
Pryout	13750	67581	0.20	Pass

PAB6 (3/4"Ø) with hef $=\mathbf{8 . 0 0 0}$ inch meets the selected design criteria.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACl 318 Sections D.8.1 and D.8.2 for torqued cast-in-place anchor is waived per designer option.
- Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of D.3.3.4.3 for tension need not be satisfied - designer to verify.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of D.3.3.5.3 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Use (4) 16d common toenails at full height truss blocking
Use 3/4" APA rated OSB sheathing w/ 10d nails @ 6" o.c. edge, 12" o.c. field (Unblocked)
Special Moment Frame
Heavy Roof
(Unblocked)
Gridline A (Unblocked)

[^0]Gridline E Rear Upper
Gridline 2
Structural Sheathing
Heavy Roof (Unblocked)

Use (4) 16d common toenails at full height truss blocking
Use 3/4" APA rated OSB sheathing w/ 10d nails @ 6" o.c. edge, 12" o.c. field (Unblocked)

Use 3/4" APA rated OSB sheathing w/ 10d nails @ 6" o.c. edge, 12" o.c. field (Unblocked)

Horiz. Diaphragm

Right Upper
Structural Sheathing
Heavy Roof (Unblocked)

Special Moment Frame
Gridline A Front Main

Structural Sheathing
Gridline E
Rear Main
Floor
(Unblocked)

Horiz. Diaphragm

Gridline 2
 Left Main
 Floor
 (Unblocked)

Structural Sheathing
Gridline 5
${ }_{\infty}^{0}$ Structural Sheathing

Special Moment Frame
Floor
(Unblocked)

Horiz. Diaphragm
Horiz. Diaphragm
Gridline 5
Left Lower
Structural Sheathing
Floor
(Unblocked)

Page 84 of 112

STUD WALL CALCULATION Upper

Wall Location =
Exterior
DF-L. Stud
Species =
Stud Width =
Stud Depth $\left(d_{x}\right)=$
$\mathrm{L}=$
1.5 in

8 ft
1.33 ft
$\mathrm{F}_{\mathrm{b}}=$
$\mathrm{F}_{\mathrm{c}}=$
$\mathrm{F}_{0^{+}}=$
$\mathrm{E}=$
$\mathrm{E}_{\text {min }}=$
$\mathrm{C}_{\mathrm{F}}=$
$\mathrm{C}_{\mathrm{F}}=$
A =
$S=$
Dead Loads:
Roof DL =
195 plf
Floor DL =
0 plf
275 plf
$\mathrm{w}_{\mathrm{DL}}=$
Live Loads:

Roof LL $=$	2347.9 plf
Floor LL $=$	0 pl \uparrow
$\mathrm{W}_{\mathrm{LL}}=$	2347.85

Load Case 1: Gravity Loads Only
Load Combinations:

$D=$	366 lb
$D+L=$	366 lb
$D+S=$	3488 lb
$D+0.75(\mathrm{~L})+0.75(\mathrm{~S})=$	2708 lb
$C_{D}(\mathrm{D})=$	0.9
$C_{D}(\mathrm{D}+\mathrm{L})=$	1
$C_{D}(\mathrm{D}+\mathrm{S})=$	1
$C_{D}(\mathrm{D}+0.75(\mathrm{~L})+0.75(\mathrm{~S}))=$	1

$\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{\mathrm{c}}{ }^{\mathrm{L}}=$
422.8 psi
$\left(\mathrm{I}_{\theta} / \mathrm{d}\right)_{\mathrm{x}}=$
$\mathrm{E}_{\text {min }}^{\prime}=$
$\mathrm{c}=$
$\mathrm{F}_{\mathrm{cE}}=$
$\mathrm{F}_{\mathrm{c}}{ }^{\circ}=$
$\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}}{ }_{\mathrm{c}}=$
$\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) / 2 \mathrm{c}=\quad 1.637$
$\mathrm{C}_{\mathrm{p}}=\quad 0.827$
$\mathrm{F}_{\mathrm{c}}=\quad 703.1$
Check $=$
OK psi
Bearing of stud on wall plates:
$\mathrm{C}_{\mathrm{b}}=\quad 1.25$
$\mathrm{F}_{\mathrm{c}+}{ }^{+}=$
781
Check $=\quad \mathrm{OK}$ psi

Loadings

Roofing Material =	Shingle/Tile
Roof Pitch =	0.5
Angle $=$	2.4
$\mathrm{C}_{\mathrm{S}}=$	1.000
Increase for Drift $=$	1.000
Effective snow load =	181 psf
Roof dead load =	15 psf
Floor live load =	40 psf
Floor dead load =	15 psf
Trib. Area roof=	13 ft
Trib. Area	
Adroor $=$	0 ft
	80 plf
Lateral Load $=$	

Use: 2x6 DF-L Stud Grade @ 16" o.c.

Load Case 2: Gravity Loads + Lateral Loads		
$\mathrm{C}_{\mathrm{D}}=$	1.6	
$\mathrm{C}_{\mathrm{r}}=$	1.35	
w $=$	29.0 plf	
$\mathrm{M}=$	2782.0 in.lb	
$\mathrm{f}_{\mathrm{b}}=$	367.9 psi	
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=$	1512.00 psi	
Check =	OK	
Axial:		
$\left(1 l_{\text {e }} / \mathrm{d}_{\mathrm{x}}\right)=$	17.5 in	
$\mathrm{E}_{\text {min }}=$	510000 psi	
$\mathrm{c}=$	0.8	
$\mathrm{F}_{\mathrm{cE}}=$	1376.0 psi	
$\mathrm{F}_{\mathrm{c}}{ }^{\text {a }}$	1360 psi	
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{\text {a }}=$	1.012	
$\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}} \mathrm{c}\right) / 2 \mathrm{c}=$	1.257	
$\mathrm{C}_{\mathrm{p}}=$	0.695	
$\mathrm{F}_{\mathrm{c}}^{\prime}=$	945.2 psi	
$\mathrm{D}+0.75(\mathrm{~W})+0.75(\mathrm{~L})+0.75(\mathrm{~S})$		D+W
$\mathrm{f}_{\mathrm{c}}=$	328.2	44.3 psi
Check =	OK	OK
Combined Stress:		
$\mathrm{F}_{\mathrm{cEx}}=$	1376.0	1376.0 psi
Interaction Formula $=$	0.36	0.25
Check $=$	OK	OK

STUD WALL CALCULATION Main				
Wall Location =	Exterior	Loadings		
Species =	DF-L Stud	Roofing Material $=$	Shingle/Tile	
Stud Width =	1.5 in	Roof Pitch =	0.5	
Stud Depth (d_{k}) $=$	5.5 in	Angle $=$	2.4	
$\mathrm{L}=$	9 ft	$\mathrm{C}_{\mathrm{S}}=$	1.000	
stud spacing =	1.33 ft	Increase for Drift=	1.000	
$\mathrm{F}_{\mathrm{b}}=$	700 psi	Effective snow load =	181	
$\mathrm{F}_{\mathrm{c}}=$	850 psi	Roof dead load =	15	
$\mathrm{F}_{\mathrm{c}^{\text {+ }}}=$	625 psi	Floor live load =	40	
$\mathrm{E}=$	1400000 psi	Floor dead load =	15	
$\mathrm{E}_{\text {min }}=$	510000 psi	Trib. Area ${ }_{\text {roof }}=$	13	
$\mathrm{C}_{\mathrm{F}}=$	1.00 for bending	Trib. Area ${ }_{\text {floor }}=$	11	
$\mathrm{C}_{\mathrm{F}}=$	1.00 for comp. Il to grain	Add. Uniform Load =	80	
A =	$8.25 \mathrm{in}^{2}$			
$\mathrm{S}=$	$7.56 \mathrm{in}^{3}$	Lateral Load $=$	21.79	
Dead Loads:				
Roof DL =	195 plf			
Floor DL =	165 plf			
$\mathrm{w}_{\text {OL }}=$	440 plf	Use: 2x6 DF-L	ud Grade @	'" o.c.
Live Loads:				
Roof LL =	2347.9 plf			
Floor LL =	440 plf			
$\mathrm{W}_{\mathrm{LL}}=$	2787.85			
Load Case 1: Gravity Loads Only		Load Case 2: Gravity Loads + Lateral Loads		
Load Combinations:		$\mathrm{C}_{\mathrm{D}}=$	1.6	
$\mathrm{D}=$	585 lbs	$\mathrm{C}_{\mathrm{r}}=$	1.35	
$\mathrm{D}+\mathrm{L}=$	1170 lbs	$\mathrm{w}=$	29.0	
D+S =	3708 lbs	$\mathrm{M}=$	3521.0	
$\mathrm{D}+0.75(\mathrm{~L})+0.75(\mathrm{~S})=$	3366 lbs	$\mathrm{f}_{\mathrm{b}}=$	465.6	
$\mathrm{C}_{\mathrm{D}}(\mathrm{D})=$	0.9	$\mathrm{F}^{\prime}{ }^{\prime}=$	1512.00	
$\mathrm{C}_{\mathrm{D}}(\mathrm{D}+\mathrm{L})=$	1	Check =	OK	
$\mathrm{C}_{\mathrm{D}}(\mathrm{D}+\mathrm{S})=$	1	Axial:		
$\mathrm{C}_{\mathrm{D}}(\mathrm{D}+0.75(\mathrm{~L})+0.75(\mathrm{~S}))=$	1	$\left(l_{e} / d_{\text {x }}\right)=$	19.6	
$\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{0} \perp=$	449.4 psi	$\mathrm{E}_{\text {min }}^{\prime}=$	510000	
$\left(1 e^{\prime} / \mathrm{d}\right)_{x}=$	19.6 in	$\mathrm{c}=$	0.8	
$\mathrm{E}_{\text {min }}^{\prime}=$	510000 psi	$\mathrm{F}_{\mathrm{cE}}=$	1087.2	
$\mathrm{c}=$	0.8	$\mathrm{F}_{\mathrm{c}}{ }^{*}=$	1360	
$\mathrm{F}_{\mathrm{cE}}=$	1087.2	$\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}}{ }^{\text {a }}=$	0.799	
$\mathrm{F}_{\mathrm{c}}{ }^{\text {c }}$	850 psi	$\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}} \mathrm{c}\right) / 2 \mathrm{c}=$	1.125	
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{\text {c }}=$	1.279 psi	$\mathrm{C}_{\mathrm{p}}=$	0.609	
$\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}} \mathrm{c}\right) / 2 \mathrm{c}=$	1.424	$\mathrm{F}_{\mathrm{c}}{ }^{\text {F }}$	828.7	
$\mathrm{C}_{\mathrm{p}}=$	0.769	D+0.75(W) $+0.75(\mathrm{~L})+0.75(\mathrm{~S})$		D+W
$\mathrm{F}_{\mathrm{c}}{ }^{\text {c }}$	653.3	$\mathrm{f}_{\mathrm{c}}=$	408.0	70.9 psi
Check =	OK psi	Check =	OK	OK
Bearing of stud on wall plates:		Combined Stress:		
$\mathrm{C}_{\mathrm{b}}=$	1.25	$\mathrm{F}_{\mathrm{CEx}}=$	1087.2	1087.2 psi
$\mathrm{F}^{\prime}{ }^{\text {d }}=$	781	Interaction Formula $=$	0.61	0.34
Check =	OK psi	Check =	OK	OK

STUD WALL CALCULATION Basement				
Wall Location =	Exterior	Loadings		
Species =	DF-L Stud	Roofing Material $=$	Shingle/Tile	
Stud Width =	1.5 in	Roof Pitch =	0.5	
Stud Depth $\left(d_{x}\right)=$	5.5 in	Angle $=$	2.4	
$\mathrm{L}=$	8 ft	$\mathrm{C}_{\mathrm{S}}=$	1.000	
stud spacing =	1.33 ft	Increase for Drift=	1.000	
$\mathrm{F}_{\mathrm{b}}=$	700 psi	Effective snow load =	181 p	
$\mathrm{F}_{\mathrm{c}}=$	850 psi	Roof dead load =	15 p	
$\mathrm{F}_{0}{ }^{\text {¢ }}=$	625 psi	Floor live load =	40 p	
$E=$	1400000 psi	Floor dead load =	15	
$\mathrm{E}_{\text {min }}=$	510000 psi	Trib. Area ${ }_{\text {roof }}=$	13 f	
$\mathrm{C}_{\mathrm{F}}=$	1.00 for bending	Trib. Area ${ }_{\text {floor }}=$	18.5 f	
$\mathrm{C}_{\text {F }}=$	1.00 for comp. Il to grain	Add. Uniform Load $=$	80 p	
A =	$8.25 \mathrm{in}^{2}$			
S =	$7.56 \mathrm{in}^{\text {3 }}$	Lateral Load $=$	21.79 p	
Dead Loads:				
Roof DL =	195 plf			
Floor DL =	277.5 plf			
$\mathrm{w}_{\mathrm{DL}}=$	552.5 plf	Use: 2x6 DF-L	ud Grade	'o.c.
Live Loads:				
Roof LL =	2347.9 plf			
Floor LL =	740 plf			
$\mathrm{W}_{\mathrm{LL}}=$	3087.85			
Load Case 1: Gravity Loads Only		Load Case 2: Gravity Loads + Lateral Loads		
Load Combinations:		$\mathrm{C}_{\mathrm{D}}=$	1.6	
D =	735 lbs	$\mathrm{C}_{\mathrm{r}}=$	1.35	
D+L =	1719 lbs	w =	29.0 p	
D+S =	3857 lbs	$\mathrm{M}=$	2782.0 i	
$\mathrm{D}+0.75(\mathrm{~L})+0.75(\mathrm{~S})=$	3815 lbs	$\mathrm{f}_{\mathrm{b}}=$	367.9 p	
$\mathrm{C}_{\mathrm{D}}(\mathrm{D})=$	0.9	$\mathrm{F}_{\mathrm{b}}{ }^{\text {= }}$	1512.00 p	
$\mathrm{C}_{\mathrm{D}}(\mathrm{D}+\mathrm{L})=$	1	Check =	OK	
$C_{\text {D }}(\mathrm{D}+\mathrm{S})=$	1	Axial:		
$\mathrm{C}_{\mathrm{D}}\left(\mathrm{D}+0.75(\mathrm{~L})+0.75(\mathrm{~S}){ }^{\text {a }}=\right.$	1	$\left(l_{1} / d_{\text {d }}\right)=$	17.5 i	
$\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{\mathrm{c}} \mathrm{L}=$	467.6 psi	$\mathrm{E}_{\text {min }}=$	510000 p	
$\left(l_{e} / \mathrm{d}\right)_{x}=$	17.5 in	$\mathrm{c}=$	0.8	
$\mathrm{E}_{\text {min }}^{\prime}=$	510000 psi	$\mathrm{F}_{\mathrm{cE}}=$	1376.0 p	
$\mathrm{c}=$	0.8	$\mathrm{F}_{\mathrm{c}}{ }^{\text {c }}$	1360 p	
$\mathrm{F}_{\mathrm{cE}}=$	1376.0	$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{\text {a }}$,	1.012	
$\mathrm{F}_{\mathrm{c}}{ }^{\text {c }}$	850 psi	$\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }_{\mathrm{c}}\right) / 2 \mathrm{c}=$	1.257	
$\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}}=$	1.619 psi	$\mathrm{C}_{\mathrm{p}}=$	0.695	
$\left(1+\mathrm{F}_{\mathrm{ce}} / \mathrm{F}^{*}\right) / 2 \mathrm{c}=$	1.637	$\mathrm{F}_{\mathrm{c}}=$	945.2 p	
$\mathrm{C}_{\mathrm{p}}=$	0.827	D+0.75(W) +	(L) +0.75 (S)	D+W
$\mathrm{F}^{\prime}=$	703.1	$\mathrm{f}_{\mathrm{c}}=$	462.4	89.1 psi
Check =	OK psi	Check =	OK	OK
Bearing of stud on wall plates:		Combined Stress:		
$\mathrm{C}_{\mathrm{b}}=$	1.25	$\mathrm{F}_{\text {cEx }}=$	1376.0	1376.0 psi
$\mathrm{F}^{\prime}{ }^{+}=$	781	Interaction Formula $=$	0.51	0.27
Check $=$	OK psi	Check =	OK	OK

Species =
Stud Width = $\mathrm{L}=$

6 in 5.5 in 9 ft
opening width $=$
15 ft
stud spacing =
$\mathrm{F}_{\mathrm{b}}=$
$\mathrm{F}_{\mathrm{c}}=$
$\mathrm{F}_{0 \mathrm{D}}=$
$\mathrm{E}=$
$\mathrm{E}_{\text {min }}=$
$C_{F}=$
$\mathrm{C}_{\mathrm{F}}=$
A =
$S=$
Dead Loads:

Roof $\mathrm{DL}=$	75 plf
Floor $\mathrm{DL}=$	15 plf
$\mathrm{w}_{\mathrm{DL}}=$	170 plf

Live Loads:

Roof LL $=$	903.0 plf
Floor LL $=$	40 plf
$\mathrm{W}_{\mathrm{LL}}=$	943.02

Load Case 1: Gravity Loads Only
Load Combinations:

$D=$	1389 lbs
$D+L=$	1716 lbs
$D+S=$	8767 lbs
$D+0.75(\mathrm{~L})+0.75(\mathrm{~S})=$	7167 lbs
$C_{D}(D)=$	0.9

$\mathrm{C}_{\mathrm{D}}(\mathrm{D})=$
$\mathrm{C}_{\mathrm{D}}(\mathrm{D}+\mathrm{L})=$
$C_{D}(D+S)=$
$\mathrm{C}_{\mathrm{D}}(\mathrm{D}+0.75(\mathrm{~L})+0.75(\mathrm{~S}))=$
$\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{\mathrm{c}} \mathrm{L}=$
$\left(\mathrm{I}_{6} / \mathrm{d}\right)_{\mathrm{x}}=$
$E_{\text {min }}^{\prime}=$
$\mathrm{c}=$
$\mathrm{F}_{\mathrm{GE}}=$
$\mathrm{F}_{\mathrm{c}}^{*}=$
$\left(1+F_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{\circ}\right) / 2 \mathrm{c}=$
265.7 psi
19.6 in

510000 psi
0.8
1087.2

850 psi
$-\quad 1.424$
$\mathrm{C}_{\mathrm{p}}=$
0.769
$\mathrm{F}_{\mathrm{c}}^{\prime}=\quad 653.3$
$\begin{array}{ll}\text { Check }= & \text { OK psi } \\ \text { Bearing of stud on wall plates: } & \\ \mathrm{C}_{\mathrm{b}}= & 1.06 \\ \mathrm{~F}_{\mathrm{C} \perp}= & 664 \\ \text { Check }= & \text { OK psi }\end{array}$

Loadings

Roofing Material $=$	Shingle/Tile
Roof Pitch =	0.5
Angle $=$	2.4
$\mathrm{C}_{\mathrm{S}}=$	1.000
Increase for Drift=	1.000
Effective snow load =	181 psf
Roof dead load =	15 psf
Floor live load =	40 psf
Floor dead load =	15 psf
Trib. Area ${ }_{\text {roof }}=$	5 ft
Trib. Area ${ }_{\text {flor }}=$	1 ft
Add. Uniform Load =	80 plf
Lateral Load $=$	18.87 psf

Use: (2) 2×6 Full Height King Studs

Load Case 2: Gravity Loads + Lateral Loads		
$\mathrm{C}_{\mathrm{D}}=$	1.6	
$\mathrm{C}_{\mathrm{r}}=$	1.15	
w =	154.2	
$M=$	18734.4	
$\mathrm{f}_{\mathrm{b}}=$	619.3	
$\mathrm{F}_{\mathrm{b}}{ }^{\text {a }}$	1288.00	
Check $=$	OK	
Axial:		
$\left(1 l^{\prime} / \mathrm{d}_{x}\right)=$	19.6	
$\mathrm{E}_{\text {min }}^{\prime}=$	510000	
$\mathrm{c}=$	0.8	
$\mathrm{F}_{\mathrm{cE}}=$	1087.2	
$\mathrm{F}_{\mathrm{c}}{ }^{\text {c }}=$	1360	
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{\text {c }}=$	0.799	
$\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}\right)^{\prime} / 2 \mathrm{c}=$	1.125	
$\mathrm{C}_{\mathrm{p}}=$	0.609	
$\mathrm{F}_{\mathrm{c}}=$	828.7	
$\mathrm{D}+0.75(\mathrm{~W})+0.75(\mathrm{~L})+0.75(\mathrm{~S})$		D+W
$\mathrm{f}_{\mathrm{c}}=$	217.2	42.1 psi
Check =	OK	OK
Combined Stress:		
$\mathrm{F}_{\mathrm{rEx}}=$	1087.2	1087.2 psi
Interaction Formula =	0.52	0.50
Check =	OK	OK

 U
〔 1498
(2) \#4 bars cont.
None
 Req.Soil Bearing (psf)= Footing Reinforcement:
Crosswise Reinforcement:

Project: 2017-2259
Location: FT8
Footing
[2015 International Building Code(2015 NDS)]
Footing Size: 5.0 FT $\times 5.0$ FT $\times 12.00 \mathrm{IN}$
Reinforcement: \#4 Bars @ 8.00 IN . O.C. E/W / (7) min.
Section Footing Design Adequate

LOADING DIAGRAM

FOOTING PROPERTIES	
Allowable Soil Bearing Pressure:	Qs = 1500 psf
Concrete Compressive Strength:	$\mathrm{F}^{\prime} \mathrm{c}=2500 \mathrm{psi}$
Reinforcing Steel Yield Strength:	$\mathrm{Fy}=60000 \mathrm{psi}$
Concrete Reinforcement Cover:	$\mathrm{c}=3 \mathrm{in}$
FOOTING SIZE	
Width:	$\mathrm{W}=\quad 5 \mathrm{ft}$
Length:	$\mathrm{L}=5$ ft
Depth:	Depth $=12$ in
Effective Depth to Top Layer of Steel:	$\mathrm{d}=8.25$ in
COLUMN AND BASEPLATE SIZE	
Column Type:	Wood
Column Width:	$\mathrm{m}=5.25 \mathrm{in}$
Column Depth:	$\mathrm{n}=5.25 \mathrm{in}$

FOOTING CALCULATIONS

Bearing Calculations:

Ultimate Bearing Pressure:	$\mathrm{Qu}=$	1179 psf
Effective Allowable Soil Bearing Pressure:	$\mathrm{Qe}=$	1350 psf
Required Footing Area:	$\mathrm{Areq}=$	21.83 sf
Area Provided:	$\mathrm{A}=$	25.00 sf
Baseplate Bearing:		
Bearing Required:	Bear $=$	46193 lb
Allowable Bearing: Beam Shear Calculations (One Way Shear): Beam Shear:	Bear-A $=$	76141 lb
Au1 $=$	16745 lb	

Allowable Beam Shear: $\quad \mathrm{Vc} 1=\quad 37125 \mathrm{lb}$

Punching Shear Calculations (Two Way Shear):
Critical Perimeter:
Allowable Punching Shear ($\mathrm{ACl} 11-35$):
Allowable Punching Shear (ACl 11-36):
Allowable Punching Shear (ACl 11-37):
Controlling Allowable Punching Shear:

Bending Calculations:

Factored Moment:
Nominal Moment Strength:

Reinforcement Calculations:

Concrete Compressive Block Depth:
Steel Required Based on Moment:
Min. Code Req'd Reinf. Shrink./Temp. (ACl-10.5.4): As(2) $=\quad 1.30 \mathrm{in} 2$
Controlling Reinforcing Steel: As-reqd = 1.30 in 2
Selected Reinforcement: \#4's @ 8.0 in. o.c. e/w (7) Min.
Reinforcement Area Provided:

Development Length Calculations:

Development Length Required:	Ld $=$	15 in
Development Length Supplied:	Ld-sup $=$	27 in

NOTES

General Footing

Code References

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10
Load Combinations Used : IBC 2015

General Information

Dimensions

Bandwidth Distribution Check (ACl 15.4.4.2)

Direction Requiring Closer Separation	Ig Z-Z Axis
\# Bars required within zone	82.4%
\# Bars required on each side of zone	17.6%

Width parallel to X-X Axis	$=$	5.0 ft
Length parallel to Z-Z Axis	$=$	3.50 ft
Footing Thickness	$=$	12.0 in

Pedestal dimensions...
px: parallel to X-X Axis pz : parallel to Z-Z Axis Height
Rebar Centerline to Edge of Concrete... at Bottom of footing

$$
\begin{array}{ll}
\overline{=} & 12.0 \mathrm{in} \\
= & 10.0 \mathrm{in} \\
= & 36.0 \mathrm{in}
\end{array}
$$

$$
3.0 \text { in }
$$

Reinforcing

Bars parallel to X-X Axis				
Number of Bars	$=$		5	
Reinforcing Bar Size	$=$		$\#$	4
Bars parallel to Z-Z Axis				
\quad Number of Bars			7	
Reinforcing Bar Size	$=$	$\#$	4	

ars parallel to X-X Axis

Applied Loads

		D	Lr	L	S	W	E	H
P : Column Load OB: Overburden	$\begin{aligned} & = \\ & = \end{aligned}$	1.885		0.5610	12.169			$\begin{aligned} & \mathrm{k} \\ & \mathrm{ksf} \end{aligned}$
$\begin{aligned} & M-x x \\ & M-z z \end{aligned}$	$=$ $=$							$\begin{aligned} & k-f t \\ & k-f t \end{aligned}$
$\begin{aligned} & V-x \\ & V-z \end{aligned}$	$=$ $=$					3.393	1.870	$\begin{aligned} & \mathrm{k} \\ & \mathrm{k} \end{aligned}$

Kelly Christensen
LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Project Title:
Engineer:
Project Descr:
Project ID:

Description : FT11 at Right Column
DESIGN SUMMARY

DESIGN SUMMARY				Design OK	
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.960	Soil Bearing	1.440 ksf	1.50 ksf	+D+0.750L+0.750S $+0.450 \mathrm{~W}+\mathrm{H}$ about $\mathrm{Z}-\mathrm{-}$
PASS	n/a	Overurning - $X-X$	0.0 k -ft	$0.0 \mathrm{k}-\mathrm{ft}$	No Overturning
PASS	1.557	Overturning - Z-Z	8.143 k-ft	12.678 kft	$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$
PASS	1.822	Sliding - $\mathrm{X}-\mathrm{X}$	2.036 k	3.709 k	$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2864	Z Flexure (+X)	3.191 k-ft	11.139 k -ft	$+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$
PASS	0.2281	Z Flexure (-X)	2.540 k-ft	11.139 k -ft	$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$
PASS	0.1033	X Flexure (+Z)	1.129 k -ft	10.925 k -tt	$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$
PASS	0.1033	X Flexure (-Z)	1.129 k -ft	10.925 k -ft	$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$
PASS	0.2474	1-way Shear (+X)	18.555 psi	75.0 psi	$+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$
PASS	0.1960	1-way Shear (-X)	14.701 psi	75.0 psi	$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$
PASS	0.09147	1-way Shear (+Z)	6.860 psi	75.0 psi	$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$
PASS	0.09147	1-way Shear (-Z)	6.860 psi	75.0 psi	$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$
PASS	0.1706	2-way Punching	25.590 psi	150.0 psi	$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$
Detailed Results					

Detailed Results

Soil Bearing								
Rotation Axis \& Load Combination...	Gross Allowable	Xecc	(in)	Actual Soil Bearing Stress @ Location				Actual / Allow Ratio
X-X. +D+H	1.50	n/a	0.0	0.4830	0.4830	n/a	n/a	0.322
$X-X_{1}+D+L+H$	1.50	n/a	0.0	0.5150	0.5150	n/a	n/a	0.343
X-X. $+\mathrm{D}+\mathrm{L}+$ + H	1.50	n/a	0.0	0.4830	0.4830	n/a	n/a	0.322
X-X. ${ }^{\text {d }}$ +S+H	1.50	n/a	0.0	1.178	1.178	n/a	n/a	0.785
X-X, +D+0.750Lr+0.750L+H	1.50	n/a	0.0	0.5070	0.5070	n/a	n/a	0.338
X-X, +D+0.750L+0.750S+H	1.50	n/a	0.0	1.029	1.029	n/a	n/a	0.686
X-X. $+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$	1.50	n/a	0.0	0.4830	0.4830	n/a	n/a	0.322
$\mathrm{X}-\mathrm{X}$. $+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$	1.50	n/a	0.0	0.4830	0.4830	n/a	n/a	0.322
X-X, +D+0.750Lr+0.750L+0.450W+H	1.50	n/a	0.0	0.5070	0.5070	n/a	n/a	0.338
X-X. $+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+\mathrm{H}$	1.50	n/a	0.0	1.029	1.029	n/a	n/a	0.686
X-X. +D+0.750L+0.750S+0.5250E+H	1.50	n/a	0.0	1.029	1.029	n/a	n/a	0.686
$X-X+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$	1.50	n/a	0.0	0.2898	0.2898	n/a	n/a	0.193
$X-X, 0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$	1.50	n/a	0.0	0.2898	0.2898	n/a	n/a	0.193
$\mathrm{Z}-\mathrm{Z},+\mathrm{D}+\mathrm{H}$	1.50	0.0	n/a	n/a	n/a	0.4830	0.4830	0.322
Z-Z. $+\mathrm{D}+\mathrm{L}+\mathrm{H}$	1.50	0.0	n/a	n/a	n/a	0.5150	0.5150	0.343
Z-Z. + D+Lr+H	1.50	0.0	n/a	n/a	n/a	0.4830	0.4830	0.322
Z-Z. $+\mathrm{D}+\mathrm{S}+\mathrm{H}$	1.50	0.0	n/a	n/a	n/a	1.178	1.178	0.785
Z-Z, +D+0.750Lr+0.750L+H	1.50	0.0	n/a	n/a	n/a	0.5070	0.5070	0.338
Z.Z. $+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+\mathrm{H}$	1.50	0.0	n/a	n/a	n/a	1.029	1.029	0.686
$\mathrm{Z}-\mathrm{Z} .+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$	1.50	11.562	n/a	n/a	n/a	0.0	1.038	0.692
$\mathrm{Z}-\mathrm{Z}$. $+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$	1.50	7.434	n/a	n/a	n/a	0.1299	0.8360	0.557
$\mathrm{Z}-\mathrm{Z},+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~L}+0.450 \mathrm{~W}+\mathrm{H}$	1.50	8.260	n/a	n/a	n/a	0.09518	0.9188	0.613
$\mathrm{Z}-\mathrm{Z},+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+\mathrm{H}$	1.50	4.072	n/a	n/a	n/a	0.6167	1.440	0.960
$\mathrm{Z}-\mathrm{Z} .+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$	1.50	2.618	n/a	n/a	n/a	0.7637	1.293	0.862
$\mathrm{Z}-\mathrm{Z},+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$	1.50	19.270	n/a	n/a	n/a	0.0	1.063	0.709
Z-Z. $+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$	1.50	12.390	n/a	n/a	n/a	0.0	0.6520	0.435
Overturning Stability								

Rotation Axis \& Load Combination...	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X + D+H	None	0.0 k -ft	Infinity	OK
$X-X+D+L+H$	None	0.0 k -ft	Infinity	OK
$X-X+D+L r+H$	None	0.0 k -ft	Infinity	OK
$\mathrm{X}-\mathrm{X}+\mathrm{D}+\mathrm{S}+\mathrm{H}$	None	0.0 k -ft	Infinity	OK
X-X. +D+0.750Lr+0.750L+H	None	0.0 k -ft	Infinity	OK
X-X. +D+0.750L+0.750S+H	None	0.0 k -ft	Infinity	OK
X-X. $+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$	None	0.0 k -ft	Infinity	OK
$\mathrm{X}-\mathrm{X}, \mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$	None	0.0 k -ft	Infinity	OK
X-X, +D+0.750Lr+0.750L +0.450W+H	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X. +D+0.750L+0.750S+0.450W+H	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK

Spanish Fork, UT
(801) 798-0555

General Footing	File $=$ T:Structural2017 Structural Jobsi2017-2259_日A 1606 Yehuda Resi2017-2259.ec6 ENERCALC, INC. 1983-2016, Build:6.16.5.11, Ver:6.16.5.11
Lic. \# : KW-06004645	Licensee : LEI CONSULTING ENGINEERS

Lic. \# : KW-06004645 Licensee : LEI CONSULTING ENGINEERS
Description:
FT11 at Right Column

Overturning Stability

Rotation Axis \& Load Combination...	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X + + $+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$	None	0.0 k -ft	Infinity	OK
$X-X_{1}+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$	None	0.0 k -ft	Infinitv	OK
X-X. $+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$	None	0.0 k -ft	Infinity	OK
Z-Z. +D+H	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
Z-Z. $+\mathrm{D}+\mathrm{L}+\mathrm{H}$	None	0.0 k -ft	Infinity	OK
Z-Z. +D+Lr+H	None	0.0 k -ft	Infinity	OK
$\mathrm{Z}-\mathrm{Z}+\mathrm{D}+\mathrm{S}+\mathrm{H}$	None	0.0 k -ft	Infinity	OK
Z-Z. +D+0.750Lr+0.750L+H	None	0.0 k -ft	Infinity	OK
Z-Z. $+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+\mathrm{H}$	None	0.0 k -ft	Infinity	OK
$\mathrm{Z}-\mathrm{Z},+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$	8.143 k -ft	21.129 k -ft	2.595	OK
$\mathrm{Z}-\mathrm{Z} .+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$	5.236 k -ft	21.129 k -ft	4.035	OK
Z-Z. +D+0.750Lr+0.750L+0.450W+H	6.107 k -ft	22.181 k -ft	3.632	OK
$\mathrm{Z}-\mathrm{Z} .+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+\mathrm{H}$	6.107 k -ft	$44.998 \mathrm{k}-\mathrm{ft}$	7.368	OK
$\mathrm{Z}-\mathrm{Z} .+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$	3.927 k ft	44.998 k -ft	11.459	OK
Z-Z. $+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$	8.143 k -ft	12.678 k-ft	1.557	OK
$\mathrm{Z}-\mathrm{Z}, 1+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$	5.236 k-ft	12.678 k-ft	2.421	OK
Sliding Stability				All units k

Kelly Christensen LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Project Title:
Engineer:
Project ID:
Project Descr:

Prinled: 5 JUN 2017, 9:04AM

General Footing	File $=$ T:IStructurall2017 Structural JobsL2017-2259_BA 1606 Yehuda Rest2017-2259.ec6 ENERCALC, INC. 1983-2016, Build:6.16.5.11, Ver:6.16.5.11
Lic. \#: KW-06004645	Licensee : LEI CONSULTING ENGINEERS

Lic. \#: KW-06004645
Description: FT11 at Right Column
Footing Flexure

Flexure Axis \& Load Combination	$\underset{\mathrm{k} \text {-ft }}{\mathrm{Mu}}$	Side	Tension Surface	As Req'd in^2	Gyrn. As in^2	Actual As in^2	$\begin{gathered} \text { Phi*Mn } \\ k-f t \end{gathered}$	Status
X-X. $+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	1.115	+Z	Bottom	0.2592	Min Temo \%	0.280	10.925	OK
$\mathrm{X}-\mathrm{X}$. $+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	1.115	-Z	Bottom	0.2592	Min Temo \%	0.280	10.925	OK
$\mathrm{X}-\mathrm{X},+1.20 \mathrm{D}+0.50 \mathrm{Lr}+0.50 \mathrm{~L}+\mathrm{W}+1.60 \mathrm{H}$	0.1401	+Z	Bottom	0.2592	Min Temo \%	0.280	10.925	OK
X-X, +1.20D+0.50Lr+0.50L+W+1.60H	0.1401	-Z	Bottom	0.2592	Min Temo \%	0.280	10.925	OK
$X-X_{1}+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60 \mathrm{H}$	0.4491	+Z	Bottom	0.2592	Min Temo \%	0.280	10.925	OK
X-X $+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60 \mathrm{H}$	0.4491	-Z	Bottom	0.2592	Min Temo \%	0.280	10.925	OK
X-X, $+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.70 \mathrm{~S}+\mathrm{E}+1.60 \mathrm{H}$	0.5727	+Z	Bottom	0.2592	Min Temp \%	0.280	10.925	OK
$\mathrm{X}-\mathrm{X}+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.70 \mathrm{~S}+\mathrm{E}+1.60 \mathrm{H}$	0.5727	-Z	Bottom	0.2592	Min Temb \%	0.280	10.925	OK
X-X ${ }^{\text {P }}+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$	0.09436	+Z	Bottom	0.2592	Min Temp \%	0.280	10.925	OK
X-X +0.900 + W +0.90H	0.09436	-2	Bottom	0.2592	Min Temo \%	0.280	10.925	OK
X-X $+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$	0.09436	+2	Bottom	0.2592	Min Temp \%	0.280	10.925	OK
$\mathrm{X}-\mathrm{X}{ }_{1}+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$	0.09436	-Z	Bottom	0.2592	Min Temo \%	0.280	10.925	OK
$\mathrm{Z}-\mathrm{Z} .1 .40 \mathrm{D}+1.60 \mathrm{H}$	0.3303	-X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
Z-Z. +1.40D+1.60H	0.3303	+X	Bottom	0.2592	Min Temp \%	0.2857	11.139	OK
Z-Z. +1.20D+0.50Lr+1.60L+1.60H	0.3857	-X	Bottom	0.2592	Min Temp \%	0.2857	11.139	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$	0.3857	+X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
Z-Z. $+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$	1.081	-X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
Z-Z. +1.20D $+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$	1.081	+X	Bottom	0.2592	Min Temp \%	0.2857	11.139	OK
Z-Z. +1.20D+1.60Lr+0.50L+1.60H	0.3151	-X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
$\mathrm{Z}-\mathrm{Z} .+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~L}+1.60 \mathrm{H}$	0.3151	+X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
Z-Z. +1.20D+1.60Lr+0.50W+1.60H	0.3992	-X	Top	0.2592	Min Temp \%	0.2857	11.139	OK
Z-Z. +1.20D+1.60Lr+0.50W+1.60H	0.9653	+X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
Z-Z. $+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$	2.540	-X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
$\mathrm{Z}-\mathrm{Z} .+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$	2.540	+X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
$\mathrm{Z}-\mathrm{Z} .+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	1.826	-X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
Z-Z. $+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	3.191	+X	Bottom	0.2592	Min Temp \%	0.2857	11.139	OK
$\mathrm{Z}-\mathrm{Z} .+1.20 \mathrm{D}+0.50 \mathrm{Lr}+0.50 \mathrm{~L}+\mathrm{W}+1.60 \mathrm{H}$	0.8598	-X	Tod	0.2592	Min Temp \%	0.2857	11.139	OK
$\mathrm{Z}-\mathrm{Z} .+1.20 \mathrm{D}+0.50 \mathrm{Lr}+0.50 \mathrm{~L}+\mathrm{W}+1.60 \mathrm{H}$	1.823	+X	Bottom	0.2592	Min Temp \%	0.2857	11.139	OK
$\mathrm{Z}-\mathrm{Z} .+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60 \mathrm{H}$	0.3540	-X	ToD	0.2592	Min Temo \%	0.2857	11.139	OK
Z-Z. $+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60 \mathrm{H}$	2.375	+X	Bottom	0.2592	Min Temp \%	0.2857	11.139	OK
Z-Z. $+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.70 \mathrm{~S}+\mathrm{E}+1.60 \mathrm{H}$	0.5366	-X	Bottom	0.2592	Min Temp \%	0.2857	11.139	OK
Z-Z. $+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.70 \mathrm{~S}+\mathrm{E}+1.60 \mathrm{H}$	2.041	+X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
Z-Z. $+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$	0.6570	-X	Tod	0.2592	Min Temo \%	0.2857	11.139	OK
Z-Z. $+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$	2.133	+X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK
Z-Z. $+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$	0.5267	-X	ToD	0.2592	Min Temo \%	0.2857	11.139	OK
$\mathrm{Z}-\mathrm{Z} .+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$	0.9734	+X	Bottom	0.2592	Min Temo \%	0.2857	11.139	OK

Load Combination...	Vu@-X	Vu@+X	Vu@-Z	Vu @ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
$+1.40 \mathrm{D}+1.60 \mathrm{H}$	1.911 psi	1.911 psi	0.8919 psi	0.8919 psi	1.911 psi	75 psi	i 0.02548	OK
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~L}+1.60 \mathrm{H}$	2.232 osi	2.232 psi	1.042 psi	1.042 psi	2.232 dsi	75 dsi	i 0.02976	OK
$+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$	6.256 osi	6.256 psi	2.919 psi	2.919 dsi	6.256 dsi	75 dsi	i 0.08341	OK
+1.20D+1.60Lr+0.50L+1.60H	1.824 osi	1.824 dsi	0.8511 dsi	0.8511 dsi	1.824 psi	75 dsi	i 0.02432	OK
$+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	2.401 psi	5.678 psi	0.7645 psi	0.7645 dsi	5.678 dsi	75 dsi	i 0.0757	OK
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$	14.701 psi	14.701 psi	6.86 psi	6.86 psi	14.701 psi	75 psi	i 0.196	OK
$+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	10.476 dsi	18.555 psi	6.774 dsi	6.774 dsi	18.555 dsi	75 psi	i 0.2474	OK
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~L}+\mathrm{W}+1.60 \mathrm{H}$	5.069 psi	10.777 dsi	0.8511 dsi	0.8511 dsi	10.777 dsi	75 psi	i 0.1437	OK
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60 \mathrm{H}$	2.231 dsi	13.926 psi	2.729 psi	2.729 psi	13.926 psi	75 psi	i 0.1857	OK
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.70 \mathrm{~S}+\mathrm{E}+1.60 \mathrm{H}$	3.005 psi	11.91 psi	3.48 psi	3.48 psi	11.91 psi	75 psi	i 0.1588	OK
$+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$	3.802 psi	12.808 psi	0.5734 psi	0.5734 dsi	12.808 psi	75 psi	i 0.1708	OK
$+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$	3.181 dsi	5.736 psi	0.5734 psi	0.5734 dsi	5.736 dsi	75 psi	i 0.07648	OK
Punching Shear							All units k	

Load Combination...	Vu	Phi* ${ }^{*}$ V	Vu/Phi*Vn	Status
$+1.40 \mathrm{D}+1.60 \mathrm{H}$	3.327 dsi	150 psi	0.02218	OK
+1.20D+0.50Lr+1.60L+1.60H	3.885 psi	150 psi	0.0259	OK
$+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$	10.89 psi	150 psi	0.0726	OK
$+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~L}+1.60 \mathrm{H}$	3.175 psi	150psi	0.02116	OK
$+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	2.852 dsi	150 dsi	0.01901	OK
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$	25.59 psi	150psi	0.1706	OK
$+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	25.267 psi	150 psi	0.1684	OK
$+1.20 \mathrm{D}+0.50 \mathrm{Lr}+0.50 \mathrm{~L}+\mathrm{W}+1.60 \mathrm{H}$	3.552 dsi	150 psi	0.02368	OK
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60 \mathrm{H}$	10.179 psi	150psi	0.06786	OK

Kelly Christensen
LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Project Title:
Engineer:
Project ID:
Project Descr:

Lic. \#: KW-06004645	

Description: FT11 at Right Column
Punching Shear All units k

Load Combination...	Vu	Phi*Vn	Vu $/ P h{ }^{*}{ }^{*} V n$	Status
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.70 \mathrm{~S}+\mathrm{E}+1.60 \mathrm{H}$	12.981 psi	150 psi	0.08654	OK
$+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$	3.389 psi	150 psi	0.0226	OK
$+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$	2.156 psi	150 psi	0.01437	OK

Kelly Christensen
LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Engineer:
Project ID:
Project Descr:

Lic. \# : KW-06004645
Description: Concrete Pier Check

Code References

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10
Load Combinations Used : IBC 2015

General Information				
fc^{\prime} : Concrete 28 day strength	$=$	2.50 ksi	Overall Column Height	$=3.0 \mathrm{ft}$
$E=$	$=$	$3,122.0 \mathrm{ksi}$	End Fixity	Top Free, Bottom Fixed
Density	=	150.0 pcf	Brace condition for deflection (buckling) along columns :	
β	=	0.850	X-X (width) axis : Unbraced Length for $\mathrm{X}-\mathrm{X}$ Axis buckling $=3.0 \mathrm{ft}, \mathrm{K}=2.10$	
fy - Main Rebar	$=$	60.0 ksi		
E-Main Rebar	$=$	$29,000.0 \mathrm{ksi}$	Y-Y (depth) axis :Unbraced Length for X-X Axis buckling $=3.0 \mathrm{ft}, \mathrm{K}=2.10$	
Allow. Reinforcing Limits		ASTM A615 Bars Used		
Min. Reinf.	=	1.0\%		
Max. Reinf.	$=$	8.0 \%		

Column Cross Section

Column Dimensions:
12.0in Square Column, Column Edge to Rebar Edge Cover $=2.0 \mathrm{in}$

Column Reinforcing: 4 - \#4 bars @ corners, , 1 - \#4 bars left \& right between corner bars

Applied Loads

Entered loads are factored per load combinations specified by user.
Column self weight included : 450.0 lbs * Dead Load Factor AXIAL LOADS . . .

Axial Load at 3.0 ft above base, $\mathrm{D}=4.254, \mathrm{~L}=1.351, \mathrm{~S}=41.654 \mathrm{k}$
BENDING LOADS . .
Lat. Point Load at 3.0 ft creating $\mathrm{Mx}-\mathrm{x}, \mathrm{W}=7.994, \mathrm{E}=5.499 \mathrm{k}$
DESIGN SUMMARY

Governing Load Combination Results

Governing Factored Load Combination	Moment		Dist. from		Axial Load k		Bending Analysis k-ft					Utilization		
	X-X	Y-Y			Pu	φ * Pn	δx	δx^{*} Mux	δ^{y}	Sy * Muy	Alpha (deg)	$\delta \mathrm{Mu}$	$\varphi \mathrm{Mn}$	Ratio
+1.40D+1.60H			2.98		6.59	195.23					0.000			0.034

Kelly Christensen
LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Project Title:
Engineer:
Project ID:
Project Descr:

Prinled: 5 JUN 2017, 9:29AM

Concrete Column	File $=$ T:IStuctural2017 Stuclural JobsL2017-2259_BA 1606 Yehuda Rest2017-2259.ec6 ENERCALC, INC. 1983-2016, Buidd:6.16.5.11, Ver:6.16.5.11
Lic. \# : KW-06004645	Licensee : LEI CONSULTING ENGINEERS

Lic. \# : KW-06004645
Description: Concrete Pier Check

Governing Load Combination Results

Governing Factored Load Combination	Moment		Dist. from	Axial Load k		δ^{x}	Bending Analysis k-ft				$\delta \mathrm{Mu}$	Utilization	
	X-X	Y-Y	base	Pu	φ * Pn		δx^{*} Mux	δ^{y}	Sy * Muy	Alpha (deg)		$\varphi \mathrm{Mn}$	Ratio
+1.20D+0.50Lr $+1.60 \mathrm{~L}+1.60 \mathrm{H}$			2.98	7.81	195.23					0.000			0.040
$+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$			2.98	28.63	195.23					0.000			0.147
+1.20D+1.60Lr+0.50L+1.60H			2.98	6.32	195.23					0.000			0.032
$+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	Actual		2.98	5.64	13.49	1.000	-11.99			180.000	11.99	29.31	0.409
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$			2.98	72.97	195.23					0.000			0.374
$+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	Actual		2.98	72.29	158.13	1.000	-11.99			180.000	11.99	26.45	0.454
$+1.20 \mathrm{D}+0.50 \mathrm{Lr}+0.50 \mathrm{~L}+\mathrm{W}+1.60 \mathrm{H}$	Actual		2.98	6.32	7.34	1.000	-23.98			180.000	23.98	27.36	0.876
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60 \mathrm{H}$	Actual		2.98	27.15	41.18	1.000	-23.98			180.000	23.98	36.74	0.653
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.70 \mathrm{~S}+\mathrm{E}+1.60 \mathrm{H}$	Actual		2.98	35.48	73.12	1.000	-16.50			180.000	16.50	33.95	0.486
$+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$	Actual		2.98	4.23	5.57	1.000	-23.98			180.000	23.98	26.79	0.895
$+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$	Actual		2.98	4.23	7.34	1.000	-16.50			180.000	16.50	27.36	0.603

Maximum Reactions			Note: Only non-zero reactions are listed.		
	Reaction along X-X Axis		Reaction	Y-Y Axis	Axial Reaction
Load Combination	@ Base	@ Top	@ Base	@ Top	@ Base
+D+H		k		k	4.704 k
+D+L+H		k		k	6.055 k
+D+Lr+H		k		k	4.704 k
+D+S+H		k		k	46.358 k
+D+0.750Lr+0.750L+H		k		k	5.717 k
+D+0.750L+0.750S+H		k		k	36.958 k
+D+0.60W+H		k	4.796	k	4.704 k
+D+0.70E+H		k	3.849	k	4.704 k
+D+0.750Lr+0.750L+0.450W+H		k	3.597	k	5.717 k
+D+0.750L+0.750S +0.450W+H		k	3.597	k	36.958 k
+D+0.750L+0.750S+0.5250E+H		k	2.887	k	36.958 k
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$		k	4.796	k	2.822 k
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$		k	3.849	k	2.822 k
D Only		k		k	4.704 k
Lr Only		k		k	k
L Only		k		k	1.351 k
S Only		k		k	41.654 k
W Only		k	7.994	k	k
E Only		k	5.499	k	k
H Only		k		k	k

Maximum Moments			Note: Only non-zero reactions are listed.		
	Moment About X-X Axis		Moment Aboul Y-Y Axis		
Load Combination	@ Base	@ Top	@ Base	@ Top	
+D+H		k-ft			k-ft
+D+L+H		k-ft			k-ft
+D+Lr+H		k-ft			k-ft
+D+S+H		k-ft			k-ft
+D+0.750L $\mathrm{r}+0.750 \mathrm{~L}+\mathrm{H}$		k-ft			k-ft
+D+0.750L+0.750S +H		k-ft			k-ft
+D+0.60W+H		k-ft		14.389	k-ft
+D+0.70E+H		k-ft		11.548	k-ft
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~L}+0.450 \mathrm{~W}+\mathrm{H}$		k-ft		10.792	k -ft
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+\mathrm{H}$		k-ft		10.792	k-ft
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$		k-ft		8.661	k-ft
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$		k-ft		14.389	k-tt
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$		k-ft		11.548	k-ft
D Only		k-ft			k-ft
Lr Only		k-ft			k-ft
L Only		k-ft			k-ft
S Only		k-ft			k-ft
W Only		k-ft		23.982	k-ft
E Only		k-ft		16.497	k-ft
H Only		k-ft			k-ft

Kelly Christensen
LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Project Title:
Engineer:
Project ID:
Project Descr:

Description: Concrete Pier Check
Maximum Deflections for Load Combinations

Sketches

Looking along X-X Axis

Interaction Diagrams

Concrete Column

File $=$ T:IStructurall2017 Structural Jobsl2017-2259_BA 1606 Yehuda Resl2017-2259.ec6
Lic. \#: KW-06004645 ENERCALC, INC. 1983-2016, Build:6.16.5.11, Ver:6.16.5.11

Description: Concrete Pier Check

Concrete Column P-M Interaction Diagram

Kelly Christensen
LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Project Title:
Engineer:
Project ID:
Project Descr:

Concrete Column

File $=$ T:IStructuran2017 Structural Jobst2017-2259_BA 1606 Yehuda Rest2017-2259.ec6
ENERCALC, INC. 1983-2016, Build:6.16.5.11, Ver:6.16.5.11

Lic. \# : KW-06004645

Description: Concrete Pier Check

Concrele Column P-M Interaclion Diagram

Concrete Column P-M Interaction Diagram

Concrete Column P-M Interaction Diagram Phi * Mn@Alpha (k-ft)

Kelly Christensen
LEI Consulting Engineers
3302 N Main St
Spanish Fork, UT
(801) 798-0555

Engineer:
Project ID:
Project Descr:

Printed: 15 MAY 2017, 1:36PM

Concrete Column

File $=$: :1StrucluraR2017 Structural JobsL2017-2259_BA 1606 Yehuda Rest2017-2259.ec6

Lic. \# : KW-06004645

 ENERCALC, INC. 1983-2016, Build:6.16.5.11, Ver.6.16.5.11Description: FW11 at Point Load

Code References

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10
Load Combinations Used : ASCE 7-10

Applied Loads

Entered loads are factored per load combinations specified by user.
Column self weight included : 733.33 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at 11.0 ft above base, $\mathrm{D}=4.009, \mathrm{~L}=6.045, \mathrm{~S}=19.423 \mathrm{k}$
DESIGN SUMMARY

Governing Load Combination Results

Goveming Factored Load Combination	Moment		Dist. from		Axial Load		Bending Analysis k-ft						Utilization	
	X-X	Y-Y	base	ft	Pu	φ * Pn	δ^{x}	δx^{*} Mux	δV	δy^{*} Muy	Alpha (deg)	$\delta \mathrm{Mu}$	$\varphi \mathrm{Mn}$	Ratio
+1.40D+1.60H			10.93		6.64	94.80					0.000			0.070
$+1.20 \mathrm{D}+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$			10.93		15.36	94.80					0.000			0.162
$+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$			10.93		25.07	94.80					0.000			0.265

Concrete Column	File $=$ tilStuctural2017 Stuctural Jobsi2017-2259_BA 1606 Yehuda Resi2017-2259.ec6 ENERCALC, INC. 1983-2016, Build:6.16.5.11, Ver:6.16.5.11
KW-060046	

Lic. \#: KW-06004645 Licensee : LEI CONSULTING ENGINEERS
Description: FW11 at Point Load

Governing Load Combination Results

Governing Factored Load Combination	Moment		Dist. from	Axial Load k		Bending Analysis k-ft						Utilization	
	X-X	Y-Y	base ft	Pu	φ * Pn	δ^{x}	δx^{*} Mux	δ^{Y}	Sy * Muy	Alpha (deg)	$\delta \mathrm{Mu}$	$\varphi \mathrm{Mn}$	Ratio
+1.20D+1.60Lr+0.50L+1.60H			10.93	8.71	94.80					0.000			0.092
$+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~W}+1.60 \mathrm{H}$			10.93	5.69	94.80					0.000			0.060
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$			10.93	39.79	94.80					0.000			0.420
+1.20D+1.60S+0.50W+1.60H			10.93	36.77	94.80					0.000			0.388
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~L}+\mathrm{W}+1.60 \mathrm{H}$			10.93	8.71	94.80					0.000			0.092
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60 \mathrm{H}$			10.93	18.42	94.80					0.000			0.194
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.20 \mathrm{~S}+\mathrm{E}+1.60 \mathrm{H}$			10.93	12.60	94.80					0.000			0.133
$+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$			10.93	4.27	94.80					0.000			0.045
$+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$			10.93	4.27	94.80					0.000			0.045

Maximum Reactions			Note: Only non-zero reactions are listed.		
	Reaction along X -X Axis		Reaction along Y-Y Axis		Axial Reaction
Load Combination	@ Base	@ Top	@ Base	@ Top	@ Base
+D+H		k		k	4.742 k
+D+L+H		k		k	10.787 k
+D+LT+H		k		k	4.742 k
+D+S+H		k		k	24.165 k
+D+0.750L + +0.750L+H		k		k	9.276 k
+D+0.750L+0.750S+H		k		k	23.843 k
$+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$		k		k	4.742 k
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$		k		k	4.742 k
+D+0.750Lr+0.750L+0.450W+H		k		k	9.276 k
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+\mathrm{H}$		k		k	23.843 k
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$		k		k	23.843 k
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$		k		k	2.845 k
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$		k		k	2.845 k
D Only		k		k	4.742 k
Lronly		k		k	
L Only		k		k	6.045 k
S Only		k		k	19.423 k
W Only		k		k	,
E Only		k		k	,
H Only		k		k	k

Maximum Moments			Note: Only non-zero reactions are listed.	
	Mom	out X-X Axis	Momen	Y-Y Axis
Load Combination	@ Base	@ Top	@ Base	@ Top
+D+H		k-ft		k-ft
+D+L+H		k-ft		k-ft
+D+Lr+H		k-ft		k-ft
+D+S+H		k-ft		k-ft
+D+0.750Lr+0.750L+H		k-ft		k-ft
+D+0.750L+0.750S+H		k-ft		k-ft
$+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$		k-ft		k-ft
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$		k-ft		k-ft
+D+0.750L $+0.750 \mathrm{~L}+0.450 \mathrm{~W}+\mathrm{H}$		k-ft		k-ft
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+\mathrm{H}$		k-ft		k-ft
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$		k-ft		k-ft
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$		k-ft		k-ft
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$		k-ft		k-ft
D Only		k-ft		k-ft
Lr Only		k-ft		k-ft
L Only		k-ft		k-ft
S Only		k-ft		k-ft
W Only		k-ft		k-ft
E Only		k-ft		k-ft
H Only		k-ft		k-ft

Kelly Christensen LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Project Title:
Engineer:
Project Descr:

Concrete Column

Maximum Deflections for Load Combinations

Sketches

Looking along X - X AXX

ookkng along Y-Y Axia

Interaction Diagrams

Kelly Christensen
LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Project Title:
Engineer:
Project Descr:

Project ID:

Prinled: 15 MAY 2017, 1:36PM

Concrete Column

File $=$ t:IStructural2017 Structural Jobs12017-2259_BA 1606 Yehuda Resi2017-2259.ec6
Lic. \# : KW-06004645
ENERCALC, INC. 1983-2016, Build:6.16.5.11, Ver.6.16.5.11 Licensee : LEI CONSULTING ENGINEERS
Description: FW11 at Point Load

Concrete Column P-M Interaction Diagram

Concrete Column P-M Interaction Diagram Phi *Mn@Alpha (k-ft)

Concrete Column P-M Interaction Diagram

Kelly Christensen
LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Project Title:
Engineer:
Project Descr:

Concrete Column	File $=$ t:lStructural2017 Structural JobsL2017-2259_BA 1606 Yohuda Resi2017-2259.ec6 ENERCALC, INC. 1983-2016, Build:6.16.5.11, Ver:6.16.5.11
Lic. \#: KW-06004645	Licensee : LEI CONSULTING ENGINEERS

Description: FW11 at Point Load

Description: Uplift Check at FW5

CODE REFERENCES

Calculations per ACI 318-11, IBC 2012, ASCE 7-10
Load Combination Set : ASCE 7-10

Material Properties

$W(10.5) E(8.81)$

Cross Section \& Reinforcing Details

Rectangular Section, Width $=8.0$ in, Height $=60.0 \mathrm{in}$ Span \#1 Reinforcing....

$$
\begin{array}{ll}
1-\# 4 \text { at } 3.0 \text { in from Top, from } 0.0 \text { to } 10.0 \mathrm{ft} \text { in this span } & 1-\# 4 \text { at } 16.50 \text { in from Top, from } 0.0 \text { to } 10.0 \mathrm{ft} \text { in this span } \\
1-\# 4 \text { at } 30.0 \text { in from Top, from } 0.0 \text { to } 10.0 \mathrm{ft} \text { in this span } & 1-\# 4 \text { at } 16.50 \text { in from Bottom, from } 0.0 \text { to } 10.0 \mathrm{ft} \text { in this span } \\
1-\# 4 \text { at } 30.0 \text { in from Bottom, from } 0.0 \text { to } 10.0 \mathrm{ft} \text { in this span } &
\end{array}
$$

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loads

Point Load: W=10.50, E=8.810k@0.0 f

DESIGN SUMMARY			Design OK	
Maximum Bending Stress Ratio =	0.885:1	Maximum Deflection		
Section used for this span	Typical Section	Max Downward Transient Deflection	0.013 in Ratio $=$	$17840>=36$
Mu: Applied	-133.991 k-ft	Max Upward Transient Deflection	0.000 in Ratio $=$	$0<360$
Mn * Phi : Allowable	151.359 k -ft	Max Downward Total Deflection	0.000 in Ratio $=$	$999<180$
Location of maximum on span	10.000 ft	Max Upward Total Deflection	0.000 in Ratio $=$	$999<180$
Span \# where maximum occurs	Span \# 1			

Vertical Reactions	Support notation: Far left is \#1	
Load Combination	Support 1 Support 2	
Overall MAXİmum	11.133	
Overall MINimum	4.833	
+D+H	4.833	
+D+L+H	4.833	
+D+Lr+H	4.833	
+D+S+H	4.833	
+D+0.750Lr+0.750L+H	4.833	
+D+0.750L+0.750S+H	4.833	
+D+0.60W+H	11.133	
+D+0.70E+H	11.000	ge 106 of 112
+D+0.750Lr+0.750L+0.450W+H	9.558	
+D+0.750L+0.750S+0.450W+H	9.558	

Kelly Christensen
LEI Consulting Engineers
3302 N Main St.
Spanish Fork, UT
(801) 798-0555

Project Title:
Engineer:
Project ID:
Project Descr:

	Prined: 15 MAY 2017, 1:14PM
Concrete Beam	File $=$ t:lStuclurall2017 Strctural JobsL2017-2259 _ BA 1606 Yehuda Resi2017-2259.ec6 ENERCALC, INC. 1983-2016, Build:6.16.5.11, Ver.6.16.5.11
Lic. \# : KW-06004645	Licensee : LEI CONSULTING ENGINEERS

Description: Uplift Check at FW5
Vertical Reactions Support notation : Far left is \#1

Load Combination	Support 1
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$	Support 2
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$	9.459
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$	9.200
D Only	9.067
Lr Only	4.833
L Only	
S Only	
W Only	
E Only	10.500
H Only	8.810

Shear Stirrup Requirements

Between 0.00 to $7.43 \mathrm{ft}, \mathrm{Vu}<\mathrm{PhiVc} / 2$, Req'd $\mathrm{Vs}=\mathrm{Not}$ Reqd 11.4.6.1, use stimups spaced at 0.000 in
Between 7.45 to 9.98 ft , PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 11.5.6.3, use stirrups spaced at 22.000 in

Maximum Forces \& Stresses for Load Combinations

Load Combination		Location (ft)	Bending	ess Results	
Segment Length	Span \#	in Span	Mu: Max	Phi*Mnx	Stress Ratio
MAXimum BENDING Envelope					
Span \# 1	1	10.000	-133.99	151.36	0.89
$+1.40 \mathrm{D}+1.60 \mathrm{H}$					
Span \# 1	1	10.000	-33.83	151.36	0.22
$+1.20 \mathrm{D}+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$					
Span \# 1	1	10.000	-29.00	151.36	0.19
$+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$					
Span \#1	1	10.000	-29.00	151.36	0.19
$+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~L}+1.60 \mathrm{H}$					
Span \# 1	1	10.000	-29.00	151.36	0.19
+1.20D+1.60Lr+0.50W+1.60H					
Span\# 1	1	10.000	-81.50	151.36	0.54
+1.20D+0.50L+1.60S+1.60H					
Span\#1	1	10.000	-29.00	151.36	0.19
+1.20D $+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$					
Span \# 1	1	10.000	-81.50	151.36	0.54
+1.20D $+0.50 \mathrm{Lr}+0.50 \mathrm{~L}+\mathrm{W}+1.60 \mathrm{H}$					
Span \# 1	1	10.000	-133.99	151.36	0.89
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60 \mathrm{H}$					
Span \# 1	1	10.000	-133.99	151.36	0.89
+1.20D+0.50L+0.20S+E+1.60H					
Span \# 1	1	10.000	-117.09	151.36	0.77
$+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$					
Span \# 1	1	10.000	-126.74	151.36	0.84
$+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$					
Span \# 1	1	10.000	-109.84	151.36	0.73

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. " + " Defl
Location in Span					
W Only	1	0.0135	0.000	0.0000	

Detailed Shear Information

	Span	Distance	'd'	Vu	(k)	Mu	$\mathrm{d}^{*} \mathrm{~V}$ / $/ \mathrm{Mu}$	Phi*Vc	Comment	Phi*Vs	Phi*Vn	Spa	(in)
Load Combination	Number	(ft)	(in)	Actual	Design	(k-ft)		(k)		(k)	(k)	Req'd	Suggest
$+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$	1	0.00	43.50	0.00	0.00	0.00	1.00	25.92	Vu < PhiVd2	Not Reqd 1	25.9	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.02	50.25	-10.51	10.51	0.18	1.00	30.14	Vu< Phivel2	Not Reqd 1	30.1	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.04	50.25	-10.52	10.52	0.37	1.00	30.14	Vu < Phivel2	Not Reqd 1	30.1	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.05	50.25	-10.53	10.53	0.57	1.00	30.14	Vu< Phivel2	Not Regd 1	30.1	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.07	50.25	-10.54	10.54	0.76	1.00	30.14	$\mathrm{Vu}<\mathrm{PhiVc} / 2$	Not Reqd 1	30.1	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.09	50.25	-10.55	10.55	0.95	1.00	30.14	$\mathrm{Vu}<\mathrm{PhiVg} / 2$	Not Reqd 1	30.1	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.11	50.25	-10.56	10.56	1.14	1.00	30.14	Vu < Phivgl2	Not Reqd 1	30.1	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.13	50.25	-10.57	10.57	1.33	1.00	30.14	Vu < Phival2	Not Reqd 1	30.1	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.15	50.25	-10.58	10.58	1.53	1.00	30.14	Vu < Phivel2	Not Reqd 1	30.1	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.16	50.25	-10.60		e 10	$112^{1.00}$	30.14	$\mathrm{Vu}<\mathrm{PhiVg} 12$	Not Reqd 1	30.1	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.18	50.25	-10.61	10.61	1.91	11.00	30.14	Vu < PhiVcl2	Not Reqd 1	30.1	0.0	0.0
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60$	1	0.20	50.25	-10.62	10.62	2.11	1.00	30.14	$\mathrm{Vu}<\mathrm{PhiVg} / 2$	Not Reqd 1	30.1	0.0	0.0

Post Calculations

Example Calculations:

	$\begin{gathered} \mathrm{lb} \\ \operatorname{Max} \mathrm{P} \end{gathered}$	ft	$\begin{gathered} \mathrm{ft} \\ \mathrm{le} \\ \mathrm{le} \end{gathered}$	$\begin{gathered} \mathrm{ft} \\ \mathrm{le} \end{gathered}$	$\begin{aligned} & \text { in } \\ & \mathbf{e}_{\mathrm{x}} \end{aligned}$	$\begin{aligned} & \text { in } \\ & e_{y} \end{aligned}$	$\mathrm{C}_{\text {d }}$	(le/d) ${ }_{\text {x }}$	(le/d) ${ }^{\text {y }}$	A	S_{x}	S_{γ}	f_{c}	F'c	$\mathrm{F}_{\text {bx }}$	$F^{\text {b }}$	Comb.	Check
(2) 2×4	3725	8	8	1	0.61	0.00	1.15	27.4	4.0	10.5	6	5	355	582	1551	1708	0.6	OK
(2) 2×6	8990	8	8	1	0.96	0.00	1.15	17.5	4.0	16.5	15	8	545	1013	1344	1547	0.7	OK
(3) 2×4	5805	8	8	1	0.61	0.00	1.15	27.4	2.7	15.75	9	12	369	582	1785	1964	0.6	OK
(3) 2×6	14295	8	8	1	0.96	0.00	1.15	17.5	2.7	24.75	23	19	578	1019	1547	1779	0.7	OK
(4) 2×4	7745	8	8	1	0.61	0.00	1.15	27.4	2.0	21	12	21	369	582	1785	1964	0.6	OK
(4) 2×6	19080	8	8	1	0.96	0.00	1.15	17.5	2.0	33	30	33	578	1022	1547	1779	0.7	OK
(5) 2×4	9680	8	8	1	0.61	0.00	1.15	27.4	1.6	26.25	15	33	369	582	1785	1964	0.6	OK
(5) 2×6	23860	8	8	1	0.96	0.00	1.15	17.5	1.6	41.25	38	52	578	1023	1547	1779	0.7	OK
4x4	4340	8	8	1	0.61	0.00	1.15	27.4	3.4	12.25	7	7	354	571	1034	1035	0.7	OK
6×6	11200	8	8	1	0.96	0.00	1.15	17.5	2.2	30.25	28	28	370	663	862	863	0.8	OK
$31 / 2^{\prime \prime} \times 3$ 1/2" PLP	7440	8	1	8	0.00	0.61	1.15	3.4	27.4	12.25	7	7	607	953	3171	3174	1.0	OK
$31 / 2^{\prime \prime} \times 5$ 1/4" PLP	11035	8	1	8	0.00	0.61	1.15	2.3	27.4	18.38	16	11	601	953	3032	3036	1.0	OK
$51 / 4^{\prime \prime} \times 5$ 1/4"PLP	27915	8	1	8	0.00	0.92	1.15	2.3	18.3	27.56	24	24	1013	1889	3034	3036	1.0	OK
$31 / 8 " \times 71 / 2^{\prime \prime}$ GLP	11495	8	1	8	0.00	0.55	1.15	1.6	30.7	23.44	29	12	490	802	2181	2935	0.9	OK
$31 / 8 " \times 9$ GLP	13790	8	1	8	0.00	0.55	1.15	1.3	30.7	28.13	42	15	490	802	2180	2935	0.9	OK
$51 / 8{ }^{\prime \prime} \times 6 \mathrm{CLGP}$	26595	8	1	8	0.00	0.90	1.15	2.0	18.7	30.75	31	26	865	1773	2184	2783	0.8	OK
$51 / 8^{\prime \prime} \times 71 / 2^{\prime \prime}$ GLP	33240	8	1	8	0.00	0.90	1.15	1.6	18.7	38.44	48	33	865	1773	2184	2783	0.8	OK
$51 / 8{ }^{\prime \prime} \times 9$ ' GLP	39890	8	1	8	0.00	0.90	1.15	1.3	18.7	46.13	69	39	865	1773	2183	2783	0.8	OK
Additional Post Calculations:																		
	0	8	8	8	0.61	0.61	1.15	27.4	27.4	12.25	7	7	0	571	1031	1035	0.0	OK
	0	8	8	8	0.61	0.61	1.15	27.4	27.4	12.25	7	7	0	571	1031	1035	0.0	OK
	0	8	8	8	0.61	0.61	1.15	27.4	27.4	12.25	7	7	0	571	1031	1035	0.0	OK

Load Charts:

Floor Loads

7 ft	8 ft	9 ft	10 ft	
2100	1775	1505	1290	
4695	4270	3855	3470	
4215	3560	3025	2595	
8500	8080	7615	6970	
6620	5560	4710	4025	
13510	12845	12105	11020	
8830	7415	6280	5365	
18035	17145	16155	14700	
11035	9265	7850	6710	
22555	21440	20200	18375	

2800	2285	1885	1575	
4500	3670	3025	2525	
6205	5310	4550	3915	
10745	9405	8170	7090	
8830	7415	6280	5365	
16425	15120	13760	12425	
11035	9265	7850	6710	
21465	20125	18695	17235	
4915	4145	3525	3025	
10790	10130	9430	8720	
8595	7155	6015	5115	
12720	10600	8930	7600	
29340	26080	23000	20250	
13115	11005	9320	7970	
15735	13205	11185	9565	
26900	24510	22110	19840	
33625	30640	27640	24805	
40350	36765	33170	29765	

Notes: 1. Example calculations show posts braced in one direction.
2. Loads have been adjusted to accommodate for the worst case of the following eccentric conditions: . 175 of column thickness or . 175 of column width.

Project: 2017-2259
Location: P8
Column
[2015 International Building Code(2015 NDS)]
$5.25 \mathrm{IN} \times 5.25 \mathrm{IN} \times 9$ FT
1.8E Parallam Column - iLevel Trus Joist

Section Adequate By: 11.0\%

Kelly Christensen
LEI Consulting Engineers and Surveyers Inc. 3302 N. Main St. Spanish Fork, UT 84660

StruCalc Version 10.0.0.9
5/15/2017 1:48:55 PM

| VERTICAL_REACTIONS | | |
| :--- | :--- | :--- | :--- |
| Live Load: | Vert-LL-Rxn $=27051$ | lb |
| Dead Load: | Vert-DL-Rxn $=2504$ | lb |
| Total Load: | Vert-TL-Rxn $=29555$ | lb |

COLUMN DATA

Total Column Length:	9	ft
Unbraced Length (X-Axis) Lx:	9 ft	
Unbraced Length (Y-Axis) Ly:	9 ft	
Column End Condition-K (e):	1	
Load Eccentricity (X-Axis)- ex:	0.3	in
Load Eccentricity (Y-Axis)- ey:	0	in
Axial Load Duration Factor	1.00	

COLUMN PROPERTIES
1.8E Parallam Column - iLevel Trus Joist

Column Calculations (Controlling Case Only):

Controlling Load Case: Axial Total Load Only (L + D)
Actual Compressive Stress:
Allowable Compressive Stress
Eccentricity Moment (X-X Axis):
Eccentricity Moment ($Y-Y$ Axis):
$\mathrm{Fc}=1072 \mathrm{psi}$
$\mathrm{Fc}^{\prime}=\quad 1534 \mathrm{psi}$
$M \mathrm{M}-\mathrm{ex}=737 \mathrm{ft}-\mathrm{lb}$
$\mathrm{My}-\mathrm{ey}=\quad 0 \mathrm{ft} \mathrm{lb}$
Moment Due to Lateral Loads (X - X Axis): $\quad M \mathrm{M}=\quad 0 \mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (Y-Y Axis): $\quad M y=\quad 0$ ftlb
$\begin{array}{lrr}\text { Bending Stress Lateral Loads Only (X-X Axis): } & \text { Fbx }= & 0 \\ \text { psi } \\ \text { Allowable Bending Stress (X-X Axis): } & \text { Fbx' }= & 2631\end{array}$
Bending Stress Lateral Loads Only (Y-Y Axis): Fby $=00$ psi
$\begin{array}{llll}\text { Allowable Bending Stress (Y-Y Axis): } & \text { Fby' }= & 2631 & \text { psi } \\ \text { Combined Stress Factor: } & \text { CSF }= & 0.89\end{array}$

LOADING DIAGRAM

AXIAL LOADING

Live Load:	$\mathrm{PL}=27051 \mathrm{lb}$
Dead Load:	$\mathrm{PD}=2426 \mathrm{lb}$
Column Self Weight:	$\mathrm{CSW}=78 \mathrm{lb}$
Total Axial Load:	$\mathrm{PT}=29555 \mathrm{lb}$

NOTES

Kelly Christensen
LEI Consulting Engineers and Surveyers Inc.
3302 N. Main St. 3302 N. Main St.
Spanish Fork, UT 84660
StruCalc Version 10.0.0.9
5/15/2017 1:48:55 PM
1.8E Parallam Column - iLevel Trus Joist

Section Adequate By: 3.5\%

VERTICAL REACTIONS			
Live Load:	Vert-LL-Rxn $=24690$	lb	
Dead Load:	Vert-DL-Rxn=	2598	lb
Total Load:	Vert-TL-Rxn $=27288$	lb	

LOADING DIAGRAM

AXIAL LÓADING

Live Load:	$\mathrm{PL}=24690 \mathrm{lb}$
Dead Load:	$\mathrm{PD}=2520 \mathrm{lb}$
Column Self Weight:	$\mathrm{CSW}=78 \mathrm{lb}$
Total Axial Load:	$\mathrm{PT}=27288 \mathrm{lb}$

Controlling Load Case: Axial Total Load Only (L+D)			
Actual Compressive Stress:	$\mathrm{Fc}=$	990	psi
Allowable Compressive Stress:	Fc' $=$	1534	psi
Eccentricity Moment (X -X Axis):	Mx-ex $=$	1134	ft -lb
Eccentricity Moment (Y-Y Axis):	My-ey =	0	ft -lb
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	0	ft -lb
Moment Due to Lateral Loads (Y-Y Axis):	My =	0	ft -lb
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	0	psi
Allowable Bending Stress (X-X Axis):	Fbx' $=$	2631	psi
Bending Stress Lateral Loads Only ($\mathrm{Y}-\mathrm{Y}$ Axis):	Fby $=$		psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	2631	psi
Combined Stress Factor:	CSF =	0.96	

NOTES

Location: P10
Column
[2015 International Building Code(AISC 14th Ed ASD)]
HSS $4 \times 4 \times 1 / 4 \times 8.0$ FT /ASTM A500-GR.B-46
Section Adequate By: 90.8\%

| VERTICAL REACTIONS | | |
| :--- | :--- | :--- | :--- |
| Live Load: | Vert-LL-Rxn $=12036$ | lb |
| Dead Load: | Vert-DL-Rxn $=985$ | lb |
| Total Load: | Vert-TL-Rxn $=13021$ | lb |

COLUMN DATA		
Total Column Length:	8	ft
Unbraced Length (X-Axis) Lx:	8	ft
Unbraced Length (Y-Axis) Ly:	8	ft
Column End Condition-K (e):	1	

COLUMN PROPERTIES

HSS $4 \times 4 \times 1 / 4$ - Square

Steel Yield Strength:	$F y=$	46 ksi	$d y=$	4 in
Modulus of Elasticity:	$\mathrm{E}=$	29000 ksi		
Column Section:	$\mathrm{dx}=$	4 in		
Column Wall Thickness:	$\mathrm{t}=$	0.233 in		
Area:	$\mathrm{A}=$	3.37 in		
Moment of Inertia (deflection):	$1 \mathrm{x}=$	7.8 in4	$\mathrm{ly}=$	7.8 in4
Section Modulus:	Sx $=$	3.9 in3	Sy =	3.9 in3
Plastic Section Modulus:	$\mathrm{Zx}=$	4.69 in3	Zy =	4.69 in 3
Rad. of Gyration:	$\mathrm{rx}=$	1.52 in	$r y=$	1.52 in
Column Compression Calculations:				
KL/r Ratio:	$\mathrm{KLx} / \mathrm{PX}=63.16$		$\mathrm{KLy} / \mathrm{ry}=63.16$	
Controlling Direction for Compr. Calcs: (Y-Y Axis)				
Flexural Buckling Stress:	$\mathrm{Fcr}=$	35.17 ksi		
Controlling Equation	F7-1			
Nominal Compressive Strength:	$\mathrm{Pc}=$	71 kip		

Combined Stress Calculations:
H1-1b Controls : 0.09
Controlling Combined Stress Factor: 0.09

NOTES

Mike Larrabee
LEI Consulting Engineers
3302 N Main Street
Spanish Fork, UT 84660

StruCalc Version 10.0.1.4 6/15/2017 4:03:18 PM

AXIAL LÓÁDING

Live Load:	$\mathrm{PL}=12036 \mathrm{lb}$
Dead Load:	$\mathrm{PD}=886 \mathrm{lb}$
Column Self Weight:	$\mathrm{CSW}=99 \mathrm{lb}$
Total Axial Load:	$\mathrm{PT}=13021 \mathrm{lb}$

LOADING DIAGRAM

Total Axial Load: $\mathrm{PT}=13021 \mathrm{lb}$

Post Schedule	
Designation	Post Size
P1	(1) $2 x$
P2	(2) $2 x$
P3	(3) $2 x$
P4	(4) $2 x$
P5	(5) $2 x$
P6	4×4
P7	6×6
P8	5 1/4" $\times 5$ 1/4" Parallam Post
P9	W10x54 A992-50
P10	HSS $4 \times 4 \times 1 / 4$ A500-GR.B-46
Toles: 1. Posts indicate number of trimmer studs when specitied al headers. All other post designations refer to full height king studs UNO. 2. Inslall (1) irimmer slud and (1) king slud each side of each opening U.N.O. 3. Inslall (2) trimmer studs each side of openings greater than 6'-0" UNO 4. Install (2) king studs each side of openings grealer than $\mathrm{B}^{\prime}-\mathrm{O}^{\prime \prime} \mathrm{U}, \mathrm{NO}$. 5. $2 x$ buill-up posts shall be the same with of the wall in which they are framed U.NO. 6. Nail each ply of $2 x$ buill-up posis w/ 16d nails © $6^{\prime \prime}$ o.c. staggered UNO. 7. Posts that are nol framed within a stud wall shall be braced with BC or AC post cap and PB or ABA post base UNO	

Shear Wall Schedule ${ }^{1,3}$								
Designation	Material	11/2" 16 Gaga Staplas		8d Nails		Capacity		Note
		Edge	Field	Edge	Fleld	Wind	Seismic	
1	7/16" OSB or CDX plywood	$3 \frac{1}{2}{ }^{*}$	12 "	$6{ }^{*}$	12"	360	260	2,4,5
2	7/16" OSB or CDX plywood	-	-	4^{*}	$12^{\prime \prime}$	530	350	2,4,5

Notes: 1. Wall sruds are to be spaced at $16^{\circ} \mathrm{OC}$, UNO.
2. Unit shear capaciles are based on AF\&PA SDPWS Table 4.3A (IBC 23063)
. Use (2) king sluds al each end of shear panels (Shear Wall Chords) U.N.O.
4. All panel edges shall be blocked with 2 -inch nominal or wider framing with edge nailing al all supports and panel edges U.N.O. (AF\&PA SDPWS 4.3.7.1 note 1)
5. Where panels are applied on both laces of a wall and nail spacing is less than $6^{\prime \prime}$ oc, on either side, panel joints shall be
ottset to fall on different traming members.
6. Framing at adjolning panel edges and sill plates shall be 3 -inch nominal or wider for edge nailing $3^{\prime \prime}$ oc. or less. Nails al
adjoining panal edges and inlo sill plates shall be slaggared. (AF\&PA SDPWS 4.3.7.1 note 3)

Footing Schedule													
Designation	Length	Width	Depth	Lengthwise Reinforcement				Crosswise Reinforcement				Capacity	Note
				Oly.	Slze	Length	Spacing	Oty.	Size	Length	Spacing		
FT1A	Cont.	201	10"	2	\#4	Cont.	EQ.	.	-	+	-	2500 PLF	
FT1B	Cont.	32 "	$10^{\prime \prime}$	3	\#4	Cont.	EQ.	-	\#4	$26{ }^{\prime \prime}$	12" o.c.	4000 PLF	
FT1C	Cont.	36"	$10^{\prime \prime}$	4	\#4	Cont.	EQ.	*	\#5	301	12" o.c.	4500 PLF	
FT2	Conl.	$20^{\prime \prime}$	$10^{\prime \prime}$	2	\#4	Conl.	EQ.	.	-	-	.	2500 PLF	See delail 19/SD. 1
FT3	$24{ }^{\prime \prime}$	$24{ }^{\prime \prime}$	$10^{\prime \prime}$	3	\#4	$18{ }^{\prime \prime}$	EQ.	3	\# 4	$18{ }^{\prime \prime}$	EQ.	6000 LBS	
FT4	$30^{\prime \prime}$	30^{n}	$10^{\prime \prime}$	3	\#4	$24^{\prime \prime}$	EQ.	3	\#4	24*	EQ.	9375 LBS	
FT5	36	$36^{\prime \prime}$	$10^{\prime \prime}$	4	\#4	$30^{\prime \prime}$	EQ.	4	\#4	30^{*}	EQ.	13500 LBS	
FT6	42"	$42^{\prime \prime}$	$10^{\prime \prime}$	4	\#4	36	EQ.	4	\# 4	$36^{\prime \prime}$	EQ.	18375 LBS	
FT7	48"	$48^{\prime \prime}$	$10^{\prime \prime}$	5	\#4	42"	EQ.	5	\#4	$42^{\prime \prime}$	EQ.	24000 LBS	
FT8	$60^{\prime \prime}$	$60^{\prime \prime}$	12"	7	\#4	$54{ }^{\prime \prime}$	EQ.	7	\#4	$54^{\prime \prime}$	EQ.	37500 LBS	
FT9	$36{ }^{\prime \prime}$	$36{ }^{\prime \prime}$	$12^{\prime \prime}$	4	\#4	$30^{\prime \prime}$	EQ.	4	\#4	$30^{\prime \prime}$	EQ.	-	
FT10	$48^{\prime \prime}$	$48^{\prime \prime}$	12"	6	\#4	$42^{\prime \prime}$	EQ.	6	\#4	42"	EQ.	-	
FT11	$60^{\prime \prime}$	42"	$12^{\prime \prime}$	5	\#4	$54{ }^{\prime \prime}$	EQ.	7	\#4	$36^{\prime \prime}$	EO.	-	
Notes: 1. f'c $=2,500$ psi, $\mathrm{ly}=60,000 \mathrm{psi}$ No special inspection required. 2. Footings shall bear on undislurbed nalive soils or slructural compacled fill (95% compaction), specitied and tesled by a regislered geotechnical enginear. 3. All footings shall bear below the frost line of the locality, ($36^{\prime \prime}$ UNO) Provide 12 " diameter sono-lube al exterior spot foolings per delail 20/SD. 1 4. Provide J -bars to match vertical foundation wall reinforcement with 24 " minimum lap splice inlo foundation wall 5. Cenler footing under loundation wall U.N.O.													

Foundation Wall Schedule								
Designation	Thickness	Max Height	Vert. Reinforcement		Horizontal Reinforcement			Note
			Size	Spacing	Oly.	Size	Spacing	
FW3A	$8 *$	$3-2{ }^{2}$	\#4	$24^{\prime \prime}$	3	\#4	EQ.	
FW3B	12	$3 \cdot 2$	\#4	24 "	3	\#4	EQ.	(2) mals of reinforcement. See 33/SD 2
FW5	$8{ }^{*}$	5. $0^{\prime \prime}$	\#4	$24{ }^{\prime \prime}$	-	\#4	12"	
FW12	$8{ }^{*}$	$12^{\prime} \cdot 0^{*}$	\#4	9^{*}	\checkmark	\#4	$12^{\prime \prime}$	
Nolos: 1. Use $1 / 2^{\prime}$ dameter $x 7^{\prime}$ embedment anchor bolts $\sigma^{\prime 2} 32^{\prime}$ o.c. W/ $3^{7} \times 3^{\prime} \times 1 / 4^{\prime}\left(0.229^{\prime}\right)$ plate washers at all exterior and shear walls U.N.O. 2. $\mathrm{I}^{\prime} \mathrm{c}=3,000 \mathrm{psi}, \mathrm{fy}=60,000$ psi No special inspection required 3. Place (1) \#4 bar below and on each side of each opening and (2) \#4 bars above each opening. Bars shall be placed within 2" of the openings and extend 24 " beyond the edge of the opening; vertical bars may lerminale 3 " Irom Ihe lop of the concrete Opening reinforcement is in addition to standard wall reinforcement. 4. Top and bottom bars shall be within $4^{\prime \prime}$ of the lop and boltom of the wall S. Place reinforcement in centor of wail U.N.O.								

[^0]: © Heavy Roof
 (户UUblocked)

