

Intermountain GeoEnvironmental Services, Inc. 12429 South 300 East, Suite 100, Draper, Utah 84020 Phone (801) 748-4044 | Fax (801) 748-4045 www.igesinc.com

GEOTECHNICAL & GEOLOGIC HAZARD INVESTIGATION (Rev.1) Horizon Neighbourhood Development Summit Powder Mountain Resort Weber County, Utah

IGES Project No. 01628-013

August 3, 2016 (Revised July 19, 2017)

Prepared for:

Summit Mountain Holding Group, LLC

Prepared for:

Summit Mountain Holding Group, LLC c/o Mr. Rick Everson 3632 North Wolf Creek Drive Eden, Utah 84310

GEOTECHNICAL & GEOLOGIC HAZARD INVESTIGATION (REV. 1) HORIZON NEIGHBOURHOOD DEVELOPMENT SUMMIT POWDER MOUNTAIN RESORT WEBER COUNTY, UTAH

IGES Project No. 01628-013

Prepared by:

David A. Glass, P.E. Senior Geotechnical Engineer

Peter E. Doumit, P.G. Project Geologist

IGES, Inc. 12429 South 300 East, Suite 100 Draper, Utah 84020 (801) 748-4044

August 3, 2016 (Revised July 19, 2017)

Reviewed by:

Kent A. Hartley, P.E. Principal

TABLE OF CONTENTS

1.0	EX	ECUTIVE SUMMARY	1
2.0	INI	RODUCTION	2
2.1	Р	URPOSE AND SCOPE OF WORK	2
2.2	Р	ROJECT DESCRIPTION	2
3.0	ME	THODS OF STUDY	4
3.1	L	ITERATURE REVIEW	4
3.2	F	IELD INVESTIGATION	4
3.3	L	ABORATORY INVESTIGATION	5
3.4	E	NGINEERING ANALYSIS	5
4.0	GE	NERALIZED SITE CONDITIONS	6
4.1	S	URFACE CONDITIONS	6
4.2	S	UBSURFACE CONDITIONS	6
4.	.2.1	Earth Materials	6
4.	.2.2	Groundwater	9
4.	.2.3	Strength of Earth Materials	9
4.3	S	TABILITY OF NATURAL SLOPES	10
4.	3.1	Slope Stability	10
4.	.3.2	Surficial Stability	12
5.0	GE	OLOGIC CONDITIONS	13
5.1	G	EOLOGIC SETTING	13
5.	1.1	Regional Geology	13
5.	1.2	Local Geology	14
5.2	G	EOLOGIC HAZARD ASSESSMENT	15
5.	.2.1	Landslide/Soil Creep	16
5.3	S	EISMICITY	18
5.4	С	THER GEOLOGIC HAZARDS	19
5.	4.1	Liquefaction	19
5.	.4.2	Rockfall	19
5.	.4.3	Surface Fault Rupture	19
5.	.4.4	Debris Flow and Flooding	20
6.0	EN	GINEERING CONCLUSIONS AND RECOMMENDATIONS	21
6.1	G	ENERAL CONCLUSIONS	21
6.2	Ε	ARTHWORK	21
6.	.2.1	General Site Preparation and Grading	21
6.	.2.2	Excavations	21
6.	.2.3	Excavation Stability	22
6.	.2.4	Structural Fill and Compaction	22
6.	.2.5	Oversized Material	23

6.	2.6	Erosion Control	23
6.3	F	OUNDATIONS	24
6.	3.1	Spread Footings	25
6.	.3.2	Drilled Piers	
6.4	S	ETTLEMENT	
6.	.4.1	Static Settlement	
6.	.4.2	Dynamic Settlement	29
6.5	S	LOPE GRADING RECOMMENDATIONS	29
6.	5.1	General Specifications	29
6.	.5.2	Keyway Sizing	29
6.	5.3	Drainage	30
6.	.5.4	Benching	30
6.	.5.5	Slope Protection	30
6.	.5.6	Earthwork Recommendations	30
6.	.5.7	Rockeries	31
6.6	E	ARTH PRESSURES AND LATERAL RESISTANCE	31
6.7	С	ONCRETE SLAB-ON-GRADE CONSTRUCTION	32
6.8	N	IOISTURE PROTECTION AND SURFACE DRAINAGE	
6.9	S	OIL CORROSION POTENTIAL	33
6.10) P.	AVEMENT DESIGN	
6.11	G	EOLOGIC HAZARD ASSESSMENT – CONCLUSIONS &	
REC	COM	MENDATIONS	35
6.12	2 C	ONSTRUCTION CONSIDERATIONS	
7.0	CLO	OSURE	
7.1	L	IMITATIONS	
7.2	Α	DDITIONAL SERVICES	
8.0	REI	FERENCES CITED	

APPENDICES

Appendix A	Figure A-1	Site Vicinity Map
	Figures A-2 to A-13	Test Pit Logs
	Figure A-14	Key to Soil Symbols and Terminology
	Figure A-15	Key to Physical Rock Properties
	Figure A-16	Regional Geology Map (S&C)
	Figure A-15	Regional Geology Map (WG)
	Plate A-1	Geotechnical Map
	Plate A-2	Geologic Cross-Sections
	Plate A-3	Footing Delineation Map
Appendix B		Laboratory Results
Appendix C		Slope Stability Analysis – Summary
Appendix D		Spectral Analysis Summary Hazard Deaggregation
Appendix E		Drilled Pier Design – Sample Calculations
Appendix F	Figure F-1 Figure F-2	Buttress Stability Fill Detail Keying and Benching Detail

1.0 EXECUTIVE SUMMARY

This report presents the results of a geotechnical and geologic hazard investigation conducted for the *Horizon Neighbourhood* development located within the Summit Powder Mountain Resort, located near the town of Eden, in Weber County, Utah. Based on the subsurface conditions encountered across the property, it is our opinion that the property is suitable for development provided that the recommendations presented in this report are incorporated into the design and construction of the project.

- The site is overlain with soils ranging in classification from clayey gravel (GC) to lean clay with gravel (CL). The soils across the site are generally susceptible to 'soil creep', a phenomenon whereby under wet conditions the near-surface soil can move down-hill, typically very slowly.
- In general, surficial soils are shallow (typically ranging from 5 to 15 feet, but locally deeper), and overly stable bedrock consisting largely of dolomite, although conglomerate bedrock is also present. Subsurface data suggests that the depth of creeping soils extends to the bedrock/soil interface, although shallower, intermediate creep surfaces are likely to exist locally.
- In consideration of the presence of soil creep, and considering the presence of relatively competent, stable bedrock within the upper ~15 feet, all habitable or critical structures should be founded on a drilled pier foundation. The drilled piers must be firmly embedded into stable bedrock. Recommendations for drilled piers are presented in Section 6.2. Conventional spread footings may be feasible for specific cases, but must be evaluated and approved by IGES on a case-by-case basis (use of conventional spread footings would likely involve significant remedial earth work).
- Although the used of drilled piers to support habitable structures will reduce potential damage to structures over time from soil creep, damage to pavement and/or utilities could still result over time. Use of flexible utility connections could help reduce the impact of ground movement to utilities. The Owner must understand and accept that some maintenance of roads and/or utilities may be necessary over time due to the soil creep.
- Groundwater was not encountered; however, localized spring-like conditions were encountered in some test pits. For some improvements, particularly where basement levels are planned, localized perched groundwater or spring-like conditions may necessitate temporary dewatering during construction. Land drains or other permanent dewatering systems may be desired if problematic local groundwater conditions are encountered during construction.

NOTE: The scope of services provided within this report are limited to the assessment of the subsurface conditions at the subject site. The executive summary is provided solely for purposes of overview and is not intended to replace the report of which it is part and should not be used separately from the report.

2.0 INTRODUCTION

2.1 PURPOSE AND SCOPE OF WORK

This report presents the results of a geotechnical and geologic hazard investigation conducted for the *Horizon Neighbourhood* development located within the Summit Powder Mountain Resort, located near the town of Eden, in Weber County, Utah. Based on the subsurface conditions encountered across the property, it is our opinion that the property is suitable for development provided that the recommendations presented in this report are incorporated into the design and construction of the project. The purposes of this investigation were:

- To assess the nature and engineering properties of the subsurface soils across the site;
- To provide recommendations for general site grading and design and construction of foundations, slab-on-grades, exterior concrete flatwork, and roadways; and
- To provide an assessment of geologic hazards that may impact the site.

The scope of work completed for this study included a site reconnaissance, subsurface exploration, soil sampling, laboratory testing, engineering analyses, and preparation of this report. Our services were performed in accordance with our proposal dated May 6, 2016 and your signed authorization. The recommendations contained in this report are subject to the limitations presented in the "Limitations" section of this report (Section 7.1).

2.2 PROJECT DESCRIPTION

Our understanding of the project is based primarily on our previous involvement with the Summit Powder Mountain Resort project, which included two geotechnical investigations for the greater 200-acre Summit Powder Mountain Resort expansion project (IGES, 2012a and 2012b) and subsequent geotechnical consulting for several other aspects of the project. The Powder Mountain Resort expansion project is located southeast of SR-158 (Powder Mountain Road), south of previously developed portions of Powder Mountain Resort, in unincorporated Weber County, Utah. The project is accessed by North Powder Ridge Road. The project site is located on what was formerly designated as Lots 19, 20, 22R, and 23R; the site is located south of Summit Pass, and is split into an east-half and west-half by Horizon Run (see *Site Vicinity Map*, Figure A-1 in Appendix A).

We understand that the *Horizon Neighbourhood* development will include 27 assorted types of vacation homes, largely cottage-type structures similar to the nearby *Ridge Nests* development, and associated infrastructure including interior roadways, parking areas, and utilities over an approximately 6.3-acre site. The project will also include a communal structure or lodge.

The site is on a natural slope, draining to the southeast. The slope gradient varies across the site, from a maximum of about 2.7H:1V on the north (former Lot 23R), to a relatively flat 7H:1V on the southeast.

This report has been revised from the original report dated August 3, 2016; Plate A-1 and Plate A-3 have been modified to reflect the most current site plan. All other findings, conclusions, and recommendations remain unchanged.

3.0 METHODS OF STUDY

3.1 LITERATURE REVIEW

A number of pertinent publications were reviewed as part of this investigation. Western Geologic (2012) conducted a reconnaissance-level geologic hazard study for the greater 200-acre Powder Mountain expansion project, including the Horizon Neighbourhood property. The Western Geologic (2012) study modified some of the potential landslide hazard boundaries that had previously been mapped at a regional scale (1:62,500 and 1:100,000, respectively) by Coogan and King (2001) and Elliott and Harty (2010). An updated version of the regional-scale geologic map (Coogan and King, 2016) was also reviewed and compared with the previous version upon which the Western Geologic (2012) study was based. These regional-scale documents were reviewed, in addition to other regional-scale landslide maps produced by Colton (1991; 1:100,000 scale) and Giraud and Shaw (2007; 1:500,000 scale) and liquefaction maps produced by Anderson et al. (1994; 1:48,000 scale) and Christensen and Shaw (2008, 1:250,000 scale). Sorensen and Crittenden, Jr. (1979) provides 1:24,000 scale geologic mapping of the Huntsville Quadrangle, which documents the surficial geology of the Horizon Neighbourhood project area at a more local scale. The corresponding United States Geological Survey (USGS) topographic map for the Huntsville Quadrangle provides physiographic and hydrologic data for the project area. A single Federal Emergency Management Agency (FEMA) flood map (effective in 2015) that covers the project area was also reviewed. The Weber County Special Study Area maps were reviewed for the project area. The Quaternary Fault and Fold Database (USGS and Utah Geological Survey (UGS), 2006), was reviewed to identify the location of proximal faults that have had associated Quaternary-aged displacement. The two geotechnical investigations for the Powder Mountain property performed by IGES (2012a, 2012b) were reviewed in detail to provide an understanding of the nature of the subsurface materials at the site and to assist in the geologic mapping of the site.

3.2 FIELD INVESTIGATION

The field exploration program included site reconnaissance and field mapping, and two rounds of subsurface exploration. The initial field exploration program began on June 8, 2016 and was completed on June 9, 2016. Eight (8) exploration test pits were excavated to depths generally ranging from 12 to 15 feet below existing grade. The exploration test pits were excavated with the aid of a Caterpillar 320E tracked excavator. Refusal on hard bedrock was encountered in two of the test pits (TP-2, TP-8).

As a result of unanticipated subsurface conditions, including evidence of excessive soil creep, observed in the first round of exploration test pits, a second phase of subsurface exploration was conducted between July 6 and 7, 2016. Four (4) additional test pits and three (3) potholes were excavated with the aid of a Caterpillar 345C tracked excavator to provide supplementary subsurface data across the property. The potholes were simply deep, steep holes dug with the intent

to identify the top of bedrock at depth, and were not logged and sampled in the same manner as the test pits. Refusal on hard bedrock was encountered in one of the supplemental test pits (TP-11); the remaining supplemental test pits were excavated to depths generally ranging from 12 to 15 feet below existing grade.

The *Geotechnical Map*, Plate A-1 in Appendix A, shows the approximate location of the exploration test pits and potholes and the surficial geologic materials as mapped from the site reconnaissance. The exploration test pits and potholes were specifically located to assess the presence or absence of adverse geologic features, assesse the depth to bedrock, and to observe subsurface conditions. Subsurface conditions as encountered in the exploration test pits and potholes were logged at the time of our investigation by a licensed geologist. The test pit logs are presented in Figures A-2 through A-13 of Appendix A. A *Key to Soil Symbols and Terminology* is presented as Figure A-14 and a *Key to Physical Rock Properties* is presented as Figure A-15.

Bulk soil samples were obtained from the test pit explorations; due to the coarse nature of the subsurface materials, few 'undisturbed' tube samples were able to be collected. All soil samples were transported to our laboratory for testing to evaluate the engineering properties of the earth materials observed.

3.3 LABORATORY INVESTIGATION

Geotechnical laboratory tests were conducted on selected soil samples obtained during our field investigation. The laboratory testing program was designed to evaluate the engineering characteristics of onsite earth materials. Laboratory tests conducted during this investigation include:

- In situ moisture content & unit weight (ASTM D7263 and D2216)
- Atterberg Limits (ASTM D4318)
- Fines Content (% passing the #200 sieve) (ASTM D1140)
- Gradation (ASTM D6913)
- Direct Shear Test (ASTM D3080)
- Ring Shear Test

Results of the laboratory testing are included with this report in Appendix B.

3.4 ENGINEERING ANALYSIS

Engineering analyses were performed using soil data obtained from the laboratory test results and empirical correlations from material density, depositional characteristics and classification. Appropriate factors of safety were applied to the results consistent with industry standards and the accepted standard of care.

4.0 GENERALIZED SITE CONDITIONS

4.1 SURFACE CONDITIONS

The site is in a relatively natural state, and is nearly entirely covered in vegetation. Native shrubs and grasses cover most of the property, while thick stands of quaking aspen trees are found in some areas. Horizon Run, which passes southwest to northeast, effectively bisects the property into western and eastern halves. The western half of the property contains the steepest topography, with slopes as much as 37 percent (2.7H:1V). Topography on the eastern half of the property is much more subdued, with slopes averaging around 14 percent (7H:1V). Slopes become significantly steeper (34 percent; 2.9H:1V) on the eastern half of the property south of the southernmost proposed unit, however. The elevation across the site ranges from approximately 8,842 feet in the northwestern corner to approximately 8,588 feet (msl) in the southernmost corner.

At the time of the fieldwork, the easternmost portion of the eastern half of the property was in the process of undergoing earthwork to create a ski run associated with a nearby bridge, in which a large mound of native materials had been piled and was in the process of being leveled off.

4.2 SUBSURFACE CONDITIONS

The subsurface soils were investigated by excavating a total of twelve (12) exploration test pits and three (3) potholes at representative locations across the site. Generally, the depth of the exploration test pits ranged from 12 to 15 feet, and refusal on hard bedrock was encountered in three test pits (TP-2, TP-8, and TP-11). The locations of the test pits are illustrated on Plate A-1, *Geotechnical Map*; detailed test pit logs are presented in Figures A-2 through A-13. The earth materials encountered in the exploration test pits were visually classified and logged by an IGES licensed geologist. The subsurface conditions encountered during our investigation are discussed below.

4.2.1 Earth Materials

Based on our observations, the site is generally covered by a veneer of topsoil ranging in depth from 6 inches to 24 inches. The topsoil is generally underlain by bouldery colluvium derived from weathered Wasatch Formation, which in turn is underlain by disaggregated Wasatch Formation bedrock. The Wasatch Formation was found to be underlain by hard bedrock of the Nounan Dolomite, though clayey and highly weathered dolomite units were often encountered between the Wasatch Formation and Nounan Dolomite bedrock. Undocumented fill material was not observed in the test pits. Descriptions of the geologic units encountered are presented in the following paragraphs.

<u>Artificial Fill</u>: Artificial fill (denoted as either Af or Afc on Plate A-1) was observed throughout the site. Af represents asphalt and road embankment fill material found in association with and restricted to the existing roads that bound the property, including North Powder Ridge Road and

Horizon Run. Afc consisted of a large stockpile of what appeared to be native soils, brought in to construct a new ski run associated with the nearby bridge over North Powder Ridge Road.

<u>Topsoil</u>: Generally consists of dark brown to grayish brown to brownish black lean clay with gravel. The soil is generally loose to slightly cohesive, and exhibits low plasticity. The unit is typically slightly moist to dry, and contains abundant plant and tree roots throughout. Subrounded to subangular quartzite rock fragments were found to comprise as much as 50% of the unit, with some boulders as much as 2 feet in diameter. The topsoil unit was encountered in all of the exploration test pits and potholes, and was found to be between 6 inches and 2 feet thick.

<u>Colluvium</u>: Two classes of colluvial units were observed to underlie the topsoil and be the source material for the topsoil (Qcl and Qcc/Qls on Plate A-1). The most prevalent form was a dark brown loosely consolidated unit (map symbol Qcl) that was gradational between lean clay with gravel (CL) and clayey gravel (GC). This form was often silty, poorly sorted, and contained subrounded to subangular quartzite rock fragments that comprised between 15 and 50% of the unit. Boulders were found to be as much as 2 feet in diameter. The second, less common form of colluvium was a light brown, well-cemented, silty clay with gravel (CL-ML) gradational to a silty, clayey gravel (GC, GM) (map symbol Qcc/Qls). This form contained abundant pinhole voids throughout, was poorly sorted, and contained subrounded to subangular quartzite rock fragments that comprised between 25 and 50% of the unit. Boulders were found to be as much as 1.5 feet in diameter, and were on average smaller than the loose colluvium unit. It is possible that this cemented unit is derived, at least in part, from the Qcl unit that was remobilized in a small landslide associated with the small headscarp found between TP-1 and TP-2.

<u>Bedrock Colluvium</u>: This material (denoted as Qcb on Plate A-1) consists of colluvium who's parent material largely consists of dolomite; this material was found to be present along the northeastern part of the Horizon Run roadcut and along the northern road cut of North Powder Ridge Road. It consisted of clasts of dolomite bedrock generally less than 6 inches in diameter that was not associated with any in-place bedrock outcrop.

<u>Wasatch Formation</u>: The Wasatch Formation (map symbol Tw on Plate A-1) consists of conglomerate bedrock that readily disaggregates to dark to moderate reddish brown sandy clay with gravel (CL) gradational to clayey sand with gravel (SC). The unit contains abundant subrounded to subangular quartzite rock fragments comprising between 15 and 75% of the unit. Cobbles were generally less than 1 foot in diameter, with a mode average size of 2 to 4 inches. Pinhole voids were commonly encountered in places, and the unit contained some thin (<3 inches thick) silt and clay lenses. Thin (<4 inches thick) black paleosols were also encountered within the unit in two test pits (TP-11 and TP-5).

<u>Transitional Units</u>: Between the Wasatch Formation and the underlying Nounan Dolomite, several transitional units were typically encountered. These included dark red to dark yellowish orange fat clays that could represent pre-Tertiary age paleosols, and dark gray to dark yellowish orange sandy fat clays that consist of decomposed bedrock. The paleosol units were commonly found to contain slickensides, which were observed both naturally and generated through excavation of the unit with a pick. These also commonly contained pinhole voids and minor (<5%) amounts of small (<6 inches in diameter) angular dark gray dolomite bedrock clasts, though quartzite clasts were also observed in places. The decomposed bedrock units generally exhibited relict bedrock bedding and structure, as well as variable-sized angular dolomite bedrock clasts throughout that were soft, sandy, and friable.

<u>Nounan Dolomite</u>: The Nounan Dolomite (map symbol Cn on Plate A-1) is a medium gray to dark gray, finely sparry dolomite bedrock that met with refusal in several of the test pits. Where less weathered, the unit exhibited well-developed blocky jointing and thin bedding. In general, the unit exhibited a highly variable degree of weathering, and could be soft and easy to break with hands or very hard to break with repeated blows with a rock hammer. Typically, the harder bedrock was overlain by several feet of soft, sandy, highly weathered bedrock (see *Transitional Units* above), and in some cases was interbedded with fat clay beds with a relict shaley structure (see TP-11).

<u>Pleistocene Landslide</u>: This material (denoted as Qlso on Plate A-1) was found as a lobe extending to the south (downslope) from a noted landslide headscarp in the southernmost part of the property. It was characterized by generally irregular, slightly hummocky topography and was largely devoid of trees within its trace. This unit is part of the previously-mapped landslide deposit that crosses the Horizon Neighbourhood property (Sorensen and Crittenden, Jr. (1979) and Western Geologic (2012); see Section 5.1.2).

<u>Anomalous Units</u>: In addition to the commonly observed units described above, a couple additional units were locally or anomalously encountered in some of the excavations. One of these was a pale yellowish orange to dark yellowish orange fat clay that may represent a localized pond clay within the uppermost portion of the Wasatch Formation. This unit did not exhibit slickensides, and was encountered overlying the conglomeratic Wasatch Formation in TP-4, TP-5, and TP-7. A second unit that was locally encountered was what appears to be alluvial deposits and/or vug infilling within the transitional units in TP-9, TP-11, TP-12, and PH-3. These units were typically dark reddish brown to dark yellowish orange, and were clayey sands gradational to sandy fat clays that contained occasional clasts of both Wasatch Formation quartzite and dolomite bedrock. Pinhole voids were also commonly found in these alluvial units.

The lines shown on the enclosed logs and plates represent the approximate boundary between the different earth materials. Due to differing depositional natures of natural earth materials, care

should be taken in interpolating subsurface conditions between and beyond the exploration locations.

4.2.2 Groundwater

Groundwater was encountered in three of the excavations (TP-3, TP-6, and TP-8). The most notable groundwater occurrence was in TP-6, in which groundwater had filled the test pit with a water column thickness of 2.2 feet within a couple hours of initial excavation (water was 2.2 feet deep measured from the bottom of the test pit). In this test pit, the groundwater was entering the pit at a depth of approximately 7 feet below the existing ground surface from the northern and eastern walls. Given the rapid accumulation of groundwater into the test pit, this depth may reflect the water table level at this location. TP-3 encountered groundwater slowly seeping into the northeastern corner of the test pit at a depth of approximately 9 feet below the existing ground surface, and TP-8 encountered groundwater slowly seeping through the northern wall of the test pit at a depth of approximately 5 feet below ground surface. Measurable accumulation of groundwater was not experienced in either TP-3 or TP-8, and the seepage depths do not reflect the level of the water table.

Due to the season of our investigations (late spring and early summer), we anticipate groundwater levels to be just below their seasonal high. It is our experience that during snowmelt, runoff, irrigation on the property and surrounding properties, high precipitation events, and other activities that the groundwater level can rise several feet. Fluctuations in the groundwater level should be expected over time.

4.2.3 Strength of Earth Materials

Two consolidated-drained direct shear tests were completed under drained conditions on relatively undisturbed samples (tube samples) obtained from the prevailing surficial clayey soils. The samples were obtained from different locations to provide reasonable coverage across the site and to provide a basis for assessing representative strength parameters for geotechnical analysis such as slope stability. The test results are summarized in the following table:

Test Pit	Depth (ft.)	Friction Angle (deg.)	Cohesion (psf)	Notes
T-02	5	36	160	LL=60, 82% fines - CH
T-12	6	44	0	CL with sand

Table 4.2.3Summary of Direct Shear Test Results

The values presented in Table 4.2.3 are peak values.

A three-point ring shear test is currently being conducted on a sample of clayey soil obtained from an apparent shear zone identified in TP-1. The test is on-going; however, based on preliminary results completed for a single point, the values obtained thus far is a secant peak friction angle of 11.6 degrees and a secant residual friction angle of 9.1 degrees. The preliminary test results suggest that the clayey soils are fairly weak when in a residual state, which likely accounts for the 'soil creep' observed throughout the site.

4.3 STABILITY OF NATURAL SLOPES

4.3.1 Slope Stability

The stability of the existing natural slopes have been assessed in accordance with methodologies set forth in Blake et al. 2002 and AASHTO LRFD for Bridge Design Specifications with respect to Sections A-A' and B-B', illustrated on Plate A-1. The stability of the slopes were modeled using SLIDE, a computer application incorporating (among others) Spencer's Method of analysis. Calculations for stability were developed by searching for the minimum factor of safety for a translational-type failure. Homogeneous earth materials and arcuate failure surfaces were assumed. Analysis was performed for the following cases:

- a) Static analysis of proposed geometry
- b) Static analysis with transient high groundwater
- c) Yield acceleration of proposed geometry (for slope deformation analysis), and
- d) Pseudo-static analysis of proposed geometry

Pseudo-static (seismic screening) analysis of the proposed slope was performed in general conformance with Blake et al. 2002, ASCE 7-10 and AASHTO LRFD for Bridge Design Specifications. The design seismic event was taken as the ground motion with a 2 percent probability of exceedance in 50 years (2PE50). Based on information provided on the USGS website ground motion calculator, the Peak Ground Acceleration (PGA) associated with a 2PE50 event is estimated to be 0.33g. Half of the PGA, (0.17g), was taken as the horizontal seismic coefficient (k_h) (Hynes and Franklin, 1984), and used in the pseudo-static seismic screen analysis. The results of the analyses have been summarized in Table 4.3.1.

Where the pseudo-static screen analysis of the cross sections resulted in a factor of safety less than one, a simplified Newmark-type displacement analysis was performed in accordance with Bray and Travasarou (2007). The purpose of this additional analysis is to estimate the potential magnitude of seismic slope movement. It is important to note that developers of this simplified approach to estimate displacement consider the results of these analyses to be indices of expected seismic performance and not predications of exact amount or location of slope displacement amount. The results of the analyses have been summarized in Table 4.3.1.

Section	Static Factor of Safety	Pseudo-Static Factor of Safety	Yield Acceleration (g)	Estimated Displacement* (inches)
Section A-A' Upslope	1.2	<1	0.05	12 to 18
Section A-A' Downslope of Proposed Improvements	1.4	<1	0.1	6 to 12
Section A-A' within Improvements	1.8	1.0	N/A	N/A
Section B-B' without Keyway	1.1	<1	0.02	>24
Section B-B' with Keyway	1.7	1.0	N/A	N/A

Table 4.3.1Results of Slope Stability Analyses

*Estimated using methods proposed by Bray and Travasarou (2007)

The results of these analyses indicate that seismic displacement could be between 1 to 2 feet within loose colluvium material (Qcl) and Pleistocene landslide material (Qlso₂). The areas identified as being susceptible to this movement are illustrated in the results attached in Appendix C of this report.

Groundwater was generally not encountered during our investigation, although within two test pits water was encountered, presumed to be localized spring-like conditions associated with spring run-off. Our surface reconnaissance did not reveal any obvious signs of near-surface groundwater (e.g., seeps, springs, reeds or heavily-vegetated areas, surficial slumping, etc.). Groundwater data for the site is very limited; however, based on our understanding of the geology and hydrology of the area, groundwater (regional piezometric surface) is not expected to impact the site, although localized areas of perched groundwater or spring-like conditions could impact construction. Groundwater was considered within the analysis of Section A-A' to identify the critical surface under static conditions (this would model transient spring-like conditions during primary snow melt – if it should occur, it would likely be a localized phenomenon). The water table was modeled to be approximately 5 feet above the boundary of the loose colluvium (Qcl) and the Nounan dolomite bedrock (Cn). The results of the analysis suggest a factor of safety of approximately 1.0. This analysis suggests that 'soil creep' that has been documented in this area is associated with seasonal periods of rapid snow melt and temporary high moisture content ('soil creep' is described in Section 5.2.1 of this report).

The results of the stability analyses and the slope deformation analysis are presented in Appendix C.

4.3.2 Surficial Stability

Our subsurface investigation indicates that the near-surface soils generally grade from clay with gravel (CL) to clayey gravel (GC). Material identified as 'topsoil' (A/B Horizon) generally ranges in thickness from 1 to 2 feet; the topsoil has developed on the prevailing colluvial cover, and therefore also consists of clayey gravel grading to gravelly clay, but with a higher organic component (abundant roots).

IGES assessed the potential for the upper four feet to become mobilized under saturated parallel seepage conditions. Our assessment assumes four feet of coarse clayey colluvium, fully saturated, and a 2.7H:1V slope. Our model assumes an effective friction angle of 36 degrees and a cohesion of 150 psf, and a saturated unit weight of 135 pcf. Based on this model, a factor-of-safety of 1.91 results. Sample calculations are presented in Appendix C.

Our calculations do not take into account the beneficial effects of plant roots, which were commonly observed throughout the topsoil units. Many of the existing natural slopes are thickly vegetated, which is expected to reduce the likelihood of shallow surficial slope instability.

Based on our infinite slope model, and the foregoing discussion, IGES considers the potential for surficial slope instability on this site to be low.

5.0 GEOLOGIC CONDITIONS

5.1 GEOLOGIC SETTING

5.1.1 Regional Geology

The Summit Horizon Neighbourhood property is located in the western portion of the northern Wasatch Mountains, which have a complex geologic history. The Wasatch Mountains contain a broad depositional history of thick Precambrian and Paleozoic sediments that have been subsequently modified by various tectonic episodes that have included thrusting, folding, intrusion, and volcanics, as well as scouring by glacial and fluvial processes (Stokes, 1987). The uplift of the Wasatch Mountains occurred relatively recently during the Late Tertiary Period (Miocene Epoch) between 12 and 17 million years ago (Milligan, 2000). Since uplift, the Wasatch Front has seen substantial modification due to such occurrences as movement along the Wasatch Fault and associated spurs, the development of the numerous canyons that empty into the current Salt Lake Valley and Utah Valley and their associated alluvial fans, erosion and deposition from Lake Bonneville, and localized mass movement events (Hintze, 1988).

The Wasatch Mountains, as part of the Middle Rocky Mountains Province (Milligan, 2000), were uplifted as a fault block along the Wasatch Fault (Hintze, 1988). The Wasatch Fault and its associated segments are part of an approximately 230-mile long zone of active normal faulting referred to as the Wasatch Fault Zone (WFZ), which has well-documented evidence of late Pleistocene and Holocene (though not historic) movement (Lund, 1990; Hintze, 1988). The faults associated with the WFZ are all normal faults, exhibiting block movement down to the west of the fault and up to the east. The WFZ is contained within a greater area of active seismic activity known as the Intermountain Seismic Belt (ISB), which runs approximately north-south from northwestern Montana, along the Wasatch Front of Utah, through southern Nevada, and into northern Arizona. In terms of earthquake risk and potential associated damage, the ISB ranks only second in North America to the San Andreas Fault Zone in California (Stokes, 1987).

The WFZ consists of a series of ten segments of the Wasatch Fault that each display different characteristics and past movement, and are believed to have movement independent of one another (UGS, 1996). The Summit Horizon Neighbourhood property is located approximately 9.5 miles to the east of the Weber Segment of the Wasatch Fault, which is the closest documented Holocene-aged (active) fault to the property and trends north-south along the Wasatch Front (USGS and UGS, 2006).

The property is underlain by Cambrian bedrock which comprise the upper plate of the Willard Thrust (Sorensen and Crittenden, Jr., 1979), and comprise an allocthonous¹ block of rock that has

¹ Allocthonous: Formed or produced elsewhere than in its present place; of foreign origin, or introduced. (AGI, 2011)

been transported eastward to its present location from the Cordilleran geosyncline² (Stokes, 1987). The Willard Thrust is believed to connect and be structurally continuous with the Charleston-Nebo Thrust, which passes through the Salt Lake Valley and beneath Strawberry Reservoir, with the two thrusts connecting near Antelope Island (Stokes, 1987).

5.1.2 Local Geology

Several extant geologic maps cover the Summit Horizon Neighbourhood property. Sorensen and Crittenden, Jr. (1979) provides the most detailed mapping of the general geology of the area, and serves as the base map for the *Regional Geologic Map 1* shown in Figure A-16a and corresponding map legend in Figures A-16b and A-16c. According to Sorensen and Crittenden, Jr. (1979), the property is largely underlain by the undivided Tertiary/Cretaceous Wasatch and Evanston Formations, which underlie the entire western half of the property, and the approximately northern half of the approximately southern half of the eastern half of the property, and the southernmost part of the eastern half of the property is mapped as undifferentiated Holocene colluvium, slopewash, and landslide deposits.

Following upon Sorensen and Crittenden, Jr. (1979), these bodies of mass-movement deposits had their contacts further delineated by Coogan and King (2001; 2016) and Western Geologic (2012) in subsequent mapping efforts. Being a regional-scale map, Coogan and King (2001) lumped the Holocene-aged landslide deposit together with the undifferentiated mass movement deposits, and described these deposits as: "Mass-movement deposits, undivided – Includes slides, slumps, and flows, as well as colluvium, talus, and alluvial fans that are mostly debris flows; composition depends on local sources." Drawing upon Coogan and King (2001), Western Geologic (2012) kept the same undifferentiated mass movement outline as Coogan and King (2001), but separated out the Holocene landslide of Sorensen and Crittenden, Jr. (1979) that overlies the southern part of the Horizon Neighbourhood property, though with a similar, but slightly different outline and a Late Pleistocene to Holocene age (see *Regional Geology Map 2*, Figure A-17). Finally, Coogan and King (2016) updated their 2001 map by including a similar area to that mapped by Western Geologic as the landslide deposit on the Horizon Neighbourhood property, though it was mapped as Holocene and Pleistocene-aged undifferentiated landslide and colluvial deposits.

No faults have been mapped within 1 mile of the property, and no faults, either active or inactive, have been mapped on or projecting towards the property. An active fault is defined by the Weber County Code of Ordinances as "a fault displaying evidence of greater than four inches of displacement along one or more of its traces during Holocene time (about 11,000 years ago to the present)." (Weber County, 2015)

² Geosyncline: As originally defined, a mobile downwarping of the crust of the Earth, either elongate or basinlike, measured in scores of kilometers, in which sedimentary and volcanic rocks accumulate to the thicknesses of thousands of meters. (AGI, 2005)

Site reconnaissance and geologic mapping of the property was performed as part of the fieldwork for this project, and served largely as the basis upon which the test pit locations were determined. Plate A-1 displays the geologic map produced as part of this mapping effort, and two representative geologic cross-sections are displayed in Plate A-2. A small vegetation-free scar representing the scarp from a recent shallow landslide was noted in the northwestern part of the property (illustrated on Plate A-1). There was at most 1 foot of elevation change at the top of this headscarp. Near the southern margin of the property, a west-east trending approximately 3-foot break in slope was noted, corresponding to what was initially interpreted to be the headscarp for the landslide mapped by Sorensen and Crittenden, Jr. (1979) and Western Geologic (2012). Irregular, slightly hummocky topography was noted to the south of this feature. Subsequent data collected from the test pit excavations would later show this to be an internal scarp within the larger landslide mass mapped by Sorensen and Crittenden, Jr. (1979). No other distinct geomorphic features indicating adverse geologic conditions were noted on or adjacent to the property during the site reconnaissance and geologic mapping.

Along the road cut for Horizon Run on the northeastern side of the property, dolomite bedrock was exposed. Similar rock was exposed on the northern road cut for North Powder Ridge Road along the northeastern margin of the property, and an outcrop of the dolomite bedrock is present immediately northeast of the bridge just east of the eastern intersection of Horizon Run with North Powder Ridge Road. The remainder of the property was found to be overlain by colluvial surficial materials, including sporadic boulders of red to purple quartite derived from the underlying disaggregated Wasatch Formation. Surficial boulders were found to be as much as 2 feet in diameter.

5.2 GEOLOGIC HAZARD ASSESSMENT

The purpose of the geologic hazard assessment was to determine if any adverse geological structures were present on the property, and to assess the suitability of development of the Horizon Neighbourhood property from a geologic hazard standpoint.

Geologic hazard assessments are necessary to determine the potential risk associated with particular geologic hazards that are capable of adversely affecting a proposed development area. As such, they are essential in evaluating the suitability of an area for development and provide critical data in both the planning and design stages of a proposed development. The geologic hazard assessment discussion in the following paragraphs is based upon both qualitative and quantitative assessment of the risk associated with a particular geologic hazard, based upon the data reviewed and collected as part of this investigation.

A "low" hazard rating is an indication that the hazard is either absent, is present in such a remote possibility so as to pose limited or little risk, or is not anticipated to impact the project in a negative

way. Areas with a low-risk determination for a particular geologic hazard generally do not require additional site-specific studies or associated mitigation practices with regard to the geologic hazard in question. A "moderate" hazard rating is an indication that the hazard has the capability of adversely affecting the project at least in part, and that the conditions necessary for the geologic hazard are present in a significant, though not abundant, manner. Areas with a moderate-risk determination for a particular geologic hazard may require additional site-specific studies and associated mitigation practices in the areas that have been identified as the most prone to susceptibility to the particular geologic hazard. A "high" hazard rating is an indication that the hazard is very capable of adversely affecting the project, that the geologic conditions pertaining to the particular hazard are present in abundance, and/or that there is geologic evidence of the hazard having occurred at the area in the historic or geologic past. Areas with a high-risk determination generally always require additional site-specific hazard investigations and associated mitigation practices. For areas with a high-risk geologic hazard, simple avoidance is often considered.

5.2.1 Landslide/Soil Creep

Soil creep and landslide hazards pose the most risk to development in the Horizon Neighbourhood property. Soil creep was found to be most prevalent on the steeper slopes of the western half of the property. Aspen trees in the northeastern part of the property were observed to exhibit some downslope basal bending of the trunks, and slickensided paleosols overlying bedrock in TP-1, TP-2, TP-3, and TP-9 provide additional evidence for this phenomenon. Though most of the excavations on the eastern and southern part of the property did not exhibit much soil creep evidence, the presence of generally shallow groundwater and fat clay paleosols or pond clay in other excavations on this part of the property can provide the means for soil creep occurrence in the future. Additionally, a kinked sand lens in TP-12 (Unit 5; see Figure A-13) may be indicative of soil creep occurring in the landslide area where the slope grade begins to significantly increase in the southernmost part of the property. Given this data, the risk associated with soil creep occurring on all parts of the property is considered to be high.

According to Sorensen and Crittenden, Jr. (1979), PH-2 and TP-11 were spotted on the northern margin of the Holocene landslide, and PH-3, TP-6, TP-7, TP-8, and TP-12 were spotted within the Holocene landslide deposit. However, landslide evidence was most explicitly expressed in TP-8 and TP-12.

TP-8 displayed shallow dolomite bedrock that was in direct contact on the upslope side with bedded, steeply dipping (75°E) paleosol/transitional units. The dolomite bedrock orientation in TP-8 (striking N70°W and dipping 22°NE) was consistent with the strike and dip found on bedrock outcrops across the Powder Mountain area, and specifically with the closest outcrop immediately northeast of the closest ski bridge (N58°W, 13°NE), located approximately 540 feet northeast of TP-8. As such, it was concluded that this bedrock has been stationary, and the transitional units have slid in reference to the bedrock. The absence of a weathering rind and associated slickensides

around the bedrock indicates that the contact has not been produced by soil creep. Given the largely unaltered state of the landslide materials, it is likely that these materials were part of a slump block that terminated against the bedrock outcrop. The landslide that produced these observed features in TP-8 is considered to be Pleistocene-aged. This is due to the fact that there are no surficial geomorphic features to indicate a landslide in the subsurface, and a continuous colluvium unit and topsoil overlie the landslide materials in a manner consistent with the modern slope. As similar conditions were not encountered in any other excavation, this particular landslide/slump is considered to be limited in size and largely localized upslope of the TP-8 area.

TP-12 exhibited the most chaotic appearance of any of the excavations. Individual units were not consistent in thickness or character through the test pit, large bedrock clasts were found rafted within what was originally identified as an alluvial unit, voids were found below some of the bedrock clasts, and a sand lens was observed to have several kinks in it downslope. The test pit was spotted in some of the most irregular topography around the property, and combined with the subsurface data, it was confirmed that the test pit was spotted within a landslide. As dolomite bedrock was not encountered in this test pit, the landslide deposit is considered to extend to at least the depth of 14 feet. The landslide is considered to be Late Pleistocene to Holocene-aged, as it is uncertain whether the colluvium unit was part of the landslide, or superimposed upon a highly irregular landslide surface. The absence of dolomite bedrock clasts in the colluvium (though they are present in the underlying alluvium units) suggests the latter (Late Pleistocene age) for the age of the landslide, as dolomite clasts are likely to have been mixed into the colluvial unit, if the colluvial unit was part of (and therefore the same age as) the landslide. Because the features in TP-12 are unique to TP-12, the landslide may be largely localized to the TP-12 area.

Between TP-1 and TP-2, the Wasatch Formation is not present. From a cross-sectional standpoint, the material observed could be construed to be landslide deposits; however, evidence of landslide was not observed in either test pit. Therefore, the earth materials encountered in these two test pits are interpreted to be colluvial.

Though not as explicit as TP-8 or TP-12, subsurface features indicative of at least small-scale mass movement were also observed in TP-7 and TP-11. TP-7 was an anomalously weak test pit that exhibited continuous sloughing during logging, and also had individual units/subunits that dipped both consistent with (downslope side of test pit) and opposed to (upslope side of test pit) the modern slope (possible slump). TP-11 exhibited the similar possible slump feature of individual beds dipping with the modern slope on the downslope side of the pit, and dipping into the modern slope on the upslope side of the test pit. The colluvium and Wasatch Formation units were also seen to dip steeper than the modern slope at the end of the test pit on the downslope side.

Given that the subsurface data largely confirms the presence of a single large deposit or series of smaller landslide deposits on the eastern half of the property, and because groundwater can be

found at shallow depths (at least in some parts of the year), the landslide hazard for this part of the property is considered to be moderate to high. Due to the fact that the hard dolomite bedrock is generally shallow, there is an absence of recent shearing, the modern slope is largely gentle, and the landslide deposit(s) are older and more subdued, appropriate mitigation practices may be able to reduce the landslide hazard risk associated with this part of the property to moderate or low.

The landslide hazard risk associated with the western half of the property is considered to be moderate, as evidence of recent shear (soil creep), the steepness of the slope, and shallow groundwater conditions provide conditions conducive to allowing the mass movement process to increase from a creep to a slide. Appropriate mitigation practices may be able to reduce the landslide hazard risk associated with this part of the property to low.

5.3 SEISMICITY

Following the criteria outlined in the 2012 International Building Code (IBC, 2012), spectral response at the site was evaluated for the *Maximum Considered Earthquake* (MCE) which equates to a probabilistic seismic event having a two percent probability of exceedance in 50 years (2PE50). Spectral accelerations were determined based on the location of the site using the *U.S. Seismic "DesignMaps" Web Application* (USGS, 2012); this software incorporates seismic hazard maps depicting probabilistic ground motions and spectral response data developed for the United States by the U. S. Geological Survey as part of NEHRP/NSHMP (Frankel et al., 1996). These maps have been incorporated into both *NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures* (FEMA, 1997) and the *International Building Code* (IBC) (International Code Council, 2012).

Parameter	Short Period (0.2 sec)	Long Period (1.0 sec)
MCE Spectral Response Acceleration (g)	$S_{S} = 0.829$	$S_1 = 0.276$
MCE Spectral Response Acceleration Site Class B (g)	$S_{\rm MS}=S_{\rm s}F_{\rm a}=0.829$	$S_{\rm M1} = S_1 F_v = 0.276$
Design Spectral Response Acceleration (g)	$S_{DS} = S_{MS}*^2/_3 = 0.553$	$S_{D1} = S_{M1} \ast^2 /_3 = 0.184$

Table 5.3Short- and Long-Period Spectral Accelerations for MCE

To account for site effects, site coefficients that vary with the magnitude of spectral acceleration and *Site Class* are used. Site Class is a parameter that accounts for site amplification effects of soft soils and is based on the average shear wave velocity of the upper 100 feet; based on our field exploration and our understanding of the geology in this area, the subject site is appropriately classified as Site Class B (*rock*). Based on IBC criteria, the short-period (F_a) and long-period (F_v) site coefficients are both 1.0. Based on the design spectral response accelerations for a *Building Risk Category* of I, II, III, or IV, the site's *Seismic Design Category* is D. The short- and long-period *Design Spectral Response Accelerations* are presented in Table 5.3; a summary of the *Design Maps* analysis is presented in Appendix D. The *peak ground acceleration* (PGA) may be taken as $0.4*S_{MS}$.

5.4 OTHER GEOLOGIC HAZARDS

Geologic hazards can be defined as naturally occurring geologic conditions or processes that could present a danger to human life and property. These hazards must be considered before development of the site. There are several hazards in addition to landslides, seismicity and faulting that, if present at the site, should be considered in the design of roads and critical facilities such as structures designed for human occupancy. IGES has assessed the potential for the presence of other geologic hazards, including liquefaction, rockfall, surface fault rupture, and debris flow and flooding; based on the observed geology, hydrology, stratigraphy, and topography, the potential for these geologic hazards impacting the site is considered low. Detailed discussions about these potential hazards are presented in the following paragraphs.

5.4.1 Liquefaction

The site is largely underlain by dolomite bedrock and disaggregated Wasatch Formation conglomerate. Given the generally very coarse and relatively thin nature of the surficial materials, and consistent with the existing geologic literature for the area, the risk associated with earthquake-induced liquefaction is expected to be low. However, both shallow groundwater and granular soils were observed to be present on the property; therefore, we cannot preclude the possibility for liquefaction to occur locally onsite. If liquefaction should occur at this site, it is expected to be a highly localized phenomenon.

5.4.2 Rockfall

IGES observed that there are no cliffs or exposed outcrops on steep slopes or other geomorphic features that would result in a rockfall hazard at the site. Therefore, the rockfall hazard for the property is considered to be low.

5.4.3 Surface Fault Rupture

There are no active or inactive faults currently mapped on, or trending toward the site (Sorensen and Crittenden, Jr. (1979); UGS and USGS (2006)). Therefore, the risk associated with surface fault rupture hazard for the property is considered to be low.

5.4.4 Debris Flow and Flooding

Debris flows and flooding typically occur on alluvial fans or in drainage channels that have been active in the Holocene and/or are currently active and associated with areas that include a drainage basin. The site is located near the top of the mountains that comprise the Powder Mountain Ski Resort. Major debris flow sources are absent and the site is not associated with a major drainage channel or a drainage basin. It is our judgment, therefore, that the potential for the site to be impacted by debris flows or flooding is considered low.

6.0 ENGINEERING CONCLUSIONS AND RECOMMENDATIONS

6.1 GENERAL CONCLUSIONS

Based on the subsurface conditions encountered at the site, it is our opinion that the subject site is suitable for the proposed development provided that the recommendations presented in this report are incorporated into the design and construction of the project. Evidence of soil creep has been observed throughout the site; our observations and analysis indicates the soil creep is occurring at the interface between overlying surficial soils (colluvium) and underlying bedrock units (Nounan Dolomite and Wasatch Formation conglomerate). The depth from existing grade to competent bedrock is generally on the order of 10 to 15 feet, although the depth to bedrock may be deeper, or shallower, locally. In consideration of the presence of creeping soils, and the presence of shallow surficial landslides, all on-grade structures must be supported on drilled piers anchored into bedrock. Conventional spread footings may be allowed in limited cases where a) the structure will be founded directly on either dolomite or conglomerate bedrock, and b) the foundation wall is designed to resist the passive resistance of the soil (to account for creep effects). However, we anticipate most, if not all structures will be founded on drilled piers. For areas where the depth of surficial soil overlying bedrock is greater than 20 feet, construction is not recommended.

The following sub-sections present our recommendations for general site grading, design of foundations, and moisture control.

6.2 EARTHWORK

Prior to the placement of foundations, general site grading is recommended to provide proper support for foundations, exterior concrete flatwork and concrete slabs-on-grade. Site grading is also recommended to provide proper drainage and moisture control on the subject property and to aid in preventing differential settlement of foundations as a result of variations in subgrade conditions.

6.2.1 General Site Preparation and Grading

Below proposed structures, fills, and man-made improvements, all vegetation, topsoil, debris and undocumented fill (if any) should be removed. Any existing utilities should be re-routed or protected in-place. Tree roots may be encountered and should be grubbed-out and replaced with engineered fill if exposed in the foundation excavation. The foundation excavation should be assessed for soft or loose soils; any soft/loose areas should be compacted in place if the depth is less than 12 inches or removed and replaced with structural fill as recommended in this report.

6.2.2 Excavations

Soft, porous, or otherwise unsuitable soils beneath foundations or concrete flatwork may need to be over-excavated and replaced with structural fill. If over-excavation is required, the excavations should extend a minimum of 1 foot laterally for every foot of depth of over-excavation.

Excavations should extend laterally at least two feet beyond slabs-on-grade. Structural fill should consist of granular materials and should be placed and compacted in accordance with the recommendations presented in this report.

Prior to placing engineered fill, all excavation bottoms should be scarified to at least 6 inches, moisture-conditioned as necessary to at or slightly above optimum moisture content (OMC) and compacted to at least 95 percent of the maximum dry density (MDD) as determined by ASTM D-1557 (modified Proctor). The scarification recommendation need not apply where competent bedrock is exposed.

6.2.3 Excavation Stability

The contractor is responsible for site safety, including all temporary slopes and trenches excavated at the site and design of any required temporary shoring. The contractor is responsible for providing the "competent person" required by Occupational Safety and Health (OSHA) standards to evaluate soil conditions. Based on our observations, soil types may vary at this site but are expected to consist primarily of *Type B* soils (lean clay, fat clay). Close coordination between the competent person and IGES should be maintained to facilitate construction while providing safe excavations.

Based on OSHA guidelines for excavation safety, trenches with vertical walls up to 5 feet in depth may be occupied. Where very moist soil conditions or groundwater is encountered, or when the trench is deeper than 5 feet, we recommend a trench-shield or shoring be used as a protective system to workers in the trench. Sloping of the sides at 1H:1V (45 degrees) in *Type B* soils may be used as an alternative to shoring or shielding. Excavating slopes at 1.5H:1V is recommended where coarse, granular soils are encountered (sand and gravel).

6.2.4 Structural Fill and Compaction

All fill placed for the support of structures, flatwork or pavements, should consist of structural fill. Structural fill may consist of excavated onsite soils and/or bedrock, or an approved imported granular soil. Within five feet of foundations or pavement the fines should have a liquid limit less than 25 and plasticity index less than 7. Structural fill should be free of vegetation and debris, and contain no rocks larger than 4 inches in nominal size (6 inches in greatest dimension). Soils not meeting the aforementioned criteria may be suitable for use as structural fill but must be approved by IGES prior to use. However, soil classifying as Fat CLAY (CH) (based on USCS classification) are generally not suitable for use as structural fill, with the exception that Fat CLAY may be used in roadway embankments provided it is placed at least 6 feet below pavement subgrade (bottom of aggregate section, measured vertically).

All structural fill should be placed in maximum 8-inch loose lifts if compacted by small handoperated compaction equipment, maximum 10-inch loose lifts if compacted by light-duty rollers, and maximum 12-inch loose lifts if compacted by heavy duty compaction equipment that is capable of efficiently compacting the entire thickness of the lift. These values are *maximums*; the Contractor should be aware that thinner lifts may be necessary to achieve the required compaction criteria. We recommend that all structural fill be compacted on a horizontal plane, unless otherwise approved by IGES. Structural fill placed beneath footings and pavements should be compacted to at least 95 percent of the MDD as determined by ASTM D-1557. The moisture content should be at or slightly above the OMC for all structural fill – compacting dry of optimum is discouraged. Any imported fill materials should be approved by IGES to assess whether unsuitable materials have been removed. In addition, proper grading should precede placement of fill, as described in the General Site Preparation and Grading subsection of this report.

In addition, all utility trenches backfilled below pavement sections, curb and gutter and concrete flatwork, should be backfilled with structural fill compacted to at least 95 percent of the MDD as determined by ASTM D-1557. All other trenches, including landscape areas, should be backfilled and compacted to approximately 90 percent of the MDD (ASTM D-1557).

Specifications from governing authorities having their own precedence for backfill and compaction should be followed where applicable.

6.2.5 Oversized Material

If desired, oversize material (cobbles and boulders, at least 6 inches in greatest dimension) may be included in structural fill if they are placed in a manner that will not result in voids, loose soils, or uncompacted soils. These oversized particles should not be placed within 5 feet of the top of any embankment or within 5 feet of the outer slope of the embankment. If oversized particles are used in structural fill as discussed above, it is imperative that the contractor place and compact fill around oversized particles in accordance with the recommendations presented in the previous paragraphs. In addition to these recommendations, it is likely that the contractor will be required to use small compaction equipment such as hand operated jumping jack compactors to compact the structural fill within 2 feet of the oversized particle. We also recommend that a qualified geotechnical engineer or technician observe placement and compaction around oversized particles.

6.2.6 Erosion Control

Consideration should be given to the use of erosion control fabrics/waddles to facilitate the growth of vegetation on all cut and fill slopes. We recommend that the contractor give consideration to covering embankment fill, fill slopes, or cut slopes with topsoil that was removed during clearing and grubbing activities. The surface of the slope should be rough so that when the topsoil is placed, it will not be easily eroded and transported during snowmelt or wet seasons. The topsoil should be placed in a single 4-inch thick lift and track-walked with a dozer or hoe. Topsoil should be placed on slopes that are no steeper than 2H:1V. The track marks left by the dozer should not be flattened

and should serve as areas to collect water and seeds to aid in growing native vegetation on the man-made slopes. An approved seed mix should be used in growing vegetation on man-made slopes, cuts, and other disturbed areas.

6.3 FOUNDATIONS

Evidence of soil creep has been observed throughout the site; our observations and analysis indicates the soil creep is occurring at the interface between overlying surficial soils (colluvium) and underlying bedrock units (Nounan Dolomite and Wasatch Formation conglomerate), and where landslide deposits have been identified. The depth from existing grade to competent bedrock is generally on the order of 10 to 15 feet, although the depth to bedrock may be deeper, or shallower, locally. In consideration of the presence of creeping soils, and the presence of shallow surficial landslides, all on-grade structures must be supported on drilled piers anchored into bedrock. Conventional spread footings may be allowed in limited cases where a) the structure will be founded directly on either dolomite or conglomerate bedrock, and b) the foundation wall is designed to resist the passive resistance of the soil (to account for creep effects). However, we anticipate most, if not all structures will be founded on drilled piers. IGES should review proposed structures on spread footings on a case-by-case basis to assess suitability of this foundation system for specific cases. For areas where the depth of surficial soil overlying bedrock is greater than 20 feet, construction is not recommended.

Within the areas designated as landslide deposits or areas where significant evidence of soil creep has been observed, it is possible to build a structure and maintain life safety if the structure is founded on drilled piers embedded into competent dolomite bedrock. However, future ground movement has the potential to damage roads, damage utilities, and could cause structures to become uninhabitable. The Owner should consider this risk before development of these areas. Plate A-3 indicates areas that have been delineated as either shallow landslide deposits or areas where significant soil creep has been identified (the area in pink). Within these areas, drilled piers must be embedded into competent dolomite bedrock. If a structure if mapped across the limits of the higher-risk area, the more conservative approach must be undertaken (e.g., the structure straddling the limit line must be founded into dolomite). Areas outside of the pink area must also be founded on drilled piers; however, the drilled piers may be embedded either in dolomite bedrock or a minimum of 10 feet into competent Wasatch Formation conglomerate.

For purposes of construction, identification of dolomite bedrock should be straight-forward; the dolomite is generally very hard, bluish-gray, and homogenous. It should be noted that the uppermost 5 to 10 feet of the dolomite bedrock is typically highly weathered, and may have intervening thin (< 1-foot-thick) clay beds. It is for this reason that it is recommended that the drilled piers be embedded into the competent dolomite bedrock, which may be as much as 10 feet below the top of where weathered bedrock is first encountered. Differentiating between Wasatch Formation bedrock and the overlying colluvial soils (derived from the Wasatch Formation

bedrock), however, may be difficult; therefore, where drilled piers will be founded into Wasatch Formation, a representative from IGES should observe the drilled hole prior to placement of steel or concrete to assess whether the minimum embedment into Wasatch Formation has been achieved.

The following paragraphs summarize our recommendations for conventional spread footings and deep foundations.

6.3.1 Spread Footings

In limited cases where a structure can be founded *entirely* on bedrock (either dolomite or conglomerate), spread footings may be utilized upon written approval of IGES for specific cases. Bedrock/soil or fill/native transition zones are not allowed. If differing earth materials are exposed in the footing excavations, then the footings should be deepened such that all footings bear on the same earth materials (e.g., all footings bear on the same type of bedrock). Alternatively, the building pad may be over-excavated a minimum of 2 feet below the bottom of proposed footings and replaced with structural fill, such that the footings bear entirely on a uniform fill blanket (note that the bottom of footing must still be below the depth of observed surficial soils). Where utilized, all fill beneath the foundations should consist of structural fill and should be placed and compacted in accordance with our recommendations presented in Section 6.2.4 of this report.

In conjunction with the use of spread footings, the foundation wall on the uphill-side of the structure must be designed to resist passive earth pressures. For this case only, the passive earth pressure must be provided by IGES on a case-by-case basis. Alternatively, a pressure relief wall can be constructed to eliminate lateral earth pressures from the foundation wall (typically would consist of a soldier pile wall or a soil nail wall).

Shallow spread or continuous wall footings constructed on competent bedrock (dolomite or conglomerate) may be proportioned utilizing a maximum net allowable bearing pressure of **4,500 pounds per square foot (psf)**. However, if the foundations are underlain by a minimum of 2 feet of structural fill or competent native soils, a maximum net allowable bearing pressure of **2,600 psf** should be used for design. The net allowable bearing values presented above are for dead load plus live load conditions. The minimum recommended footing width is 20 inches for continuous wall footings and 30 inches for isolated spread footings. The allowable bearing capacity may be increased by one-third for short-term loading (wind and seismic). Higher bearing capacities may be allowed where the entire structure is founded on dolomite bedrock; however, considering the depth at which dolomite was observed, this scenario appears unlikely.

All foundations exposed to the full effects of frost should be established at a minimum depth of 42 inches below the lowest adjacent final grade. Interior footings, not subjected to the full effects of

frost (e.g., *a continuously heated structure*), may be established at higher elevations, however, a minimum depth of embedment of 12 inches is recommended for confinement purposes.

6.3.2 Drilled Piers

Where habitable structures will be founded over soils exhibiting evidence of landslide or creep, structures shall be constructed on drilled piers. The drilled piers shall extend through the upper surficial soils (soils subject to creep) and embed within competent dolomite bedrock or Wasatch Formation conglomerate bedrock. However, it is anticipated that in most cases, embedment into dolomite will be the preferred practice.

The purpose of the drilled piers is to resist lateral forces that arise from soil creep, which effectively represent full passive soil resistance within the creep zone. This lateral force includes both the load of the soil directly on the drilled pier (a distributed load), plus the load transferred from the grade beams to the drilled piers (effectively a point load). For our design, we have assumed an allowable lateral deflection of 2 inches. Drilled pier reinforcement shall be designed by the structural engineer. The structural engineer must also evaluate the designs presented herein to verify the drilled piers are structurally sound with respect to shear loads and moments (e.g., confirm that the drilled piers will not break under design lateral loads). For this design, IGES has considered the following criteria:

- Allowable lateral deflection: 2 inches
- Unit weight of soil: 120 pcf
- Ground surface slope: 20 degrees
- Passive lateral earth pressure coefficient: Kp = 8.355
- Grade Beams 2.5 feet depth, 1-foot below grade, maximum spacing between piers is 24 feet, load from soil creep is 5,640 lb/LF
- Maximum distance between piers is 24 feet

The design of the drilled piers will vary, depending on the depth of potentially creeping soils or landslide deposits (e.g., the depth from finish grade to bedrock). IGES recommends the following guidelines for design of drilled piers.

Depth to	Drilled Pier	*Min. Embedment	Total Pier Length (ft)
Bedrock (ft)	Diameter (ft)	into Dolomite (ft)	(finish grade to toe)
≤ 12	32	6	≤18
14	32	8	22
16	36	8	24
18	42	8	26
20	42	10	30
>20	C	Construction Not Recom	mended

 Table 6.3.2-1

 Recommended Drilled Pier Lengths and Diameters – Outside Piers

 Table 6.3.2-2

 Recommended Drilled Pier Lengths and Diameters – Inside Piers

Depth to	Drilled Pier	*Min. Embedment	Total Pier Length (ft)
Bedrock (ft)	Diameter (ft)	into Dolomite (ft)	(finish grade to toe)
≤ 12	32	6	≤18
14	36	8	22
16	42	8	24
18	42	8	26
20	48	10	30
>20	Construction Not Recommended		

*Where Wasatch Formation conglomerate is present, minimum embedment is 10 feet for all cases. If structure is in the 'Pink' zone delineated on Plate A-3, the drilled piers must be embedded into dolomite.

Table 6.3.2-3
Allowable Axial Capacity of Drilled Piers* - Dolomite

Depth to	Drilled Pier	Allowable Capacity	Allowable Capacity
Bedrock (ft)	Diameter (ft)	Compression (kips)	Tension (kips)
≤ 12	32	45,000	27,000
14	32	55,000	39,000
16	36	65,000	44,000
18	42	82,000	52,000
20	42	94,000	67,000

*Geotechnical capacity reported, verify structural capacity with structural engineer

Drilled Pier	Allowable Capacity	Allowable Capacity	
Diameter (ft)	Compression (kips)	Tension (kips)	
32	1,058	722	
36	1,257	815	
42	1,584	954	
48	1,944	1,096	

 Table 6.3.2-4

 Allowable Axial Capacity of Drilled Piers* - Conglomerate

*Geotechnical capacity reported, verify structural capacity with structural engineer. Assumed min. 10 feet embedment into conglomerate.

Sample design calculations are presented in Appendix E. Pier reinforcement should be designed by the structural engineer.

6.4 SETTLEMENT

6.4.1 Static Settlement

Static settlement of properly designed and constructed conventional foundations, founded as described above, are anticipated to be on the order of 1 inch or less. Differential settlement is expected to be half of the total settlement over a distance of 30 feet.

6.4.2 Dynamic Settlement

Based on the field data collected for this site, it is our opinion that the onsite native bedrock and/or clayey colluvium will exhibit negligible seismically-induced settlement during a MCE seismic event. Similarly, properly compacted structural fill is expected to exhibit negligible seismically induced settlement during a MCE seismic event.

6.5 SLOPE GRADING RECOMMENDATIONS

The following generalized recommendations are for engineered slopes (cut slopes and fill slopes). Recommendations for grading of engineered slopes are intended to minimize the potential for future <u>surficial</u> failures. For purposes of this report, surficial failure includes excessive erosion, sloughing, slumping, mass wasting, rockfall, and similar relatively shallow failures.

We recommend fill slopes taller than 10 feet be constructed as a buttress fill, as illustrated on Figure F-1. These recommendations are expected to pertain largely to the area around the lodge, but may apply anywhere a fill slope taller than 10 feet will be constructed. General recommendations for construction of buttress fills are presented in the following sections:

6.5.1 General Specifications

Cut and fill slopes should be constructed no steeper than 2H:1V. All cut slopes should be assessed geologically by IGES during grading to verify the geologic conditions upon which the following recommendations were made. It is feasible that cut and fill slopes may be constructed at slopes steeper than 2H:1V provided the slope is structurally stabilized; stabilization measures may include products such as an *Anchor Reinforced Vegetated System* (ARVS) (e.g., Xtreme Armor System by Western Excelsior), gabions, anchored shotcrete, or another similar system. If slopes steeper than 2H:1V are desired, IGES should be consulted to provide slope-specific recommendations and design guidelines.

Buttress fills should be constructed with a keyway (see Figure F-1). In general, the keyway back cut should be constructed no steeper than 1.5H:1V gradient, assuming the back cut will have a minimum factor of safety of 1.2. Flatter back cuts will reduce the potential for back cut failures. In order to decrease the risk of back cut failure, cut slopes should be off-loaded prior to excavating the buttress back cut. In addition, the amount of time the back cut remains exposed and unsupported should be minimized to reduce the risk of back cut failure. All stability fills should be a minimum of 10 feet wide (equipment width) at the top of the slope.

6.5.2 Keyway Sizing

As a minimum, keyways should be excavated 2 feet below toe grade; deeper keyway excavations may be necessary, depending on the height of the slope and prevailing geologic conditions. *The minimum keyway depth for the fill slope associated with the lodge structure is 5 feet, minimum*

length is 25 feet. The width of a keyway is measured horizontally from the toe of slope (top of front cut) to the toe of the back cut (heel), with a 2 percent drop to the heel. The depth of a keyway is measured from the toe of the fill slope to the bottom of the keyway. The minimum width of a keyway is 8 feet, except as allowed by IGES for specific cases; wider keyways may be needed if geologic conditions warrant (as noted above, a 25-foot keyway is required for the lodge structure). Adjustments to keyway width may be allowed if shallow bedrock is encountered; IGES should approve any adjustments and should evaluate bedrock/grading conflicts on a case-by-case basis.

6.5.3 Drainage

All excavations for fill slopes taller than 15 feet should be provided with a subdrain at the heel to reduce the potential for infiltrating water to perch and migrate toward the slope face; a typical heel subdrain is detailed on Figure F-1. Subdrains placed along the back cut of fill slopes may be constructed with 3-inch perforated PVC pipe, surrounded by approximately 6 cubic feet per lineal foot of ³/₄ inch gravel, wrapped in permeable filter material. Subdrains should be provided with outlet drains every 100 feet; for a slope less than 100 feet in length, an outlet at either end of the slope is recommended. All subdrains should be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys. Some modification to the drainage recommendations presented herein may be feasible; however, any change should be approved by IGES prior to implementation.

6.5.4 Benching

Where fills are to be placed on ground with slopes steeper than 5H:1V, the ground shall be stepped or benched (see Figure F-2 for a graphic illustration). At a minimum, benches should be constructed every four (4) vertical feet. Benches shall be excavated a minimum lateral depth of four (4) feet into competent material or as otherwise recommended by IGES. However, the *lowest* bench should be excavated a minimum lateral depth of 8 feet into competent material (effectively creating a keyway).

6.5.5 Slope Protection

Slope planting and other measures should be provided immediately following construction. Slope protection polymers, straw waddles, and/or jute mesh should also be considered to limit the amount of erosion on slopes subject to erosion until landscaping and other permanent erosion protection measures are fully in place.

6.5.6 Earthwork Recommendations

In addition to the normal compaction procedures for structural fill specified in Section 6.2.4, compaction of fill slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to IGES. As an alternative to slope compaction, slopes may be constructed 2 to 3 feet 'fat' and trimmed back using a bulldozer with a slope board or similar equipment. Upon

completion of grading, relative compaction of the fill out to the slope face shall be at least 90 percent of the maximum dry density per ASTM D 1557 (modified Proctor).

6.5.7 Rockeries

For rockeries with a single tier up to 8 feet in height, or a two-tier rockery where neither tier is taller than 8 feet and having a relatively flat back slope, the Contractor may follow the *Rockery Construction Guidelines* letter prepared by IGES (2013). For taller rockeries, or rockeries having more than two tiers, project-specific design will be required.

6.6 EARTH PRESSURES AND LATERAL RESISTANCE

Lateral forces imposed upon conventional foundations due to wind or seismic forces may be resisted by the development of passive earth pressures and friction between the base of the footing and the supporting soils. In determining the frictional resistance against concrete, a coefficient of friction of 0.35 for undisturbed earth materials or structural fill should be used. A higher coefficient of friction may be used for specific locations where coarse/granular soils or bedrock have been documented at the foundation grade; structure-specific recommendations by IGES should be made prior to using a higher value.

Ultimate lateral earth pressures from natural soils and *granular* backfill acting against retaining walls and buried structures may be computed from the lateral pressure coefficients or equivalent fluid densities presented in Table 6.6.

	Level 1	Backfill	2:1 B	ackfill
Condition	Lateral Pressure	Equivalent Fluid Density	Lateral Pressure	Equivalent Fluid Density
	Coefficient	(pcf)	Coefficient	(pcf)
Active (Ka)	0.26	31.2	0.37	44.4
At-rest (Ko)	0.41	49.5	0.58	70
Passive (Kp)	3.85	462	-	-

 Table 6.6

 Recommended Lateral Earth Pressure Coefficients

The coefficients and densities presented in Table 6.6 assume no buildup of hydrostatic pressures. The force of the water should be added to the presented values if hydrostatic pressures are anticipated.

Clayey soils drain poorly and may swell upon wetting, thereby greatly increasing lateral pressures acting on earth retaining structures. Therefore, clayey soils should not be used as retaining wall
backfill. Backfill should consist of either native granular soil or sandy imported material with an Expansion Index (EI) less than 25.

Walls and structures allowed to rotate slightly should use the active condition; if the element is constrained against rotation (i.e., a basement wall) the at-rest condition should be used. These values should be used with an appropriate factor of safety against overturning and sliding. A value of 1.5 is typically used. Additionally, if passive resistance is calculated in conjunction with frictional resistance, the passive resistance should be reduced by ¹/₂.

6.7 CONCRETE SLAB-ON-GRADE CONSTRUCTION

To minimize settlement and cracking of slabs, and to aid in drainage beneath the concrete floor slabs, all concrete slabs should be founded on a minimum 4-inch layer of compacted gravel overlying structural fill or competent native earth materials. The gravel should consist of free draining gravel or road base with a 3/4-inch maximum particle size and no more than 5 percent passing the No. 200 mesh sieve. The layer should be compacted to at least 95 percent of the MDD as determined by ASTM D-1557. Where fat clay is observed (LL>50) we recommend a minimum over-excavation of 12 inches below subgrade (12 inches below the 4 inches of compacted gravel). The over-excavated fat clay should be replaced by granular structural fill.

Slab-on-grades may be designed using an allowable bearing stress of **500 psf** (dead plus live load) and a Modulus of Subgrade Reaction of **200 psi/inch**. It should be noted that the Modulus of Subgrade Reaction is not a function of soil properties alone but is also influenced by other factors, including the width of the loaded area, the shape of the loaded area, and the specific location under the slab. As such, the structural engineer should exercise care and engineering judgment when using the above stated value for design.

All concrete slabs should be designed to minimize cracking as a result of shrinkage. Consideration should be given to reinforcing the slab with a welded wire fabric, re-bar, or fibermesh. Slab reinforcement should be designed by the structural engineer. We recommend that concrete be tested to assess that the slump and/or air content is in compliance with the plans and specifications. If slump and/or air content are beyond the recommendations as specified in the plans and specifications, the concrete may not perform as desired. We recommend that concrete be placed in general accordance with the requirements of the American Concrete Institute (ACI).

A capillary break consisting of clean gravel or a moisture barrier (vapor retarder) consisting of 10mil thick Visqueen (or equivalent) plastic sheeting should be placed below slabs-on-grade where moisture-sensitive floor coverings or equipment is planned. Prior to placing this moisture barrier, any objects that could puncture it, such as protruding gravel or rocks, should be removed from the building pad. Alternatively, the subgrade should be covered with 2 inches of clean sand.

6.8 MOISTURE PROTECTION AND SURFACE DRAINAGE

<u>During Construction</u>: Over-wetting the soils prior to, during, or after construction may result in softening and pumping, causing equipment mobility problems and difficulty in achieving compaction. Every effort should be taken to ensure positive drainage away from roadway areas to reduce the potential for water to migrate below pavements and concrete flatwork. The recommended minimum slope is two percent (2%) in pavement areas. Moisture should not be allowed to infiltrate the soils in the vicinity of, or upslope from, the roadways.

<u>Slope Protection</u>: To aid in maintaining surficial slope stability, we recommend that a water interceptor swale be constructed at the top of all engineered slopes (cut slopes, fill slopes). This swale should be designed to intercept all uphill slope drainage and divert the drainage around the slopes. The drainage should be controlled as it travels around the slopes and should be tied into the curb and gutter or other drainage system associated with the road.

<u>Residential Structures</u>: Moisture should not be allowed to infiltrate into the soils in the vicinity of the foundations. As such, design strategies to minimize ponding and infiltration near the home should be implemented. Structures that are located near the toe of ascending slopes may be subject to sheet flow during periods of heavy rain or snow melt. Therefore, the Civil Engineer may also wish to consider construction of additional surface drainage to intercept surface runoff, or a curtain drain to intercept seasonal groundwater flow, if any.

We recommend that desert or Xeriscape landscaping be considered within 5 feet of foundations. We further recommend roof runoff devices be installed to direct all runoff a minimum of 10 feet away from structures or beyond the limits of backfill (whichever distance is greater). Irrigation valves should be placed a minimum of 5 feet from foundations and should always be placed beyond the limits of foundation backfill. The builder should be responsible for compacting the exterior backfill soils around the foundation in lifts no greater than 12 inches to 90 percent of the maximum dry density (ASTM D1557). Additionally, the ground surface within 10 feet of structures should be constructed so as to slope a minimum of five percent away. Pavement sections should be constructed to divert surface water off of the pavement into storm drains. Parking strips and roadway shoulder areas should be constructed to prevent infiltration of water into the areas surrounding pavement.

<u>Foundation Drains</u>: IGES recommends a perimeter foundation drain be constructed for any proposed structure with a subterranean component (e.g., a basement); the perimeter drain should be designed in accordance with guidelines presented in the International Residential Code (IRC).

6.9 SOIL CORROSION POTENTIAL

Laboratory test results from samples obtained from nearby test pits from our original project-wide geotechnical investigation indicate that near-surface native soils had a sulfate content ranging from

34 to 86 ppm (IGES, 2012b, TP-17 and TP-18). Based on soil conditions encountered during our field investigation and results of chemical testing, the soils are classified as having a 'low' potential for deterioration of concrete due to the presence of soluble sulfate. We recommend that conventional Type I/II Portland cement be used for all concrete in contact with site soils.

To evaluate the corrosion potential of ferrous metal in contact with onsite native soil, we have reviewed laboratory tests conducted for nearby soil samples obtained during our previous project-wide geotechnical investigation (IGES, 2012b, TP-17, TP-18). Two samples were tested for soil resistivity (AASHTO T288), soluble chloride content, and pH. The tests indicated that the onsite soil tested had a minimum soil resistivity of ranging from 980 to 2,200 OHM-cm, soluble chloride content ranging from 11 to 12 ppm, and a pH ranging from 6.3 to 6.5. Based on this result, the onsite native soil is considered *severely* corrosive to ferrous metal. Consideration should be given to retaining the services of a qualified corrosion engineer to provide an assessment of any metal that will be in contact with native clay soils.

6.10 PAVEMENT DESIGN

Near-surface soils encountered at the site consist largely of clayey soils, and are therefore expected to provide poor pavement support. Interior roadways for the project are expected to experience minimal traffic, primarily for access to the lodge and access to parking areas. Based on our assessment of the subgrade soils, the following pavement sections are presented to provide a 20-year design life for the subject roads. It should be noted that construction traffic will account for the majority of the loading during the life of the road.

Type of Street	Asphalt	Roadbase	Subbase
	(in.)	(in.)	(in.)
Light Traffic (e.g. access to a carport)	3	6	8
Lodge Access Road	4	6	8

Table 6.10
Pavement Recommendations

Earth materials classifying as Fat CLAY (CH) were identified onsite. Where fat clay is identified on the pavement subgrade, IGES recommends over-excavating an additional 12 inches and replacing with relatively frost-free granular materials (subbase or a pit-run gravel will generally fulfill this requirement). Because of the potential for Fat CLAY to exist beneath the roadway, it is imperative that the pavement section be constructed as recommended and that the pavement be designed to divert surface runoff to gutters and storm drains to minimize the risk of pavement distress arising from expansive soils and/or frost heave. The pavement should be constructed to divert water away from the center of the roadway with a minimum 2 percent slope towards the gutter. Our recommendation to overexcavate and remove the uppermost 12 inches of the Fat CLAY assumes that these moisture and drainage recommendations will be implemented. If these recommendations are not implemented or if poor asphalt quality allows the subgrade to become saturated, differential heave may occur which could cause distress to the pavement section.

Asphalt has been assumed to be a high stability plant mix and base course material composed of crushed stone with a minimum CBR of 70, and subbase (granular borrow) should have a minimum CBR of 30. Road base and subbase should be compacted to 95% of MDD as determined by ASTM D-1557 (Modified Proctor). Asphalt should be compacted to a minimum of 96 percent of the Marshall maximum density. Asphalt and aggregate base material should conform to local requirements. Subgrade should be scarified to a depth of 8 inches and compacted to 95% of MDD as determined by ASTM D-1557. Positive drainage away from roadways must be provided to minimize the potential for saturation of subgrade soils beneath constructed pavements.

Where Portland Cement Concrete (PCC) pavements are planned, such as near trash enclosures or other areas expected to support heavy truck traffic, we recommend a minimum of 6 inches PCC underlain by a minimum 6 inches of aggregate base course.

If conditions vary significantly from our stated assumptions (including stated traffic assumptions) IGES should be contacted so we can modify our pavement design parameters accordingly.

6.11 GEOLOGIC HAZARD ASSESSMENT – CONCLUSIONS & RECOMMENDATIONS

Based upon the geologic reconnaissance of the project area and the geologic conditions observed in the exploration test pits, geologic features in the form of shallow landslides, soil creep, and slumping have the potential to adversely impact the proposed development. Given the geologic evidence discussed herein, and the slope stability assessment addressed in Section 4.3, the following conclusions are made:

- 1. Evidence of soil creep was observed across the property; soil creep represents a high hazard for the site as a whole. Though a very slow-moving process, soil creep effects may require the annual inspection and/or maintenance of utilities. Soil creep is a relatively shallow phenomenon; structures can be founded over areas subject to soil creep provided the structure is founded on properly designed drilled piers embedded into competent bedrock.
- 2. Subsurface data collected from the test pits confirm the presence of the large landslide deposit initially mapped by Sorensen and Crittenden, Jr. (1979) and subsequently mapped by Western Geologic (2012) on the southeastern part of the property. The subsurface data suggest that the large deposit may be the product of a series of smaller slides or slumps that have a generally localized affected area. Additionally, a small headscarp was noted on the northern part of the

property. Though some of the data suggest an older (Pleistocene) age for the large landslide, the presence of shallow groundwater, generally poorly consolidated soils, and steeper slopes in the southern part of the property may provide conditions conducive to the rejuvenation of the slide. As such, the landslide hazard is considered to be moderate for the western half of the property and moderate to high for the eastern half of the property. Therefore, appropriate mitigation practices are required to be employed in order to make the site suitable for development from a landslide hazards standpoint.

- 3. Surface fault rupture, rockfall, debris flow, and flooding hazards are considered to be low for the property.
- 4. Published literature indicate that the liquefaction potential for the site is expected to be low. However, due to the presence of granular soils and shallow groundwater and the unknown character of the soils underlying those examined in the geotechnical report, the potential for liquefaction occurring at the site cannot be ruled out. If liquefaction should occur, the impact would be expected to be highly localized.

Given the conclusions listed above, IGES makes the following recommendations:

- 1. Based on the data collected from the test pit and pothole excavations, except with limited exceptions, all habitable structures should be founded on drilled piers anchored into bedrock (dolomite or conglomerate). All foundations within the 'pink' area as designated on Plate A-3 must be set into hard dolomite bedrock. Where surficial soils are greater than 20 feet in depth (measured from finish grade to the top of bedrock), construction of habitable structures is not recommended.
- 2. IGES should be present onsite during the foundation excavation and/or drilling to assess whether the foundations are emplaced into the appropriate material and to the appropriate depth.
- 3. Because the dolomite bedrock was not encountered at uniform depths across the property, and in some cases not encountered at all, the Owner may wish to consider that prior to the commencement of foundation excavation/drilling operations a drilling program be conducted across the property to further delineate the depth to bedrock. This will serve to refine the *Footing Delineation Map* (Plate A-3) and more clearly identify areas where construction is feasible and provide additional guidance with respect to drilled pier sizing for specific structures.
- 4. The observation of shallow groundwater on localized parts of the property makes necessary mitigation practices to adequately address this potential hazard. Appropriate grading

measures in low-lying areas susceptible to near-surface groundwater conditions is recommended. Temporary dewatering or the construction of land drains may be desired to help facilitate construction.

6.12 CONSTRUCTION CONSIDERATIONS

The following items of note should be brought to the attention of the Owner, and the Contractor who will be performing earthwork and/or building the foundations within the project area:

- 1. Habitable structures may be constructed on drilled piers such that life safety can be reasonably preserved. However, within areas susceptible to creep, and in particular areas mapped as landslide deposits, future ground movement may damage utilities, pavement, and other improvements. The Owner should understand and accept that some roadway and/or utility maintenance may be necessary if soil creep occurs, or if an existing landslide mass becomes reactivated. Use of flexible utilities that can accommodate some ground movement may serve to reduce the risk associated with future ground movement damaging utilities.
- 2. For all foundations, prior to placement of steel, concrete, or structural fill, IGES should assess the subgrade for the presence of adverse conditions, which may include (but not necessarily be limited to): a) transitions zones, b) soft/loose soil, or c) potentially adverse geologic structures. If identified, potentially adverse geologic structures will be brought to the attention of the Client for further review and input. In addition, IGES should evaluate whether the depth of embedment of drilled piers into bedrock is adequate.
- 3. Where the depth to bedrock is greater than 20 feet, construction using the methods discussed herein is not recommended. Where depth to bedrock is greater than 20 feet, construction may be feasible; however, design of ground improvement or other methods to stabilize the building envelope should be developed on a case-by-case basis and approved by IGES prior to implementation. Techniques such as the use of secant walls, or tangent walls, or mass-grading, could potentially be used to stabilize the subgrade where the depth to bedrock is greater than 20 feet.

7.0 CLOSURE

7.1 LIMITATIONS

The recommendations presented in this report are based on our limited field exploration, laboratory testing and understanding of the proposed construction. The subsurface data used in the preparation of this report were obtained from the explorations made for this investigation. It is likely that variations in the soil and groundwater conditions exist between and beyond the points explored. The nature and extent of variations may not be evident until construction occurs. If any conditions are encountered at this site that are different from those described in this report, we should be immediately notified so that we may make any necessary revisions to recommendations presented in this report. In addition, if the scope of the proposed construction changes from that described in this report, IGES should be notified.

This report was prepared in accordance with the generally accepted standard of practice at the time the report was written. No warranty, expressed or implied, is made.

It is the Client's responsibility to see that all parties to the project including the Designer, Contractor, Subcontractors, etc. are made aware of this report in its entirety. The use of information contained in this report for bidding purposes should be done at the Contractor's option and risk.

7.2 ADDITIONAL SERVICES

The recommendations presented in this report are based on the assumption that an adequate program of tests and observations will be made during construction. IGES staff should be on site to assess compliance with these recommendations. These tests and observations should include, but not necessarily be limited to, the following:

- Observations and testing during site preparation, earthwork and structural fill placement.
- Observation of foundation soils to assess their suitability for footing placement.
- Observation of soft/loose soils overexcavation.
- Observation of temporary excavations and shoring.
- Consultation as may be required during construction.
- Quality control and observation of concrete placement.

We also recommend that project plans and specifications be reviewed by us to verify compatibility with our conclusions and recommendations. Additional information concerning the scope and cost of these services can be obtained from our office.

We appreciate the opportunity to be of service on this project. Should you have any questions regarding the report or wish to discuss additional services, please do not hesitate to contact us at your convenience at (801) 748-4044.

8.0 **REFERENCES CITED**

- ASCE, 2010, ASCE 7-10: Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers
- AGI, 2005, Glossary of Geology, Fifth Edition, revised, Neuendorf, K.K.E., Mehl, Jr. J.P., and Jackson, J.A., editors: American Geological Institute, Alexandria, Virginia, 783 p.
- AMEC, 2001, Report: Engineering Geologic Reconnaissance/Geotechnical Study, Powder Mountain Resort.
- Anderson, L.R., Keaton, J.R., and Bay, J.A., 1994, Liquefaction Potential Map for the Northern Wasatch Front, Utah, Complete Technical Report: Utah Geological Survey Contract Report 94-6, 169 p.
- Blake, T.F., Hollingsworth, R.A. and Stewart, J.P., Editors (2002), Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for analyzing and mitigating landslide hazards in California: organized by the Southern California Earthquake Center.
- Bray, J.D., and Traasarou, T., 2007, Simplified Procedure for Estimating Earthquake Induced Deviatoric Slope Displacements, in Journal of Geotechnical and Geoenvironmental Engineering, ASCE, V. 133(4), pp. 381-392, April 2007.
- Colton, R.B., 1991, Landslide Deposits in the Ogden 30' x 60' Quadrangle, Utah and Wyoming: U.S. Geological Survey Open-File Report 91-297, 1 Plate, 8 p., Scale 1:100,000.
- Coogan, J.C., and King, J.K., 2001, Progress Report Geologic Map of the Ogden 30' x 60' Quadrangle, Utah and Wyoming – Year 3 of 3: Utah Geological Survey Open-File Report 380, 1 Plate, 33 p., Scale 1:100,000.
- Coogan, J.C., and King, J.K., 2016, Interim Geologic Map of the Ogden 30' x 60' Quadrangle, Box Elder, Cache, Davis, Morgan, Rich, and Summit Counties, Utah, and Uinta County, Wyoming: Utah Geological Survey Open-File Report 653DM, 1 Plate, 151 p., Scale 1:100,000.
- Christenson, G.E., and Shaw, L.M., 2008, Liquefaction Special Study Areas, Wasatch Front and Nearby Areas, Utah: Utah Geological Survey Supplement Map to Utah Geological Survey Circular 106, 1 Plate, Scale 1:200,000.
- Elliott, A.H., and Harty, K.M., 2010, Landslide Maps of Utah, Ogden 30' X 60'Quadrangle: Utah Geological Survey Map 246DM, Plate 6 of 46, Scale 1:100,000.
- Federal Emergency Management Agency [FEMA], 1997, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA 302, Washington, D.C.

REFERENCES CITED (Cont.)

- Frankel, A., Mueller, C., Barnard, T., Perkins, D., Leyendecker, E.V., Dickman, N., Hanson, S., and Hopper, M., 1996, *National Seismic-hazard Maps: Documentation*, U.S. Geological Survey Open-File Report 96-532, June.
- Giraud, R.E., and Shaw, L.M., 2007, Landslide Susceptibility Map of Utah: Utah Geological Survey Map 228DM, 1 Plate, Scale 1:500,000.
- Hintze, L.F., 1988, Geologic History of Utah: Brigham Young University Geology Studies Special Publication 7, Provo, Utah, 202 p.
- Hynes, M.E. and A. G. Franklin (1984). "Rationalizing the Seismic Coefficient Method" Miscellaneous Paper GL-84-13, U.S. Army Waterways Experiment Station, Vicksburg, Miss.
- IGES, Inc., 2012a, Preliminary Geotechnical Investigation, Powder Mountain Resort, Weber County, Utah, Project No. 01628-001, dated July 26, 2012.
- IGES, Inc., 2012b, Design Geotechnical Investigation, Powder Mountain Resort, Weber County, Utah, Project No. 01628-003, dated November 9, 2012.
- IGES, Inc., 2013, Rockery Construction Guidelines, Powder Mountain Resort, Weber County, Utah, Project No. 01628-005, dated May 8, 2013.

International Building Code [IBC], 2012, International Code Council, Inc.

- Lund, W.R., 1990, editor, Engineering geology of the Salt Lake City metropolitan area, Utah: Utah Geological Survey Bulletin 126, 66 p.
- Milligan, M.R., 2000, How was Utah's topography formed? Utah Geological Survey, Survey Notes, v. 32, no.1, pp. 10-11.
- PSI, 2012, Geophysical ReMi Investigation, Powder Mountain Resort, Phase 1A, Weber County, Utah, PSI Project No. 0710375, dated September 18, 2012.
- Sorensen, M.L., and Crittenden, Jr., M.D., 1979, Geologic Map of the Huntsville Quadrangle, Weber and Cache Counties, Utah: U.S. Geological Survey GQ-1503, 1 Plate, Scale 1:24,000.
- Stokes, W.L., 1987, Geology of Utah: Utah Museum of Natural History and Utah Geological and Mineral Survey Department of Natural Resources, Salt Lake City, UT, Utah Museum of Natural History Occasional Paper 6, 280 p.
- U.S. Geological Survey and Utah Geological Survey, 2006, Quaternary fault and fold database for the United States, accessed 7-19-16, from USGS website: http://earthquakes.usgs.gov/regional/qfaults

REFERENCES CITED (Cont.)

U.S. Geological Survey, 2012, U.S. Seismic "Design Maps" Web Application, site: https://geohazards.usgs.gov/secure/designmaps/us/application.php.

Utah Geological Survey, 1996, The Wasatch Fault: UGS Public Information Series 40, 17 p.

- Weber County, 2015, Natural Hazards Overlay Districts, Chapter 27 of Title 104 of the Weber County Code of Ordinances, adopted on December 22, 2015.
- Western Geologic, 2012, Report: Geologic Hazards Reconnaissance, Proposed Area 1 Mixed-Use Development, Powder Mountain Resort, Weber County, Utah, dated August 28, 2012.

APPENDIX A

LITHOLOGIC UNIT DESCRIPTIONS:

1. A/B Soil Horizon: ~1-1.5' thick; dark yellowish brown (10YR 4/2); lean CLAY, medium stiff, slightly moist, low plasticity, massive; some silt and occasional to common quartzite clasts up to 3" thick, though some boulders several feet in diameter noted on ground surface; clasts are subrounded to rounded, all white to pink quartzite; gravel and larger sized clasts comprise ~5% of unit; abundant plant and tree roots, though much more concentrated in uppermost 6" of unit.

2. 2A Colluvium 1 (QcI): ~4.5' thick; dark yellowish brown (10YR 4/2) to moderate reddish brown (10R 4/6); lean CLAY with gravel, medium stiff, moist, low plasticity, massive; gravel and larger sized clasts comprise ~50% of unit, all subrounded to subangular white to pink quartzite up to 1.5' diameter, though mode average 6-8"; abundant plant and tree roots; poorly sorted.

2. 2B Colluvium 2 (QcI): ~6" thick; dark yellowish orange (10YR 6/6) to moderate yellowish brown (10YR 5/4);SILT with gravel, medium stiff, moist, massive; gravel and larger sized clasts comprise ~40% of unit, all subangular quartzite up to 6" in diameter, though mode average 2"; abundant pinhole voids throughout; poorly sorted; irregular, sharp basal contact.

3. Paleosol?: ~6"-1' thick; moderate red (5R 5/4) to brownish black (5YR 2/1); fat CLAY, medium stiff, moist, high plasticity, massive; generally the same as seen in TP-1 except largely devoid of clasts and fewer slickensides.

4. Highly Weathered Bedrock (Cn): ~2-5'+ thick; dark gray (N3) to moderate red (5R 5/4); mottled appearance; sandy CLAY, stiff, moist, moderate plasticity, thinly bedded; internal structure of original dolomite bedrock still evident; highly sandy where less weathered; occasional angular bedrock clasts up to 1" diameter.

5. Partially Weathered Bedrock (Cn): At least 5'+ thick; dark gray (N3) to medium dark gray (N4); mottled appearance; dolomite bedrock is soft to medium hard, and is sandy where more weathered; exhibits well-developed blocky jointing and largely subhorizontal thin bedding; contains slickensided red ring around southernmost bedrock knob.

FIGURE A-3 TP-2 LOG

SUMMIT HORIZON NEIGHBORHOOD GEOLOGIC HAZARD AND GEOTECH STUDY POWDER MOUNTAIN RESORT WEBER COUNTY, UTAH

DATE: 07/18/2016	SCALE:	AICES'
FILE: 01628-013	1"=5'	WIGES

(10YR 4/2); sandy lean CLAY with gravel, stiff, slightly moist to moist, low plasticity, massive; gravel and larger sized clasts comprise ~40-50% of unit, all medium gray subrounded to subangular quartite up to 1' diameter, though mode average 2-4"; poorly sorted; possible landslide deposit, as common angular clasts and variable clast sizes; occasional plant and tree roots; basal ~6"-1' is increasingly fat clay-rich; sharp, planar basal contact.

5.Weathered Bedrock (Cn): At least ~1.5' thick; medium dark gray (N4) to moderate reddish brown (10R 4/6); unit contains clayey SAND and highly weathered dolomite bedrock clasts up to 4" diameter; where present, clay is fat; medium dense, moist to wet, massive; where present, clasts are very soft to soft and will crumble in hands.

WEBER COUNTY, UTAH

SCALE:

"=5^{*}

IGES

DATE: 07/18/2016

2.2A Colluvium 1 (QcI): ~2' thick; dark yellowish brown (10YR 4/2); lean CLAY with gravel gradational to clayey GRAVEL, medium stiff to loose, slightly moist, low plasticity, massive; minor silt; gravel and larger sized clasts comprise ~50-60% of subunit, all subangular to subrounded medium gray quartzite up to 1' diameter, though mode average ~6"; poorly sorted; common plant and tree roots, especially in upper half; gradational basal contact.

2.2B Colluvium 2 (Qcl): ~2.5-3' thick; dark yellowish brown (10'YR 4/2) to moderate yellowish brown (10'YR 5/4); lean CLAY with sand, stiff, slightly moist to moist, low plasticity, massive; gravel and larger sized clasts comprise ~40% of subunit, all subangular to subrounded medium gray quartzite up to 8" in diameter, though mode average 2-4"; poorly sorted; occasional plant and tree roots; sharp, largely planar basal contact; possibly Wasatch Formation? 3. Pond Clay?: ~1' thick; pale yellowish orange (10YR 6/2) to dark yellowish orange (10YR 6/6); fat CLAY, stiff, moist, moderate plasticity; thinly bedded at top, though largely massive; blocky texture; occasional subrounded to subangular quartzite clasts up to 5' in diameter, though commonly <1'', top of unit is 1-2'' red band, though no evidence of shearing; no slickensides observed; sharp, planar basal contact.</p>

SUMMIT HORIZON NEIGHBORHOOD

GEOLOGIC HAZARD AND GEOTECH STUDY

POWDER MOUNTAIN RESORT

SCALE:

IGES

WEBER COUNTY, UTAH

DATE: 07/18/2016

PROJECT: 01628-013

4.Wasatch Fm (Tw): At least 3' thick; dark reddish brown (10R 3/4) to moderate reddish brown (10R 4/6); conglomeratic bedrock disaggregated into sandy CLAY gradational to clayey SAND with depth, medium stiff to medium dense, moist, massive, low plasticity; becomes sandier and more gravelly with depth; gravel and larger sized clasts comprise ~10-15% of unit, all subrounded to subangular quartize up to 6" diameter, which is mode clast size though clasts are largely concentrated toward southerm end of test pit; occasional plant and tree roots; due to low density and clast proportion, possibly another colluvial unit.

2. Colluvium (Qcl):~4' thick; dark yellowish brown (10YR 4/2) to dark reddish brown 10R 3/4); silty lean CLAY with gravel, stiff, slightly moist, low plasticity, massive; gravel and larger clasts comprise ~20-25% of unit, up to 9" diameter; clasts are entirely subangular to subrounded medium gray (N5) to white (N9) guartzite, with mode average 2-4" diameter; becomes very clay-rich with fat clay to the south; poorly sorted; common plant and tree roots; sharp, planar basal contact.

multiple debris-flow deposits.

4. Wasatch Fm? (Tw): At least ~6' thick; dark reddish brown (10R 3/4) to dark yellowish brown (10YR 4/2); silty, sandy lean CLAY with gravel, stiff, moist, low plasticity, massive to faintly bedded; gravel and larger sized clasts comprise ~50-60% of unit; clasts are entirely subrounded to subangular quartzite up to 1' diameter, though mode average 4-6"; occasional to common pinhole voids throughout; purely silty clay found in northernmost part of test pit: poorly sorted: occasional plant and tree roots.

SUMMIT HORIZON NEIGHBORHOOD

GEOLOGIC HAZARD AND GEOTECH STUDY

POWDER MOUNTAIN RESORT

WEBER COUNTY, UTAH

SCALE:

IGES

DATE: 07/18/2016

1. A/B Soil Horizon: ~1.5-2' thick; dark yellowish brown (10YR 4/2); silty lean CLAY with gravel, medium stiff, dry, low plasticity, massive; gravel and larger sized clasts comprise ~15-20% of unit; clasts are entirely subrounded to rounded to subangular medium gray (N5) quartzite up to 1.5' diameter; though mode average <1" diameter; abundant plant and tree roots; planar, gradational basal contact.

2.Colluvium (Qcc/Qls): ~1-3 thick; light brown (5YR 6/4) to moderate yellowish brown (10YR 5/4); silty lean CLAY with gravel, gradational to clayey GRAVEL, medium stiff to stiff to medium dense, slightly moist to dry, low plasticity, massive; gravel and larger sized clasts comprise ~60% of unit, all subrounded to subangular light gray (N7) quartzite up to 1.5' diameter, though mode average 2-4"; poorly sorted; occasional to common pinhole voids (1-2 mm); abundant plant and tree roots; sharp, planar basal contact.

3. Paleosol: ~2' thick; dark reddish brown (10YR 3/4) to moderate reddish brown (10R 4/6); sandy fat CLAY, stiff to very stiff, slightly moist, moderate plasticity, massive; abundant pinhole voids throughout (1 mm); mottled in places near weathered bedrock; slickensides present on some surfaces consistent with modern slope (evidence of creep); occasional plant and tree roots; sharp, irregular basal contact. 4.Highly Weathered Bedrock (Cn): ~1-2' thick; pale yellowish orange (10YR 6/2) to medium gray (N5); dolomite bedrock largely decomposed into sandy fat CLAY, though relict bedding and bedrock clasts common and give mottled appearance; highly sandy in some areas; where present as clasts, bedrock shows thin bedding, though is very soft and crumbly; irregular, gradational basal contact.

5. Vug Infilling?: ~2.5' thick, localized; dark reddish brown (10R 3/4) to moderate reddish brown (10R 4/6); clayey SAND gradational to sandy fat CLAY; dense to stiff, moist, high plasticity, massive; sand almost entirely silica; rare (<5%) clasts up to 3" diameter of both dolomite and quartzite, evidence of vuggy infilling; some pinhole voids observed (1 mm); sharp, curved basal contact.</p>

6.Bedrock (Cn): At least ~6' thick; medium gray (N5) to medium dark gray (N4) finely sparry dolomite unweathered, weathers to moderate reddish brown (10R 4/6) sandy and clayey surface; finely to medium bedded; most of exposed bedrock is largely weathered and medium hard, though both hard and soft parts can be found; despite extensive weathering, relict jointing is still present and easily discernible; slickensides observed on clayey weathering rind on both sides of bedrock outcrop (both upslope and downslope of bedrock), with slide direction indicating movement up and over bedrock.

FIGURE A-10 TP-9 LOG

SUMMIT HORIZON NEIGHBORHOOD

GEOLOGIC HAZARD AND GEOTECH STUDY POWDER MOUNTAIN RESORT WEBER COUNTY, UTAH

SCALE:

1"=5'

IGES

DATE: 07/18/2016

1. A/B Soil Horizon: ~1.5-2' thick; dark yellowish brown (10YR 4/2); slity lean CLAY with gravel, medium stiff, dry, low plasticity, massive; gravel and larger sized clasts comprise ~50-60% of unit; clasts are entirely subrounded to rounded to subangular medium gray (N5) quartzite up to 1.5' diameter, though mode average 3-4" diameter; abundant plant and tree roots; planar, gradational basal contact.

2. Colluvium (Qcc/Qls): ~1.5-2' thick; light brown (5YR 6/4) to moderate yellowish brown (10YR 5/4); silty lean CLAY with gravel, gradational to silty, clayey GRAVEL, stiff to very stiff to dense, slightly moist, low plasticity, massive; gravel and larger clasts comprise ~60% of unit, all subrounded to rounded to subangular quartzite up to 1' diameter, though mode average 3-4"; poorly sorted, but fairly well cemented; fine (1 mm) pinhole voids throughout; common plant and tree roots; irregular, gradational basal contact.

3. Wasatch Fm (Tw): At least ~10' thick; moderate reddish brown (10R 4/6) to dark yellowish brown (10YR 4/2); sandy CLAY with gravel, medium stiff to stiff, moist, low plasticity, massive; gravel and larger sized clasts comprise ~30-40% of unit, all subrounded to subangular quartzite up to 10" in diameter, though mode average 2-4"; abundant pinhole voids (1-2 mm) throughout; poorly sorted; common plant and tree roots; clay component increases with depth.

TP-10 LOG

SUMMIT HORIZON NEIGHBORHOOD

GEOLOGIC HAZARD AND GEOTECH STUDY

POWDER MOUNTAIN RESORT

SCALE:

WEBER COUNTY, UTAH

DATE: 07/18/2016

LITHOLOGIC UNIT DESCRIPTIONS:

1. A/B Soil Horizon: ~1.5-2' thick; dark yellowish brown (10YR 4/2); silty lean CLAY with gravel, stiff, slightly moist, low plasticity, massive; gravel and larger sized clasts comprise ~35-40% of unit; clasts are entirely subrounded to subangular medium gray (N5) quartzite up to 1' diameter, though mode average 2-4" diameter; abundant plant and tree roots; planar, gradational basal contact.

2.Colluvium (Qcc/Qls): ~1-1.5' thick; light brown (5YR 6/4) to pale reddish brown (10R 5/4); silty lean CLAY with gravel, very stiff, dry, low plasticity, massive; well-cemented, as seen in TP-12; gravel and larger sized clasts comprise ~25% of unit, all subrounded to subangular quartzite up to 8" in diameter, though mode average 1-2"; occasional to common plant and tree roots; common pinhole voids (1 mm) throughout.

3.Wasatch Fm (Tw): ~1.5-4' thick; moderate reddish brown (10R 4/6) to dark reddish brown (10YR 3/4); silty lean CLAY with gravel, very stiff to stiff slightly moist, low plasticity, massive; fairly well cemented; blocky texture; gravel and larger sized clasts comprise ~30% of unit, all subrounded to subangular quartzite up to 1' diameter, though mode average 2-4"; clasts are more commonly larger than in the overlying colluvium unit; abundant pinhole voids (1-2 mm) throughout; occasional paleosols near base of unit; abundant plant and tree roots; thins dramatically to south; sharp, planar basal contact. 4. Alluvium: ~3-6' thick; pale yellowish orange (10YR 6/2) to very light gray (N8); fat CLAY, very stiff, dry, high plasticity, massive; extremely well cemented with some calcium carbonate; some possible relict shaley structure; occasional very thin plant roots; sharp, planar basal contact.

5.Weathered Bedrock 1 (Cn): ~6"-1' thick; dark reddish brown (10R 3/4); clayey SAND with highly weathered, thinly bedded dolomite blocks sitting within/right above sand bed; individual blocks are up to 1' diameter and are only partially continuous along unit; may possibly represent slump plane.

6.Weathered Bedrock 2 (Cn): At least ~5' thick; pale yellowish orange (10YR 6/2) to medium gray (N5); interbedded fat CLAY and partially weathered dolomite bedrock; clay is stiff to very stiff, moist, high to medium plasticity, thinly bedded; dolomite is finely sparry and thinly bedded, and weathers to a clinker-like appearance in places; clay beds have relict shale structure; individual dolomite beds are 6-8" thick, though western wall of test pit has much thicker beds and more continuous/less weathered bedrock due to dip.

FIGURE A-12 TP-11 LOG

GEOLOGIC HAZARD AND GEOTECH STUDY POWDER MOUNTAIN RESORT WEBER COUNTY, UTAH

DATE: 07/18/2016 SCALE: PROJECT: 01628-013 1"=5"

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR DIVISIONS				MBOL	DESCRIPTIONS
	GRAVELS CLEAN GRAVELS			GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES
COARSE	(More than half of coarse fraction	OR NO FINES	0.00	GP	POORLY-GRADED GRAVELS, GRAVEL-SAN MIXTURES WITH LITTLE OR NO FINES
	Is larger than the #4 sleve)	GRAVELS	2002	GM	SILTY GRAVELS, GRAVEL-SILT-SAND MIXTURES
SOILS		12% FINES		GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
of material Is larger than the #200 sleve)		CLEAN SANDS		SW	WELL-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES
	SANDS (More than half of	OR NO FINES		SP	POORLY-GRADED SANDS, SAND GRAVEL MIXTURES WITH LITTLE OR NO FINES
	coarse fraction is smaller than the #4 sleve)	SANDS WITH OVER 12% FINES		SM	SILTY SANDS, SAND-GRAVEL-SILT MIXTURES
			Ø	SC	CLAYEY SANDS SAND-GRAVEL-CLAY MIXTURES
				ML	INORGANIC SILTS & VERY FINE SANDS, SILTY OR CLAYEY FINE SANDS, CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS Af	ND CLAYS less than 50)		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS & ORGANIC SILTY CLAYS OF LOW PLASTICITY
(More than half of material				ΜН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILT
the #200 sleve)	SILTS AND CLAYS			СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
				ОН	ORGANIC CLAYS & ORGANIC SILTS OF MEDIUM-TO-HIGH PLASTICITY
HIGHLY ORGANIC SOILS			25 :	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

MOISTURE CONTENT

DESCRIPTION	FIELD	FIELD TEST				
DRY	ABSENCE	ABSENCE OF MOISTURE, DUSTY, DRY TO THE TOUCH				
MOIST	DAMP BU	DAMP BUT NO VISIBLE WATER				
WET	VISIBLE FI	VISIBLE FREE WATER, USUALLY SO'L BELOW WATER TABLE				
STRATIFICATION						
DESCRIPTION	THICKNESS	DESCRIPTION	THICKNESS			
SEAM	1/16 - 1/2"	OCCASIONAL	ONE OR LESS PER FOOT OF THICKNESS			
LAYER	1/2 - 12"	FREQUENT	MORE THAN ONE PER FOOT OF THICKNESS			

APPARENT / RELATIVE DENSITY - COARSE-GRAINED SOIL

APPARENT DENSITY	SPT (blows/ft)	MODIFIED CA. SAMPLER (blows/ft)	CALIFORNIA SAMPLER (blows/lt)	RELATIVE DENSITY (%)	FIELD TEST
VERY LOOSE	4	<4	<5	0 - 15	EASILY PENETRATED WITH 1/2-INCH REINFORCING ROD PUSHED BY HAND
LOOSE	4 - 10	5 - 12	5-15	15 - 35	DIFFICULT TO PENETRATE WITH 1/2-INCH REINFORCING ROD PUSHED BY HAND
MEDIUM DENSE	10-30	12 - 35	15 - 40	35 - 65	EASILY PENETRATED A FOOT WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER
DENSE	30 - 50	35 - 60	40 - 70	65 - 85	DIFFICULT TO PENETRATED A FOOT WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER
VERY DENSE	>50	>60	>70	85 - 100	PENETRATED ONLY A FEW INCHES WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER

CONSISTENC' FINE-GRAINED	Y∙ ⊃SOLL	TORVANE	POCKET PENETROMETER	FIELD TEST
CONSISTENCY	SPT (blows/ft)	UNTRAINED SHEAR STRENGTH (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	
VERY SOFT	<2	<0.125	<0.25	EASILY PENETRATED SEVERAL INCHES BY THUMB. EXUDES BETWEEN THUMB AND FINGERS WHEN SQUEEZED BY HAND.
SOFT	2-4	0.125-0.25	0.25 - 0.5	EASILY PENETRATED ONE INCH BY THUMB. MOLDED BY LIGHT FINGER PRESSURE.
MEDIUM STIFF	4 - 8	0.25 - 0.5	0.5 - 1.0	PENETRATED OVER 1/2 INCH BY THUMB WITH MODERATE EFFORT, MOLDED BY STRONG FINGER PRESSURE,
STIFF	8 - 15	0.5 - 1.0	1.0-2.0	INDENTED ABOUT 1/2 INCH BY THUMB BUT PENETRATED ONLY WITH GREAT EFFORT.
VERY STIFF	15 - 30	1.0 - 2.0	2.0 - 4.0	READILY INDENTED BY THUMBNAIL.
HARD	>30	>2.0	>4.0	INDENTED WITH DIFFICULTY BY THUMBNAIL.

KEY TO SOIL SYMBOLS AND TERMINOLOGY

	LOG	KEY	SYMBO	LS
--	-----	-----	-------	----

WATER LEVEL (level after completion)

WATER LEVEL ∇ (level where first encountered)

CEMENTATION	4
DESCRIPTION	DESCRIPTION
WEAKELY	CRUMBLES OR BREAKS WITH HANDLING OR SLIGHT FINGER PRESSURE
MODERATELY	CRUMBLES OR BREAKS WITH CONSIDERABLE FINGER PRESSURE
STRONGLY	WILL NOT CRUMBLE OR BREAK WITH FINGER PRESSURE

OTHER TESTS KEY

С	CONSOLIDATION	SA	SIEVE ANALYSIS
AL	ATTERBERG LIMITS	DS	DIRECT SHEAR
UC	UNCONFINED COMPRESSION	Т	TRIAXIAL
S	SOLUBILITY	R	RESISTIVITY
0	ORGANIC CONTENT	RV	R-VALUE
CBR	CALIFORNIA BEARING RATIO	SU	SOLUBLE SULFATES
COMP	MOISTURE/DENSITY RELATIONSHIP	PM	PERMEABILITY
C	CALIFORNIA IMPACT	-200	% FINER THAN #200
COL	COLLAPSE POTENTIAL	Gs	SPECIFIC GRAVITY
SS	SHRINK SWELL	SL	SWELL LOAD

MODIFIERS DESCRIPTION

TRACE	<5
SOME	5 - 12
WITH	>12

%

- GENERAL NOTES
 1. Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual.
- 2. No warranty is provided as to the continuity of soil conditions between Individual sample locations.
- Logs represent general soll conditions observed at the point of exploration on the date indicated.
- 4. In general, Unlfled Soll Classification designations presented on the logs were evaluated by visual methods only. Therefore, actual designations (based

on laboratory tests) may vary.

Project No. 01628-013 GES DAG Engr. DAG Intermountain Drafted By Geo-Environmental July 2016 Date Services, Inc.

Figure A-14

Weathering

Rock C	lassification Should Include:
1	Rock name (or classification)

	Teven hame (or encontroation)
2.	Color
3.	Weathering
4.	Fracturing
5.	Competency
6.	Additional comments indicating
	rock characteristics which migh
	affect engineering properties

Weathering	Field Test			
Fresh	No visible sign of decomposition or discoloration. Rings under hammer impact.			
Slightly Weathered	Slight discoloration inwards from open fractures, otherwise similar to Fresh.			
Moderately Weathered	Discoloration throughout. Weaker minerals such as feldspar are decomposed. Strength somewhat less than fresh rock but cores cannot be broken by hand or scraped with a knife. Texture preserved.			
Highly Weathered	Most minerals somewhat decomposed. Specimens can be broken by hand with effort or shaved with a knife. Core stones present in rock mass. Texture becoming indistinct but fabric preserved.			
Completely Weathered	Minerals decomposed to soil but fabric and structure preserved. Speciment easily crumble or penetrated.			

Fracturing

Spacing	Description
>6 ft	Very Widely
2-6 ft	Widely
8-24 in	Moderately
2 ½-8 in	Closely
3⁄4-2 ½ in	Very Closely

Bedding of Sedimentary Rocks

Splitting Property	Thickness	Stratification
Massive	>4.0 ft	Very thick bedded
Blocky	2.0-4.0 ft	Thick-bedded
Slabby	2 ½-24 in	Thin-bedded
Flaggy	1⁄2-2 1⁄2 in	Very thin-bedded
Shaly or platy	½ −½ in	Laminated
Papery	< 1/8 in	Thinly laminated

RQD

RQD (%)	Rock Quality			
90-100	Excellent			
75-90	Good			
50-75	Fair			
25-50	Poor			
0-25	Very Poor			

Competency

Class	Strength	Field Test	Approximate Range of Unconfined Compressive Strength (tsf)
1	Extremely Strong	Many blows with geologic hammer required to break intact specimen.	>2000
n	Very Strong	Hand-held specimen breaks with pick end of hammer under more than one blow.	2000-1000
m	Strong	Cannot by scraped or peeled with knife, hand-held specimen can be broken with single moderate blow with pick end of hammer	1000-500
IV	Moderately Strong	Can just be scraped or peeled with knife. Indentations 1-3 mm show in specimen with moderate blow with pick end of hammer.	500-250
v	Weak	Material crumbles under moderate blow with pick end of hammer and can be peeled with a knife, but is hard to hand-trim for triaxial test specimen.	250-10
VI	Fnable	Material crumbles in hand.	N/A

KEY TO PHYSICAL ROCK PROPERTIES

Project No.	01628-013	
Engr.	DAG	
Drafted By	DAG	Intermo
Date	July 2016	Geo-Envir — Service

Figure A-15

MAP LEGEND

DATE: 07/22/2016 SCALE: PROJECT:01628-013 1"=2,000"

PROJECT:01628-013

FEET

Western Geologic (2012) Geologic Hazards Reconnaissance Report, Figure 3

SUMMIT HORIZON NEIGHBOURHOOD GEOLOGIC AND GEOTECH STUDY POWDER MOUNTAIN RESORT WEBER COUNTY, UTAH

APPENDIX B

Water Content and Unit Weight of Soil

(In General Accordance with ASTM D7263 Method B and D2216)

Project: Summit/Horizon Neighborhood

No: 01628-013

Location: Eden, UT Date: 7/19/2016

By: IM

Jy. II

÷	Boring No.	TP-1	TP-3	TP-4	TP-4	TP-5	TP-7	TP-8	
Info	Sample								
ple	Depth	13.0'	7.0'	5.0'	7.0'	2.0'	2.0'	8.0'	
am	Split	No	Yes	Yes	No	Yes	Yes	Yes	
S	Split sieve		3/4"	3/4"		3/8"	3/4"	3/4"	
	Total sample (g)		4562.64	4471.61		4506.59	3728.40	3454.16	
	Moist coarse fraction (g)		1499.35	1656.24		2808.81	819.59	18.75	
	Moist split fraction (g)		3063.29	2815.37		1697.78	2908.81	3435.41	
ıt	Sample height, H (in)				5.075				
eigh a	Sample diameter, D (in)				2.416				
. We Data	Mass rings + wet soil (g)				1041.74				
Jnit I	Mass rings/tare (g)				253.69				
1	Moist unit wt., γ_m (pcf)				129.0				
-	Wet soil + tare (g)		2504.16	2425.67		3119.30	1130.55	140.62	
arse	Dry soil + tare (g)		2464.49	2363.01		3071.09	1116.09	137.28	
Co Trac	Tare (g)		711.53	408.18		310.49	310.96	121.87	
Ι	Water content (%)		2.3	3.2		1.7	1.8	21.7	
ſ	Wet soil + tare (g)	258.12	1911.57	1827.52	555.43	341.30	1737.24	1844.47	
lit tioi	Dry soil + tare (g)	227.37	1801.25	1719.46	494.40	301.80	1552.15	1650.78	
Sp Frac	Tare (g)	120.72	316.54	331.47	128.49	122.00	333.12	409.03	
I	Water content (%)	28.8	7.4	7.8	16.7	22.0	15.2	15.6	
Water Content, w (%)		28.8	5.7	6.0	16.7	8.5	11.9	15.6	
	Dry Unit Wt., γ_d (pcf)				110.6				

Entered by:	
Reviewed:	

Liquid Limit, Plastic Limit, and Plasticity Index of Soils

(ASTM D4318)

Project: Summit/Horizon Neighborhood No: 01628-013 Location: Eden, UT

Boring No.: TP-1 Sample: Depth: 13.0' Description: Reddish brown fat clay

Date: 7/18/2016 By: BRR

> Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2			
Wet Soil + Tare (g)	28.55	28.72			
Dry Soil + Tare (g)	27.31	27.46			
Water Loss (g)	1.24	1.26			
Tare (g)	22.03	22.06			
Dry Soil (g)	5.28	5.40			
Water Content, w (%)	23.48	23.33			
Liquid Limit					
Determination No	1	2	3		
Number of Drops, N	35	28	20		
Wet Soil + Tare (g)	28.25	30.44	28.87		
Dry Soil + Tare (g)	25.71	27.02	26.02		
Water Loss (g)	2.54	3.42	2.85		
Tare (g)	21.86	21.91	21.95		
Dry Soil (g)	3.85	5.11	4.07		
Water Content, w (%)	65.97	66.93	70.02		
One-Point LL (%)		68	68		

Liquid Limit, LL (%)	68
Plastic Limit, PL (%)	23
Plasticity Index, PI (%)	45

Entered by:_____ Reviewed:_____

(ASTM D4318)

Project: Summit/Horizon Neighborhood No: 01628-013 Location: Eden, UT

Boring No.: TP-2 Sample: Depth: 5.0' Description: Reddish brown fat clay

Date: 7/19/2016 By: BRR

> Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2			
Wet Soil + Tare (g)	28.65	27.95			
Dry Soil + Tare (g)	27.50	26.83			
Water Loss (g)	1.15	1.12			
Tare (g)	22.15	21.69			
Dry Soil (g)	5.35	5.14			
Water Content, w (%)	21.50	21.79			
Liquid Limit					
Determination No	1	2	3		
Number of Drops, N	35	26	19		
Wet Soil + Tare (g)	30.02	29.04	29.35		
Dry Soil + Tare (g)	27.10	26.44	26.54		
Water Loss (g)	2.92	2.60	2.81		
Tare (g)	22.10	22.07	22.04		
Dry Soil (g)	5.00	4.37	4.50		
Water Content, w (%)	58.40	59.50	62.44		
One-Point LL (%)		60			

Liquid Limit, LL (%)	60
Plastic Limit, PL (%)	22
Plasticity Index, PI (%)	38

Entered by:_____ Reviewed:_____

(ASTM D4318)

Project: Summit/Horizon Neighborhood No: 01628-013 Location: Eden, UT

Boring No.: TP-3 Sample: Depth: 7.0' Description: Reddish brown silty clay

Date: 7/19/2016 By: BRR

> Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2			
Wet Soil + Tare (g)	29.45	28.92			
Dry Soil + Tare (g)	28.38	27.92			
Water Loss (g)	1.07	1.00			
Tare (g)	22.26	21.93			
Dry Soil (g)	6.12	5.99			
Water Content, w (%)	17.48	16.69			
Liquid Limit					
Determination No	1	2	3		
Number of Drops, N	30	25	17		
Wet Soil + Tare (g)	31.61	29.90	30.68		
Dry Soil + Tare (g)	29.87	28.37	28.95		
Water Loss (g)	1.74	1.53	1.73		
Tare (g)	22.00	22.07	22.17		
Dry Soil (g)	7.87	6.30	6.78		
Water Content, w (%)	22.11	24.29	25.52		
One-Point LL (%)	23	24			

Liquid Limit, LL (%) 24 Plastic Limit, PL (%) 17 Plasticity Index, PI (%) 7

Entered by:_____ Reviewed:_____

Z:\PROJECTS\01628_Powder_Mountain\013_Summit_Horizon\[ALv1.xlsm]3

(ASTM D4318)

Project: Summit/Horizon Neighborhood No: 01628-013 Location: Eden, UT

Boring No.: TP-4 Sample: Depth: 7.0' Description: Light brown lean clay

Date: 7/19/2016 By: BRR

> Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2				
Wet Soil + Tare (g)	28.22	28.48				
Dry Soil + Tare (g)	27.14	27.32				
Water Loss (g)	1.08	1.16				
Tare (g)	22.11	22.00				
Dry Soil (g)	5.03	5.32				
Water Content, w (%)	21.47	21.80				
Liquid Limit						
Determination No	1	2	3			
Number of Drops, N	35	27	19			
Wet Soil + Tare (g)	31.51	28.24	29.86			
Dry Soil + Tare (g)	28.56	26.00	27.20			
Water Loss (g)	2.95	2.24	2.66			
Tare (g)	22.22	21.34	21.93			
Dry Soil (g)	6.34	4.66	5.27			
Water Content, w (%)	46.53	48.07	50.47			
One-Point LL (%)		49				

Liquid Limit, LL (%)	49
Plastic Limit, PL (%)	22
Plasticity Index, PI (%)	27

Entered by:_____ Reviewed:_____

(ASTM D4318)

Project: Summit/Horizon Neighborhood No: 01628-013 Location: Eden, UT

Boring No.: TP-5 Sample: Depth: 2.0' Description: Brown lean clay

Date: 7/19/2016 By: BRR

> Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2				
Wet Soil + Tare (g)	27.80	29.30				
Dry Soil + Tare (g)	26.51	27.85				
Water Loss (g)	1.29	1.45				
Tare (g)	21.54	22.29				
Dry Soil (g)	4.97	5.56				
Water Content, w (%)	25.96	26.08				
Liquid Limit						
Determination No	1	2	3			
Number of Drops, N	30	22	16			
Wet Soil + Tare (g)	30.75	31.15	30.18			
Dry Soil + Tare (g)	28.27	28.46	27.71			
Water Loss (g)	2.48	2.69	2.47			
Tare (g)	22.25	22.08	21.94			
Dry Soil (g)	6.02	6.38	5.77			
Water Content, w (%)	41.20	42.16	42.81			
One-Point LL (%)	42	42				

Liquid Limit, LL (%)	42
Plastic Limit, PL (%)	26
Plasticity Index, PI (%)	16

Entered by:_____ Reviewed:_____

 $Z:\PROJECTS\01628_Powder_Mountain\013_Summit_Horizon\[ALv1.xlsm]5$

(ASTM D4318)

Project: Summit/Horizon Neighborhood No: 01628-013 Location: Eden, UT

Boring No.: TP-7 Sample: Depth: 2.0' Description: Reddish brown lean clay

Date: 7/19/2016 By: BRR

> Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2			
Wet Soil + Tare (g)	27.95	28.39			
Dry Soil + Tare (g)	26.99	27.38			
Water Loss (g)	0.96	1.01			
Tare (g)	21.92	22.02			
Dry Soil (g)	5.07	5.36			
Water Content, w (%)	18.93	18.84			
Liquid Limit					
Determination No	1	2	3		
Number of Drops, N	33	25	16		
Wet Soil + Tare (g)	31.63	28.75	29.41		
Dry Soil + Tare (g)	28.93	26.75	27.19		
Water Loss (g)	2.70	2.00	2.22		
Tare (g)	21.95	21.75	21.93		
Dry Soil (g)	6.98	5.00	5.26		
Water Content, w (%)	38.68	40.00	42.21		
One-Point LL (%)		40			

Liquid Limit, LL (%)	40
Plastic Limit, PL (%)	19
Plasticity Index, PI (%)	21

Entered by:_____ Reviewed:_____

(ASTM D4318)

Project: Summit/Horizon Neighborhood No: 01628-013 Location: Eden, UT

Boring No.: TP-8 Sample: Depth: 8.0' Description: Light brown silt

Date: 7/19/2016 By: BRR

Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2			
Wet Soil + Tare (g)	29.69	32.08			
Dry Soil + Tare (g)	28.60	30.70			
Water Loss (g)	1.09	1.38			
Tare (g)	21.95	22.11			
Dry Soil (g)	6.65	8.59			
Water Content, w (%)	16.39	16.07			
Liquid Limit					
Determination No	1	2	3		
Number of Drops, N	28	21	16		
Wet Soil + Tare (g)	33.30	31.53	31.87		
Dry Soil + Tare (g)	31.53	30.04	30.24		
Water Loss (g)	1.77	1.49	1.63		
Tare (g)	21.99	22.23	22.02		
Dry Soil (g)	9.54	7.81	8.22		
Water Content, w (%)	18.55	19.08	19.83		
One-Point LL (%)	19	19			

Liquid Limit, LL (%)	19
Plastic Limit, PL (%)	16
Plasticity Index, PI (%)	3

Entered by:_____ Reviewed:_____

Particle-Si	ze Distribi	ition (Gra	dation) of	Solis Using Siev	<u>e Analysis</u>		
(ASTM D0915)	Summit/I	Jonizon N	aighbarha	ad	Doming No .	TD 1	© IGES 2004, 2016
Project:		10FIZOR IN	eignborno	oa	Boring No.:	IP-1	
No:	01628-01.	3			Sample:	0.01	
Location:	Eden, UT				Depth:	8.0'	
Date:	7/19/2016				Description:	Reddish brow	n clayey gravel
By:	BSS/IM					with sand	
	~			Water content	<u>data</u> C.F.(+3/4")	S.F.(-3/4")	
	Split:	Yes		Moist soil + tare	(g): 5698.50	2416.73	
	Split sieve:	3/4 Moist	Dry	Dry soll + tare	(g): 5002.80	2331.83	
Total sar	nnle wt (g).	26939 70	26161 31	Water content ((g). 330.00	408.08	
+3/4" Coarse	fraction (g).	10192.60	10122.11	water content ((70). 0.7		
-3/4" Split	fraction (g):	2008.05	1923.17				
1							
S	plit fraction:	0.613					
~.	Accum.	Grain Size	Percent				
Sieve	Wt. Ret. (g)	(mm)	Finer				
0 6"	_	200	-				
4"	_	100	100.0				
3"	3274.10	75	87.5				
1.5"	7527.97	37.5	71.2				
3/4"	10122.10	19	61.3	←Split			
3/8"	210.17	9.5	54.6				
No.4	363.96	4.75	49.7				
No.10 No.20	514.57	2 0.85	44.9				
No.20	804 47	0.85	40.8				
No.60	992.49	0.25	29.7				
No.100	1136.58	0.15	25.1				
No.140	1205.69	0.106	22.9				
No.200	1287.23	0.075	20.3				
3 i	in 3/4	in N	o.4 No.10	No.40	No.200		
						Gray	vel (%)• 50 3
90							nd (%): 29.4
						Fin	nes (%): 20.3
80	\mathbf{N}				i		
70							
a function of the second secon							
60 K							
ا ا م							
ja ⁵⁰							
£ 40							
Gent							
5 30 			1				
20							
10					i		
		10					
100		10		1	0.1	0.01	
Entered by:			Gra	in size (mm)			
ceviewed:					Z:\PROJECTS\01	1628_Powder_Mountain\013	3_Summit_Horizon\[GSDv2.xlsx]

Distribution (Cradation) of Soils Using Siova Analysis

Particle-Si	ze Distribı	<u>ution (Gra</u>	dation) of	<u>f Soils Usir</u>	ng Sieve A	<u>nalysis</u>		© IGES 2004 2016
Project:	Summit/H	Horizon No	eighborho	ood	Bo	ring No.:	TP-3	0.020200,2000
No:	01628-01	3	0			Sample:		
Location:	Eden. UT					Depth:	7.0'	
Date:	7/19/2016				De	escription:	Reddish	brown silty clavey
Bv:	BSS/IM				20	senption.	oravel w	ith sand
	2227111			Water of	content data	C.F.(+3/4")	S.F.(-3/4")
	Split:	Yes		Moist soi	l + tare (g):	2504.16	1911.57	
	Split sieve:	3/4"		Dry soi	l + tare (g):	2464.49	1801.25	
TT (1	1 ()	Moist	Dry	XX7 /	Tare (g):	711.53	316.54	
Total sa	mple wt. (g):	4562.64	4317.59	Water c	content (%):	2.3	7.4	
+3/4" Coarse	fraction (g):	1499.35	1466.17					
-3/4 Spin	maction (g).	1393.03	1404./1					
S	plit fraction:	0.660						
	Accum	Grain Size	Percent					
Sieve	Wt. Ret. (g)	(mm)	Finer					
8"	-	200	-					
6"	-	150	-					
4"	-	100	-					
3"	-	75 27.5	100.0					
1.5"	818.08	37.5	81.1 66.0	 Split 				
3/8"	235 32	95	55.6	~-spiit				
No.4	383.61	4.75	49.0					
No.10	520.45	2	42.9					
No.20	626.71	0.85	38.2					
No.40	743.17	0.425	33.0					
No.60	865.96	0.25	27.5					
No.100	962.05	0.15	23.2					
No.200	1062.31	0.100	18.8					
31	in 3/4	in No	p.4 No.10	No.4	0 N	lo.200		
			I					Gravel (%). 51 ()
90	\mathbf{N}					1		Sand (%): 30.2
								Fines (%): 18.8
80	R R							
70			I			I		
ght of the second secon								
60 ki								
ĥ			Í			i		
Ja 50								
<u><u><u></u></u> 40 <u></u></u>								
Gen			i i			i		
J 30								
20			1					
			i			T		
10								
100		10		1	0.	1	0.0	1
Entered by:			Gra	uin size (mm)				
Reviewed:						Z:\PROJECTS\01	628_Powder_Mou	untain\013_Summit_Horizon\[GSDv2.xlsx]2

o Distribution (Crodation) of Sails Using Sieve Analysis ntiala Siz D

Particle-SI	ize Distribi	ition (Gra	dation) of	Solis Using Sieve	<u>Analysis</u>		
	C:4/T	Torinon N	at a h-h-a mh-a		Domin a No	TD 7	© IGES 2004, 2016
Project:	Summit/F	HORIZON IN	eignborno	000	Boring No.:	IP-/	
No:	01628-01.	3			Sample:		
Location:	Eden, UT				Depth:	2.0'	
Date:	7/18/2016				Description:	Reddish	brown clayey gravel
By:	BSS/IM					with sand	b
	~			Water content da	<u>ata</u> C.F.(+3/4")) S.F.(-3/4"))
	Split:	Yes		Moist soil + tare (g): 1130.55	1737.24	
	Spint sieve:	3/4 Moist	Dry	Dry soll + tare ($\frac{1}{2}$	g_{1} : 1110.09	333 12	
Total sa	mple wt (g).	3728 40	3330.50	Water content (%	$(5)^{10.90}$	15.2	
+3/4" Coarse	fraction (g):	819.59	805.13			1012	
-3/4" Split	fraction (g):	1404.12	1219.03				
-							
S	plit fraction:	0.758					
	•						
	Accum.	Grain Size	Percent				
Sieve	Wt. Ret. (g)	(mm)	Finer				
o 6"		200	-				
4"		100	_				
3"	-	75	100.0				
1.5"	355.52	37.5	89.3				
3/4"	805.13	19	75.8	←Split			
3/8"	114.33	9.5	68.7				
No.4	203.50	4.75	63.2				
No.10	279.94	2	58.4 54.7				
No.20	339.33 409.88	0.85	50.3				
No.60	487.68	0.25	45.5				
No.100	550.97	0.15	41.6				
No.140	583.00	0.106	39.6				
No.200	620.89	0.075	37.2				
3	in 3/4	in N	o.4 No.10	No.40	No.200		
100			1				$C_{\text{max}}(0/), 26.9$
					I		Gravel (%): 30.8 Sand (%): 26.0
90							Fines (%): 37.2
80							
			İ		İ		
ta ⁷⁰							
60 E							
N N							
J 50			1		1		
ů 40							
⁴⁰							
3 0	l						
A	!						
20							
10							
	i		i				
0 1							
100		10		1	0.1	0.01	1
Entered by:			Gra	in size (mm)			
Reviewed:					Z:\PROJECTS\0	1628_Powder_Mou	ntain\013_Summit_Horizon\[GSDv2.xlsx]5

Partials Size Distribution (Cradation) of Soils Using Size Analysis

AICEC'

Project: Summit/Horizon Neighborhood No: 01628-0013 Location: Eden, UT Date: 7/18/2016 By: NB/IM

	Boring No.	TP-1	TP-2			
ıfo.	Sample		2			
e In	Depth	13.0'	5.0'			
ldm	Split	No	No			
Sa	Split Sieve*					
	Method	В	В			
	Specimen soak time (min)	390	420			
	Moist total sample wt. (g)	137.40	276.80			
	Moist coarse fraction (g)					
	Moist split fraction + tare (g)					
	Split fraction tare (g)					
Dry split fraction (g)						
Dry retained No. 200 + tare (g)		125.27	163.39			
Wash tare (g)		120.72	124.48			
	No. 200 Dry wt. retained (g)	4.55	38.91			
	Split sieve* Dry wt. retained (g)					
	Dry total sample wt. (g)	106.65	219.55			
e E	Moist soil + tare (g)			 	 	
arso	Dry soil + tare (g)			 	 	
Co Fra	Tare (g)			 	 	
	Water content (%)					
u	Moist soil + tare (g)	258.12	401.28	 	 	
plit ctio	Dry soil + tare (g)	227.37	344.03	 	 	
S Fra	Tare (g)	120.72	124.48	 	 	
	Water content (%)	28.83	26.08			
Pe	rcent passing split sieve* (%)					
Perce	ent passing No. 200 sieve (%)	95.7	82.3			

Direct Shear Test for Soils Under Dr	ained C					IGES [®]	
(ASTM D3080)						© IGES	5 2009, 2016
Project: Summit/Horizon Neighbor	hood		Bo	ring No.:	TP-2		
No: 01628-013				Sample	2		
Location: Eden, UT				Denth:	2 5.0'		
Date: 7/18/2016			Sample D	escription:	Reddish br	own clav wi	ith gravel
Bv: NB			Sumpto 2	mple type:	Undisturbed	l-trimmed fro	m thin-wall
Test type: Inundated				imple type.	Chaistaroot	. uninica ne	
Lateral displacement (in): 0.3							
Shear rate (in /min): 0,0005							
Specific gravity, Gs: 2.70	Assumed						
	Sam	ple 1	Sam	ole 2	Sam	ple 3	
Nominal normal stress (psf)	4(000	2000		1(
Peak shear stress (psf)	31	169	1425		1()32	
Lateral displacement at peak (in)	0.	622	0.488		0.4	499	
Load Duration (min)	8	51	861		8	73	
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear	
Sample height (in)	1.0000	0.9288	1.0000	0.9284	1.0000	0.9715	
Sample diameter (in)	2.416	2.416	2.416	2.416	2.416	2.416	
Wt. rings + wet soil (g)	177.48	179.48	178.28	180.29	182.24	186.62	
Wt. rings (g)	42.08	42.08	42.98	42.98	45.20	45.20	
Wet soil + tare (g)	401.28		401.28		401.28		
Dry soil + tare (g)	344.03		344.03		344.03		
Tare (g)	124.48		124.48		124.48		
Water content (%)	26.1	27.9	26.1	28.0	26.1	30.1	
Dry unit weight (pcf)	89.2	96.0	89.2	96.0	90.3	92.9	
Void ratio, e, for assumed Gs	assumed Gs 0.89 0.75			0.75	0.87	0.81	
Saturation (%)*	79.1	100.0	81.3	100.0			
φ' (deg) 36	of 3 samples	Initial	Pre-shear				
<u>c' (psf) 160</u>	content (%)	26.1	28.7				
*Pre-shear saturation set to 100% for phase calculations		Dry unit	weight (pcf)	89.6	95.0		

Comments:

Test specimens were sheared to the maximum available horizontal displacement.

Entered by:_____ Reviewed:_____

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

Project: Summit/Horizon Neighborhood

No: 01628-013

Location: Eden, UT

Boring No.: TP-2

Sample: 2 Depth: 5.0'

	normai sucess i te	JOU psi
Lateral Nominal Normal Lateral Nominal Normal Later	al Nominal	Normal
Displacement Shear Stress Displacement Displacement Shear Stress Displacement Displace	ment Shear Stress	Displacement
(in.) (psf) (in.) (in.) (psf) (in.) (in.)	(psf)	(in.)
0.002 232 0.000 0.002 67 -0.001 0.00	2 84	0.000
0.005 464 -0.001 0.005 119 -0.002 0.00	5 100	0.000
0.007 608 -0.002 0.007 235 -0.003 0.00	7 179	-0.001
0.010 709 -0.003 0.010 287 -0.004 0.01) 209	-0.001
0.012 807 -0.003 0.012 347 -0.005 0.01	2 236	-0.002
0.017 961 -0.004 0.017 443 -0.006 0.01	7 292	-0.003
0.022 1090 -0.006 0.022 512 -0.008 0.02	2 348	-0.004
0.027 1196 -0.008 0.027 573 -0.010 0.02	7 401	-0.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 437	-0.006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 466	-0.007
0.042 14/4 -0.011 0.042 716 -0.014 0.047	2 493	-0.008
0.04/ 1512 -0.013 0.04/ /58 -0.015 0.04	7 511	-0.009
0.052 1621 -0.013 0.052 /9/ -0.016 0.05 0.057 1688 0.014 0.057 924 0.017 0.05	2 534	-0.010
0.057 1688 -0.014 0.057 834 -0.017 0.05	7 549	-0.010
0.062 $1/4/$ -0.015 0.062 863 $-0.01/$ 0.060	2 508	-0.011
0.007 1801 -0.010 0.007 891 -0.018 0.00	7 581	-0.012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 390 7 610	-0.013
0.077 1902 -0.019 0.077 946 -0.020 0.07	, 010) 618	-0.015
0.002 1755 -0.020 0.002 771 -0.020 0.08	7 620	-0.014
0.007 1777 -0.021 0.007 774 -0.021 0.00 0.092 2020 -0.021 0.092 1019 -0.022 0.09	2 639	-0.014
0.021 0.021 0.021 0.022 0.02	7 648	-0.015
0.077 2004 -0.021 0.077 1056 -0.022 0.07	2 658	-0.015
0.102 2032 0.022 0.102 1035 0.022 0.10	7 668	-0.016
0.107 2123 0.023 0.107 1071 0.023 0.1100.112 2154 -0.024 0.112 1093 -0.024 0.11	2 676	-0.017
0.112 2181 0.021 0.112 1055 0.021 0.111 0.112 0.024 0.111	7 685	-0.017
0.122 2203 -0.025 0.122 1126 -0.024 0.12	2 693	-0.018
0.127 2234 -0.026 0.127 1140 -0.024 0.12	7 699	-0.018
0.132 2257 -0.026 0.132 1151 -0.025 0.13	2 704	-0.019
0.137 2275 -0.026 0.137 1164 -0.026 0.13	7 711	-0.019
0.142 2291 -0.027 0.142 1178 -0.026 0.14	2 718	-0.020
0.147 2306 -0.027 0.147 1186 -0.026 0.14	7 724	-0.020
0.152 2322 -0.028 0.152 1200 -0.027 0.15	2 727	-0.021
0.157 2337 -0.029 0.157 1210 -0.027 0.15	7 732	-0.021
0.162 2350 -0.029 0.162 1220 -0.028 0.16	2 739	-0.021
0.167 2360 -0.030 0.167 1230 -0.028 0.16	7 744	-0.021
0.172 2371 -0.030 0.172 1238 -0.028 0.17	2 745	-0.021
0.177 2386 -0.031 0.177 1250 -0.029 0.17	7 751	-0.021
0.182 2391 -0.031 0.182 1255 -0.029 0.18	2 756	-0.022
0.187 2401 -0.032 0.187 1261 -0.029 0.18	7 761	-0.022
0.192 2412 -0.032 0.192 1270 -0.029 0.192	2 763	-0.022
0.197 2422 -0.033 0.197 1276 -0.029 0.19	7 769	-0.022
0.202 2432 -0.033 0.202 1281 -0.030 0.20	2 776	-0.023
0.207 2435 -0.034 0.207 1290 -0.030 0.20	/ 780	-0.023
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 783	-0.023
0.217 2443 -0.034 0.217 1300 -0.030 0.217	/ 789	-0.023
0.222 2450 -0.035 0.222 1303 -0.031 0.222 0.227 1210 0.021 0.22	2 /92 7 700	-0.024
0.227 2455 -0.030 0.227 1310 -0.031 0.22 0.222 1216 0.021 0.22	1 199 2 005	-0.024
0.232 2405 -0.050 0.252 1510 -0.051 0.25 0.237 2466 0.037 0.227 1221 0.021 0.22	2 805 7 912	-0.024
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, 013 2 825	-0.024
0.242 2401 -0.037 0.242 1524 -0.051 $0.2420.247$ 2486 -0.037 0.247 1321 0.022 0.24	2 023 7 831	-0.024
0.277 2400 -0.037 0.247 1331 -0.032 0.24 0.252 2499 -0.038 0.252 1322 0.022 0.25	, 031) 827	-0.024
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 842	-0.024
0.257 2477 -0.030 0.257 1341 -0.032 $0.250.262$ 2463 -0.039 0.262 1345 -0.032 0.26	, 042) <u>8</u> 47	-0.024
0.202 2476 -0.040 0.267 1346 -0.032 0.20	7 853	-0.025
0.237 2476 -0.041 0.272 1348 -0.033 0.27	2 854	-0.025
0.277 2476 -0.041 0.277 1354 -0.033 0.27	7 858	-0.025
0.217 0.282 2484 -0.041 0.282 1354 -0.033 0.28	2 864	-0.025
0.287 2486 -0.041 0.287 1355 -0.034 0.28	7 866	-0.025
0.292 2486 -0.042 0.292 1355 -0.034 0.29	2 869	-0.026
	7 873	-0.026
0.477 = 2474 = -0.043 = 0.277 = 1.0.037 = 0.073	0,0	0.020
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 878	-0.026
0.27 2494 -0.043 0.297 1353 -0.035 0.29 0.302 2502 -0.043 0.302 1358 -0.035 0.30 0.307 2510 -0.044 0.307 1359 -0.035 0.30	2 878 7 879	-0.026

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

Project: Summit/Horizon Neighborhood

No: 01628-013

Location: Eden, UT

Boring No.: TP-2

Sample: 2 Depth: 5.0'

Nominal norn	nal stress = 40	00 psf	Nominal norn	hal stress = 20	00 psf	Nominal normal stress = 1000 psf		
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
0.317	2520	-0.045	0.317	1353	-0.036	0.317	880	-0.027
0.322	2530	-0.046	0.322	1343	-0.036	0.322	881	-0.027
0.327	2538	-0.046	0.327	1340	-0.036	0.327	888	-0.027
0.332	2551	-0.047	0.332	1330	-0.030	0.332	895	-0.027
0.342	2561	-0.048	0.342	1327	-0.037	0.342	898	-0.027
0.347	2574	-0.048	0.347	1330	-0.038	0.347	900	-0.028
0.352	2587	-0.049	0.352	1325	-0.038	0.352	905	-0.028
0.357	2602	-0.050	0.357	1325	-0.038	0.357	909	-0.028
0.362	2618	-0.051	0.362	1325	-0.039	0.362	911	-0.029
0.367	2631	-0.051	0.367	1328	-0.039	0.367	913	-0.029
0.372	2644	-0.052	0.372	1328	-0.040	0.372	915	-0.029
0.377	2002	-0.053	0.377	1331	-0.040	0.377	916	-0.029
0.382	2672	-0.055	0.382	1331	-0.040	0.382	922	-0.030
0.392	2695	-0.055	0.392	1334	-0.041	0.392	925	-0.030
0.397	2711	-0.055	0.397	1341	-0.041	0.397	932	-0.031
0.402	2721	-0.056	0.402	1345	-0.041	0.402	938	-0.031
0.407	2731	-0.057	0.407	1350	-0.042	0.407	942	-0.031
0.412	2739	-0.058	0.412	1350	-0.043	0.412	945	-0.031
0.417	2760	-0.059	0.417	1355	-0.043	0.417	950	-0.032
0.422	2775	-0.060	0.422	1359	-0.044	0.422	953	-0.032
0.427	2793	-0.061	0.427	1361	-0.044	0.427	958	-0.032
0.432	2803	-0.061	0.432	1367	-0.045	0.432	957	-0.033
0.437	2821	-0.062	0.437	1372	-0.043	0.437	908	-0.033
0.442	2870	-0.064	0.442	1385	-0.045	0.447	978	-0.033
0.452	2891	-0.064	0.452	1388	-0.046	0.452	988	-0.034
0.457	2906	-0.065	0.457	1390	-0.046	0.457	992	-0.034
0.462	2922	-0.066	0.462	1400	-0.047	0.462	998	-0.035
0.467	2937	-0.066	0.467	1404	-0.047	0.467	1002	-0.035
0.472	2950	-0.067	0.472	1406	-0.048	0.472	1005	-0.036
0.477	2966	-0.067	0.477	1410	-0.048	0.477	1010	-0.036
0.482	2979	-0.068	0.482	1415	-0.049	0.482	1017	-0.036
0.487	2991	-0.069	0.487	1424	-0.050	0.487	1023	-0.036
0.497	3012	-0.070	0.100	1125	0.050	0.497	1029	-0.037
0.502	3020	-0.071				0.499	1032	-0.037
0.507	3022	-0.071					1	
0.512	3030	-0.072						
0.517	3040	-0.073						
0.522	3046	-0.073						
0.527	3056	-0.074						
0.532	3074	-0.074						
0.537	3082	-0.075						
0.547	3084	-0.076						
0.552	3095	-0.077						
0.557	3097	-0.078						
0.562	3105	-0.079						
0.567	3118	-0.080						
0.572	3123	-0.080						
0.577	3131	-0.081						
0.582	3138	-0.081						
0.587	3151	-0.082						
0.597	3146	-0.084						
0.602	3151	-0.084						
0.607	3156	-0.085						
0.612	3162	-0.086						
0.617	3164	-0.087						
0.622	3169	-0.087						

 \diamond

0.060

0.065

0.070

0.075

0.0

5.0

10.0

15.0

time (min^{1/2})

20.0

25.0

30.0

Direct Shear Test for Soils Under Dr	ained Co	onditions						
(ASTM D3080)			_			© IGES	2009, 2016	
Project: Summit/Horizon Neighbor	hood		Bor	ring No.:	TP-12			
No: 01628-013				Sample:				
Location: Eden, UT			Depth: 6.0'					
Date: 7/19/2016			Sample D	escription:	Reddish br	own clay wi	th sand	
By: JDF			Sa	mple type:	Undisturbed	l-trimmed fro	m thin-wall	
Test type: Inundated Lateral displacement (in.): 0.3 Shear rate (in./min): 0.0009 Specific gravity, Gs: 2.70	Assumed							
	Sam	ple 1	Samp	ole 2	Sam	ple 3		
Nominal normal stress (psf)	40	000	200	00	10	000		
Peak shear stress (psf)	38	386	187	71	9	83		
Lateral displacement at peak (in)	0.6	534	0.5	0.501		0.512		
Load Duration (min)	1	30	15	6	1	74		
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear		
Sample height (in)	1.0000	0.9626	1.0000	0.9/10	1.0000	0.9821		
Wt_rings + wet soil (g)	2.410	2.410	2.410	2.410	2.410	2.410		
Wt. rings $+$ wet soli (g) Wt. rings (g)	44 88	44 88	104.30 42.47	42 47	45 13	45 13		
Wet soil + tare (g)	435.27	11.00	435.27	12:17	435.27	15.15		
Dry soil + tare (g)	375.12		375.12		375.12			
Tare (g)	123.23		123.23		123.23			
Water content (%)	23.9	25.8	23.9	26.6	23.9	26.4		
Dry unit weight (pcf)	95.6	99.2	95.3	98.1	96.7	98.4		
Void ratio, e, for assumed Gs	0.76	0.70	0.77	0.72	0.74	0.71		
Saturation (%)*	84.4	100.0	83.8	100.0	86.8	100.0		
$\phi'(\text{deg}) = 44$		Average o	of 3 samples	Initial	Pre-shear			
*Pro shear saturation sat to 100% for phase calculations		Water	content (%)	23.9	26.3			
· rie-shear saturation set to 100% for phase calculations	Dry unit	weight (pcf)	93.9	98.0	l			
4000 3500 3000 2500		5	000	00 psf □2000	psf ∆1000 psf			

Comments:

Test specimens were sheared to the maximum available horizontal displacement.

Entered by:_____ Reviewed:_____

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

Project: Summit/Horizon Neighborhood

No: 01628-013

Location: Eden, UT

Boring No.: TP-12 Sample:

Depth: 6.0'

Lateral Nomial Nomial Nomial Nomial Nomial Nomial Nomial Displacement Supersement Displacement	Nominal norn	hal stress = 40	00 psf	Nominal norn	nal stress = 20	00 psf	Nominal norn	Nominal normal stress = 100		
Displacement Displacement Displacement Displacement Displacement Displacement (m) <	Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal	
	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	
0.002 216 0.000 0.002 239 0.000 0.002 104 -0.001 0.007 533 0.000 0.007 582 -0.001 0.007 224 -0.001 0.012 928 -0.001 0.012 734 -0.002 0.012 333 -0.002 0.017 928 -0.001 0.017 925 -0.003 0.022 461 -0.003 0.021 1394 -0.003 0.022 1480 -0.003 0.022 461 -0.003 0.032 1399 -0.005 0.032 1390 -0.004 0.032 666 -0.004 0.042 2020 -0.007 0.047 1520 -0.005 0.047 744 -0.004 0.052 2333 -0.007 0.052 1557 -0.006 0.057 778 -0.004 0.067 1352 -0.006 0.057 1574 -0.006 0.067 833 -0.004 0.067 <td>(in.)</td> <td>(psf)</td> <td>(in.)</td> <td>(in.)</td> <td>(psf)</td> <td>(in.)</td> <td>(in.)</td> <td>(psf)</td> <td>(in.)</td>	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	
0.005 428 0.000 0.005 402 -0.001 0.007 176 -0.001 0.010 768 -0.001 0.010 668 -0.002 0.011 273 -0.002 0.017 1157 -0.002 0.017 389 -0.003 0.012 784 -0.003 0.022 1380 -0.003 0.022 543 -0.004 0.022 1569 -0.004 0.027 1590 -0.003 0.027 543 -0.004 0.037 1886 -0.006 0.032 1390 -0.003 0.042 708 -0.004 0.047 2123 -0.007 0.042 1504 -0.005 0.047 774 -0.004 0.047 2133 -0.000 0.057 1571 -0.006 0.052 773 -0.004 0.067 1594 -0.006 0.067 813 -0.004 0.067 1594 -0.006 0.077 814 -0.003 0.072	0.002	216	0.000	0.002	239	0.000	0.002	104	-0.001	
0.007 533 0.000 0.007 582 -0.001 0.010 224 -0.001 0.012 928 -0.001 0.012 741 -0.002 0.012 303 -0.002 0.017 928 -0.003 0.022 1080 +0.003 0.022 461 -0.003 0.027 1594 -0.004 0.027 1190 +0.003 0.022 666 -0.004 0.037 1569 -0.006 0.037 1390 +0.004 0.027 783 -0.004 0.042 1739 -0.006 0.037 1390 +0.004 0.032 666 -0.004 0.047 1233 -0.007 0.047 1520 +0.006 0.037 798 -0.004 0.052 2332 -0.009 0.062 1534 +0.006 0.067 833 -0.004 0.067 1392 +0.006 0.077 843 -0.003 0.067 833 -0.004 0.072	0.005	428	0.000	0.005	402	-0.001	0.005	176	-0.001	
0.010 768 -0.001 0.010 068 -0.002 0.0112 233 -0.002 0.017 1157 -0.002 0.017 255 -0.003 0.012 543 -0.003 0.022 1569 -0.004 0.022 1600 0.022 543 -0.004 0.037 1569 -0.005 0.032 1500 0.002 663 -0.004 0.037 1586 -0.006 0.037 1520 -0.005 0.042 708 -0.004 0.047 2123 -0.007 0.042 1520 -0.006 0.052 773 -0.004 0.057 2232 -0.009 0.067 1592 -0.006 0.067 833 -0.004 0.067 2336 -0.009 0.067 1592 -0.006 0.077 841 -0.004 0.072 2440 -0.010 0.077 1592 -0.006 0.077 843 -0.003 0.082 2525 -0.	0.007	533	0.000	0.007	582	-0.001	0.007	224	-0.001	
0.012 92.8 -0.001 0.012 141 -0.002 0.012 389 -0.003 0.022 1394 -0.003 0.022 461 -0.003 0.022 1394 -0.004 0.022 160 -0.003 0.022 461 -0.004 0.032 1739 -0.006 0.032 1300 -0.006 0.032 663 -0.004 0.042 2020 -0.007 0.042 1460 -0.005 0.042 744 -0.004 0.042 2020 -0.007 0.042 1557 -0.006 0.052 773 -0.004 0.052 2213 -0.007 0.052 1557 -0.006 0.067 843 -0.004 0.062 2332 -0.009 0.062 1584 -0.006 0.077 843 -0.004 0.072 2440 -0.011 0.082 1598 -0.006 0.077 843 -0.003 0.082 2652 -0.012	0.010	768	-0.001	0.010	668	-0.002	0.010	273	-0.002	
0.017 1134 -0.003 0.017 363 -0.013 0.017 364 -0.003 0.027 1569 -0.004 0.027 1190 -0.003 0.027 543 -0.004 0.032 1379 -0.005 0.037 1390 -0.005 0.037 663 -0.004 0.042 200 -0.007 0.047 1320 -0.005 0.047 744 -0.004 0.057 2133 -0.007 0.047 1520 -0.006 0.067 773 -0.004 0.067 2352 -0.009 0.067 1592 -0.006 0.067 833 -0.004 0.077 2440 -0.010 0.077 1592 -0.006 0.077 843 -0.003 0.087 2566 -0.012 0.087 1602 -0.007 0.087 845 -0.003 0.087 2662 +0.012 0.087 1604 -0.007 0.097 844 -0.003	0.012	928	-0.001	0.012	/41	-0.002	0.012	303	-0.002	
0.027 1569 -0.004 0.027 1490 -0.003 0.027 543 -0.004 0.037 1806 -0.005 0.037 1399 -0.005 0.037 663 -0.004 0.042 2020 -0.007 0.042 1460 -0.005 0.042 784 -0.004 0.042 2123 -0.007 0.042 1557 -0.006 0.052 773 -0.004 0.052 2325 -0.008 0.057 1571 -0.006 0.052 833 -0.004 0.062 2332 -0.009 0.062 1584 -0.006 0.077 841 -0.004 0.072 2440 -0.010 0.072 1592 -0.006 0.077 843 -0.003 0.082 2525 -0.011 0.082 1598 -0.007 0.082 843 -0.003 0.087 2661 -0.012 0.092 1604 -0.007 0.997 845 -0.003 <t< td=""><td>0.017</td><td>1394</td><td>-0.002</td><td>0.017</td><td>925</td><td>-0.003</td><td>0.017</td><td>369 461</td><td>-0.003</td></t<>	0.017	1394	-0.002	0.017	925	-0.003	0.017	369 461	-0.003	
0.032 1729 -0.005 0.037 1390 -0.004 0.032 r065 -0.004 0.042 2020 -0.007 0.047 1460 -0.005 0.047 768 -0.004 0.042 2020 -0.007 0.047 1520 -0.005 0.047 773 -0.004 0.052 1557 -0.006 0.057 773 -0.004 0.067 2332 -0.008 0.067 1592 -0.006 0.067 833 -0.004 0.077 2440 -0.010 0.077 1592 -0.006 0.077 843 -0.003 0.087 2566 -0.012 0.087 1602 -0.007 0.087 845 -0.003 0.097 2661 -0.012 0.097 1607 -0.007 0.997 845 -0.003 0.102 2662 -0.013 0.107 1633 -0.008 0.117 842 -0.003 0.102 2662 -0.013 <	0.022	1569	-0.003	0.022	1190	-0.003	0.022	543	-0.003	
0.037 1886 -0.006 0.037 663 -0.004 0.042 2020 -0.007 0.047 1520 -0.005 0.047 743 -0.004 0.052 2213 -0.007 0.047 1520 -0.006 0.052 773 -0.004 0.052 2213 -0.007 0.052 1571 -0.006 0.062 813 -0.004 0.062 2332 -0.009 0.062 1584 -0.006 0.067 833 -0.004 0.072 2440 -0.011 0.077 1594 -0.006 0.077 843 -0.003 0.082 2525 -0.011 0.082 1598 -0.007 0.082 845 -0.003 0.082 2662 -0.012 0.092 1604 -0.007 0.092 845 -0.003 0.097 2663 -0.013 0.107 1633 -0.008 0.102 842 -0.003 0.102 2662 -0.013 <t< td=""><td>0.032</td><td>1739</td><td>-0.005</td><td>0.032</td><td>1300</td><td>-0.004</td><td>0.032</td><td>606</td><td>-0.004</td></t<>	0.032	1739	-0.005	0.032	1300	-0.004	0.032	606	-0.004	
0.042 2020 -0.007 0.047 1520 -0.005 0.042 708 -0.004 0.052 2133 -0.007 0.052 1557 -0.006 0.052 773 -0.004 0.052 2333 -0.009 0.057 1571 -0.006 0.067 833 -0.004 0.062 2332 -0.009 0.067 1592 -0.006 0.077 841 -0.004 0.072 2440 -0.011 0.072 1594 -0.006 0.077 843 -0.003 0.082 2525 -0.012 0.082 1598 -0.007 0.087 845 -0.003 0.092 2602 -0.012 0.097 1607 -0.007 0.097 845 -0.003 0.102 2662 -0.013 0.107 1623 -0.008 0.112 842 -0.003 0.117 2755 -0.013 0.117 1634 -0.009 0.122 845 -0.003 <t< td=""><td>0.037</td><td>1886</td><td>-0.006</td><td>0.037</td><td>1390</td><td>-0.005</td><td>0.037</td><td>663</td><td>-0.004</td></t<>	0.037	1886	-0.006	0.037	1390	-0.005	0.037	663	-0.004	
0.047 2123 -0.007 0.042 1520 -0.005 0.047 774 -0.004 0.057 2285 -0.008 0.052 1557 -0.006 0.052 878 -0.004 0.067 2352 -0.009 0.062 1584 -0.006 0.067 833 -0.004 0.077 2440 -0.010 0.072 1594 -0.006 0.077 843 -0.004 0.072 2440 -0.011 0.087 1602 -0.007 0.082 845 -0.003 0.082 2556 -0.012 0.097 1604 -0.007 0.092 845 -0.003 0.092 2602 -0.012 0.097 1607 -0.007 0.097 845 -0.003 0.102 2663 -0.013 0.107 1633 -0.008 0.107 842 -0.003 0.102 2664 -0.013 0.117 1653 -0.008 0.117 843 -0.003 <t< td=""><td>0.042</td><td>2020</td><td>-0.007</td><td>0.042</td><td>1460</td><td>-0.005</td><td>0.042</td><td>708</td><td>-0.004</td></t<>	0.042	2020	-0.007	0.042	1460	-0.005	0.042	708	-0.004	
0.052 2213 -0.007 0.057 1557 -0.006 0.052 778 -0.004 0.062 2332 -0.009 0.067 1554 -0.006 0.067 833 -0.004 0.072 2440 -0.010 0.077 1594 -0.006 0.067 833 -0.004 0.072 2440 -0.011 0.077 1594 -0.006 0.077 841 -0.003 0.082 2555 -0.011 0.082 1598 -0.007 0.082 845 -0.003 0.087 2566 -0.012 0.092 1607 -0.007 0.097 845 -0.003 0.102 2662 -0.013 0.107 1623 -0.008 0.112 842 -0.003 0.117 2705 -0.014 0.112 1628 -0.008 0.112 842 -0.003 0.127 2772 -0.014 0.122 1640 -0.009 0.132 853 -0.003 <t< td=""><td>0.047</td><td>2123</td><td>-0.007</td><td>0.047</td><td>1520</td><td>-0.005</td><td>0.047</td><td>744</td><td>-0.004</td></t<>	0.047	2123	-0.007	0.047	1520	-0.005	0.047	744	-0.004	
0.057 2285 -0.008 0.057 1571 -0.006 0.057 798 -0.004 0.067 2352 -0.009 0.062 1554 -0.006 0.067 2833 -0.004 0.077 2440 -0.010 0.072 1594 -0.006 0.077 841 -0.004 0.077 2441 -0.011 0.072 1594 -0.006 0.077 843 -0.003 0.082 2525 -0.012 0.082 1598 -0.007 0.087 845 -0.003 0.097 2662 -0.012 0.097 1607 -0.007 0.097 845 -0.003 0.102 2662 -0.013 0.107 1623 -0.008 0.107 842 -0.003 0.112 2769 -0.013 0.112 1634 -0.008 0.117 842 -0.003 0.122 2749 -0.014 0.127 1644 -0.009 0.132 8537 -0.003	0.052	2213	-0.007	0.052	1557	-0.006	0.052	773	-0.004	
0.062 2332 -0.009 0.067 1582 -0.006 0.067 813 -0.004 0.072 2440 -0.010 0.072 1594 -0.006 0.077 843 -0.004 0.072 2481 -0.011 0.082 1592 -0.006 0.077 843 -0.003 0.082 2525 -0.011 0.082 1598 -0.007 0.087 845 -0.003 0.092 2602 -0.012 0.097 1607 -0.007 0.097 846 -0.003 0.102 2662 -0.013 0.102 1610 -0.008 0.102 842 -0.003 0.117 2765 -0.013 0.112 1623 -0.008 0.112 844 -0.003 0.112 2749 -0.014 0.122 1634 -0.009 0.122 848 -0.003 0.137 2819 -0.014 0.137 1640 -0.009 0.137 863 -0.003 <t< td=""><td>0.057</td><td>2285</td><td>-0.008</td><td>0.057</td><td>1571</td><td>-0.006</td><td>0.057</td><td>798</td><td>-0.004</td></t<>	0.057	2285	-0.008	0.057	1571	-0.006	0.057	798	-0.004	
0.067 2390 -0.009 0.067 1594 -0.006 0.0672 841 -0.003 0.077 2481 -0.011 0.077 1592 -0.006 0.072 843 -0.003 0.087 2555 -0.012 0.087 1602 -0.007 0.082 845 -0.003 0.097 2631 -0.012 0.097 1607 -0.007 0.092 845 -0.003 0.102 2662 -0.013 0.107 1623 -0.008 0.107 846 -0.003 0.112 2705 -0.013 0.112 1623 -0.008 0.117 845 -0.003 0.122 2749 -0.014 0.122 1634 -0.009 0.127 853 -0.003 0.132 2801 -0.014 0.137 1640 -0.009 0.132 857 -0.003 0.142 2845 -0.014 0.137 1646 -0.009 0.142 863 -0.003 <	0.062	2332	-0.009	0.062	1584	-0.006	0.062	815	-0.004	
0.012 2440 -0.011 0.077 1592 -0.006 0.077 843 -0.003 0.082 2525 -0.011 0.082 1598 -0.007 0.087 845 -0.003 0.082 2566 -0.012 0.097 1604 -0.007 0.097 845 -0.003 0.092 2602 -0.012 0.092 1604 -0.007 0.097 846 -0.003 0.102 2662 -0.013 0.107 1623 -0.008 0.107 840 -0.003 0.117 2785 -0.013 0.112 1623 -0.009 0.112 842 -0.003 0.117 2779 -0.014 0.122 1646 -0.009 0.132 857 -0.003 0.137 2819 -0.014 0.132 1642 -0.009 0.132 853 -0.003 0.142 2845 -0.015 0.147 1645 -0.009 0.147 863 -0.003 <t< td=""><td>0.067</td><td>2396</td><td>-0.009</td><td>0.067</td><td>1592</td><td>-0.006</td><td>0.067</td><td>833</td><td>-0.004</td></t<>	0.067	2396	-0.009	0.067	1592	-0.006	0.067	833	-0.004	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.072	2440	-0.010	0.072	1594	-0.006	0.072	841 843	-0.004	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.077	2525	-0.011	0.082	1592	-0.000	0.077	845	-0.003	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.087	2566	-0.012	0.082	1602	-0.007	0.087	845	-0.003	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.092	2602	-0.012	0.092	1604	-0.007	0.092	845	-0.003	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.097	2631	-0.012	0.097	1607	-0.007	0.097	846	-0.003	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.102	2662	-0.013	0.102	1610	-0.008	0.102	842	-0.003	
$ \begin{array}{ccccccccccccccccccccccccccccc$	0.107	2685	-0.013	0.107	1623	-0.008	0.107	840	-0.003	
$ 0.117 2729 -0.014 0.117 1630 -0.009 0.117 845 -0.003 \\ 0.127 2772 -0.014 0.127 1640 -0.009 0.127 853 -0.003 \\ 0.132 2801 -0.014 0.132 1646 -0.009 0.132 857 -0.003 \\ 0.132 2801 -0.014 0.132 1646 -0.009 0.132 857 -0.003 \\ 0.142 2845 -0.014 0.142 1642 -0.009 0.142 865 -0.003 \\ 0.147 2868 -0.015 0.147 1645 -0.009 0.147 869 -0.003 \\ 0.157 2914 -0.016 0.157 1645 -0.010 0.157 873 -0.003 \\ 0.167 2953 -0.016 0.167 1655 -0.010 0.167 878 -0.003 \\ 0.167 2953 -0.016 0.167 1655 -0.010 0.167 878 -0.003 \\ 0.172 2973 -0.016 0.167 1655 -0.010 0.167 878 -0.003 \\ 0.172 2973 -0.016 0.177 1664 -0.010 0.172 881 -0.004 \\ 0.182 3007 -0.017 0.182 1680 -0.011 0.187 884 -0.004 \\ 0.187 3020 -0.017 0.182 1680 -0.011 0.187 884 -0.004 \\ 0.192 3030 -0.017 0.187 1686 -0.011 0.197 879 -0.004 \\ 0.197 3043 -0.017 0.197 1666 -0.011 0.197 879 -0.004 \\ 0.207 3066 -0.018 0.217 1693 -0.011 0.197 879 -0.004 \\ 0.217 3096 -0.018 0.212 1697 -0.012 0.212 876 -0.004 \\ 0.227 3115 -0.018 0.227 1723 -0.012 0.212 876 -0.005 \\ 0.227 3115 -0.018 0.227 1723 -0.012 0.227 876 -0.005 \\ 0.237 3141 -0.018 0.227 1723 -0.012 0.227 876 -0.005 \\ 0.237 3141 -0.018 0.227 1753 -0.013 0.237 873 -0.005 \\ 0.247 3154 -0.018 0.227 1755 -0.014 0.257 884 -0.006 \\ 0.267 3180 -0.02 0.277 1753 -0.013 0.237 873 -0.005 \\ 0.257 3182 -0.018 0.227 1755 -0.014 0.262 886 -0.006 \\ 0.267 3180 -0.02 0.277 1753 -0.014 0.262 886 -0.006 \\ 0.267 3180 -0.02 0.277 1753 -0.014 0.277 894 -0.006 \\ 0.267 3180 -0.02 0.277 1753 -0.014 0.277 894 -0.007 \\ 0.282 3154 -0.01 0.282 1774 -0.015 0.287 899 -0.007 \\ 0.282 3154 -0.021 0.282 1774 -0.015 0$	0.112	2705	-0.013	0.112	1628	-0.008	0.112	842	-0.003	
$ 0.122 2/149 -0.014 0.122 1634 -0.009 0.122 848 -0.003 \\ 0.132 2801 -0.014 0.132 1646 -0.009 0.132 857 -0.003 \\ 0.137 2819 -0.014 0.132 1640 -0.009 0.132 857 -0.003 \\ 0.137 2819 -0.014 0.137 1640 -0.009 0.142 865 -0.003 \\ 0.147 2868 -0.015 0.147 1645 -0.009 0.147 869 -0.003 \\ 0.147 2868 -0.015 0.152 1648 -0.009 0.147 869 -0.003 \\ 0.152 2891 -0.015 0.152 1648 -0.009 0.152 871 -0.003 \\ 0.152 2891 -0.016 0.157 1645 -0.010 0.157 873 -0.003 \\ 0.162 2935 -0.016 0.162 1650 -0.010 0.167 878 -0.003 \\ 0.162 2935 -0.016 0.167 1655 -0.010 0.167 878 -0.003 \\ 0.177 2989 -0.016 0.177 1667 -0.010 0.177 882 -0.004 \\ 0.187 3020 -0.017 0.182 1664 -0.011 0.187 884 -0.004 \\ 0.187 3020 -0.017 0.182 1686 -0.011 0.187 884 -0.004 \\ 0.187 3020 -0.017 0.182 1686 -0.011 0.187 884 -0.004 \\ 0.192 3030 -0.017 0.192 1662 -0.011 0.192 882 -0.004 \\ 0.192 3030 -0.017 0.192 1695 -0.011 0.192 882 -0.004 \\ 0.192 3030 -0.017 0.192 1695 -0.011 0.192 882 -0.004 \\ 0.192 3030 -0.017 0.192 1695 -0.011 0.192 887 -0.004 \\ 0.202 3056 -0.018 0.207 1696 -0.011 0.207 879 -0.004 \\ 0.217 3092 -0.018 0.217 1708 -0.012 0.212 876 -0.004 \\ 0.217 3092 -0.018 0.217 1708 -0.012 0.212 876 -0.004 \\ 0.217 3092 -0.018 0.237 1729 -0.012 0.222 876 -0.005 \\ 0.237 3141 -0.018 0.237 1729 -0.012 0.222 876 -0.005 \\ 0.237 3141 -0.018 0.237 1729 -0.013 0.247 879 -0.004 \\ 0.252 3167 -0.019 0.252 175 -0.013 0.247 879 -0.004 \\ 0.252 3167 -0.019 0.252 175 -0.013 0.247 879 -0.006 \\ 0.257 3182 -0.018 0.237 1729 -0.012 0.222 876 -0.005 \\ 0.237 3141 -0.018 0.237 1729 -0.012 0.222 876 -0.005 \\ 0.237 3141 -0.018 0.237 174 -0.013 0.247 879 -0.006 \\ 0.257 3182 -0.019 0.252 175 -0.014 0.252 881 -0.006 \\ 0.267 3180 -0.020 0.267 1759 -0.014 0.252 881 -0.006 \\ 0.267 3180 -0.020 0.277 1759 -0.014 0.252 881 -0.006 \\ 0.257 3182 -0.019 0.252 175 -0.014 0.252 881 -0.006 \\ 0.267 3180 -0.020 0.277 175 -0.014 0.252 881 -0.006 \\ 0.267 3180 -0.020 0.277 174 -0.015 0.297 899 -0.007 \\ 0.272 3135 -0.020 0.277 175 -0.014 0.252 899 -0.007 \\ 0.292 3200 -0.021 0.292 1774 -0.015 0.307 900 -0.008 \\ 0.30$	0.117	2729	-0.014	0.117	1630	-0.009	0.117	845	-0.003	
$ 0.127 2 772 - 0.014 0.127 1640 -0.009 0.127 853 -0.003 \\ 0.137 2819 -0.014 0.137 1640 -0.009 0.137 863 -0.003 \\ 0.142 2845 -0.014 0.142 1642 -0.009 0.137 863 -0.003 \\ 0.142 2845 -0.015 0.147 1645 -0.009 0.142 865 -0.003 \\ 0.152 2891 -0.015 0.152 1648 -0.009 0.147 869 -0.003 \\ 0.152 2891 -0.015 0.157 1645 -0.010 0.157 873 -0.003 \\ 0.167 2953 -0.016 0.167 1655 -0.010 0.167 878 -0.003 \\ 0.167 2953 -0.016 0.167 1655 -0.010 0.167 878 -0.003 \\ 0.177 2989 -0.016 0.177 1667 -0.010 0.177 882 -0.004 \\ 0.182 3007 -0.017 0.182 1680 -0.011 0.182 884 -0.004 \\ 0.182 3007 -0.017 0.182 1680 -0.011 0.187 884 -0.004 \\ 0.182 3007 -0.017 0.182 1680 -0.011 0.187 884 -0.004 \\ 0.192 3030 -0.017 0.192 1662 -0.011 0.197 879 -0.004 \\ 0.192 3036 -0.017 0.192 1693 -0.011 0.197 879 -0.004 \\ 0.202 3056 -0.018 0.207 1696 -0.011 0.202 879 -0.004 \\ 0.217 3066 -0.018 0.217 1708 -0.012 0.212 876 -0.004 \\ 0.217 3066 -0.018 0.217 1708 -0.012 0.217 875 -0.004 \\ 0.217 3066 -0.018 0.217 1708 -0.012 0.217 875 -0.004 \\ 0.223 3167 -0.018 0.227 1723 -0.012 0.227 876 -0.004 \\ 0.221 3079 -0.018 0.227 1723 -0.012 0.227 876 -0.005 \\ 0.237 3141 -0.018 0.232 1729 -0.012 0.237 873 -0.004 \\ 0.257 3182 -0.018 0.237 1729 -0.012 0.237 873 -0.006 \\ 0.257 3182 -0.018 0.237 1729 -0.012 0.237 874 -0.005 \\ 0.237 3141 -0.018 0.232 1729 -0.012 0.227 876 -0.005 \\ 0.237 3141 -0.018 0.232 1729 -0.012 0.237 873 -0.004 \\ 0.257 3182 -0.019 0.257 1750 -0.014 0.257 884 -0.006 \\ 0.267 3180 -0.020 0.267 1759 -0.014 0.257 884 -0.006 \\ 0.257 3182 -0.019 0.257 1750 -0.014 0.257 884 -0.006 \\ 0.257 3182 -0.019 0.257 1750 -0.014 0.257 884 -0.006 \\ 0.267 3180 -0.020 0.267 1759 -0.014 0.257 884 -0.006 \\ 0.257 3182 -0.019 0.257 1750 -0.014 0.257 884 -0.006 \\ 0.257 3182 -0.019 0.257 1750 -0.014 0.257 884 -0.006 \\ 0.257 3182 -0.019 0.257 1750 -0.014 0.257 884 -0.006 \\ 0.267 3180 -0.020 0.277 1763 -0.014 0.257 884 -0.006 \\ 0.267 3180 -0.020 0.277 1763 -0.014 0.257 889 -0.007 \\ 0.282 3154 -0.021 0.282 1769 -0.014 0.257 889 -0.007 \\ 0.282 3154 -0.022 0.297 1775 -0.015 0.307 990 -0.0$	0.122	2749	-0.014	0.122	1634	-0.009	0.122	848	-0.003	
	0.127	2772	-0.014	0.127	1640	-0.009	0.127	853	-0.003	
	0.132	2801	-0.014	0.132	1640	-0.009	0.132	863	-0.003	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.142	2845	-0.014	0.137	1642	-0.009	0.142	865	-0.003	
0.152	0.147	2868	-0.015	0.147	1645	-0.009	0.147	869	-0.003	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.152	2891	-0.015	0.152	1648	-0.009	0.152	871	-0.003	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.157	2914	-0.016	0.157	1645	-0.010	0.157	873	-0.003	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.162	2935	-0.016	0.162	1650	-0.010	0.162	875	-0.003	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.167	2953	-0.016	0.167	1655	-0.010	0.167	878	-0.003	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.172	2973	-0.016	0.172	1664	-0.010	0.172	881	-0.004	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.177	2989	-0.016	0.177	1667	-0.010	0.177	882	-0.004	
	0.182	3020	-0.017	0.182	1686	-0.011	0.182	004 884	-0.004	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.187	3030	-0.017	0.187	1682	-0.011	0.192	882	-0.004	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.192	3043	-0.017	0.192	1693	-0.011	0.192	879	-0.004	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.202	3056	-0.017	0.202	1695	-0.011	0.202	879	-0.004	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.207	3066	-0.018	0.207	1696	-0.011	0.207	879	-0.004	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.212	3079	-0.018	0.212	1697	-0.012	0.212	876	-0.004	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.217	3092	-0.018	0.217	1708	-0.012	0.217	875	-0.004	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.222	3107	-0.018	0.222	1712	-0.012	0.222	876	-0.005	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.227	3115	-0.018	0.227	1723	-0.012	0.227	876	-0.005	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.232	3128	-0.018	0.232	1729	-0.012	0.232	874	-0.005	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.237	3141	-0.018	0.237	1729	-0.013	0.237	8/3	-0.005	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.242	3149	-0.018	0.242	1755	-0.013	0.242	874 879	-0.006	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.247	3167	-0.019	0.247	1751	-0.013	0.247	881	-0.000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.252	3182	-0.019	0.252	1750	-0.014	0.252	884	-0.006	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.262	3192	-0.019	0.262	1758	-0.014	0.262	886	-0.006	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.267	3180	-0.020	0.267	1759	-0.014	0.267	889	-0.007	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.272	3133	-0.020	0.272	1762	-0.014	0.272	891	-0.007	
0.282 3154 -0.021 0.282 1769 -0.014 0.282 897 -0.007 0.287 3177 -0.021 0.287 1774 -0.015 0.287 899 -0.007 0.292 3200 -0.021 0.292 1774 -0.015 0.292 899 -0.007 0.297 3213 -0.022 0.297 1775 -0.015 0.297 900 -0.008 0.302 3223 -0.022 0.302 1780 -0.015 0.302 899 -0.008 0.307 3239 -0.022 0.312 1796 -0.015 0.312 901 -0.008	0.277	3136	-0.020	0.277	1763	-0.014	0.277	894	-0.007	
0.287 3177 -0.021 0.287 1774 -0.015 0.287 899 -0.007 0.292 3200 -0.021 0.292 1774 -0.015 0.292 899 -0.007 0.297 3213 -0.022 0.297 1775 -0.015 0.297 900 -0.008 0.302 3223 -0.022 0.302 1780 -0.015 0.302 899 -0.008 0.307 3239 -0.022 0.307 1789 -0.015 0.307 900 -0.008 0.312 3254 -0.022 0.312 1796 -0.015 0.312 901 -0.008	0.282	3154	-0.021	0.282	1769	-0.014	0.282	897	-0.007	
0.292 3200 -0.021 0.292 1774 -0.015 0.292 899 -0.007 0.297 3213 -0.022 0.297 1775 -0.015 0.297 900 -0.008 0.302 3223 -0.022 0.302 1780 -0.015 0.302 899 -0.008 0.307 3239 -0.022 0.307 1789 -0.015 0.307 900 -0.008 0.312 3254 -0.022 0.312 1796 -0.015 0.312 901 -0.008	0.287	3177	-0.021	0.287	1774	-0.015	0.287	899	-0.007	
0.297 3213 -0.022 0.297 1775 -0.015 0.297 900 -0.008 0.302 3223 -0.022 0.302 1780 -0.015 0.302 899 -0.008 0.307 3239 -0.022 0.307 1789 -0.015 0.307 900 -0.008 0.312 3254 -0.022 0.312 1796 -0.015 0.312 901 -0.008	0.292	3200	-0.021	0.292	1//4	-0.015	0.292	899	-0.007	
0.302 3223 -0.022 0.302 1780 -0.015 0.302 899 -0.008 0.307 3239 -0.022 0.307 1789 -0.015 0.307 900 -0.008 0.312 3254 -0.022 0.312 1796 -0.015 0.312 901 -0.008	0.297	3213	-0.022	0.297	1775	-0.015	0.297	900	-0.008	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.302	3223	-0.022	0.302	1780	-0.015	0.302	900	-0.008	
	0.312	3254	-0.022	0.312	1796	-0.015	0.312	901	-0.008	

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

Project: Summit/Horizon Neighborhood

No: 01628-013

Location: Eden, UT

Boring No.: TP-12 Sample:

Depth: 6.0'

Nominal norn	nal stress $= 40$	000 psf	Nominal norn	nal stress $= 20$	000 psf	Nominal normal stress = 1000 psf			
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal	
Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	
0.317	3267	-0.022	0.317	1797	-0.015	0.317	904	-0.008	
0.322	3275	-0.022	0.322	1799	-0.016	0.322	904	-0.008	
0.327	3270	-0.022	0.327	1799	-0.016	0.327	905	-0.008	
0.332	3285	-0.023	0.332	1797	-0.016	0.332	905	-0.009	
0.337	3293	-0.023	0.337	1799	-0.016	0.337	908	-0.009	
0.342	3300	-0.024	0.342	1/99	-0.016	0.342	910	-0.009	
0.347	3319	-0.024	0.347	1813	-0.010	0.347	912	-0.009	
0.352	3332	-0.024	0.357	1817	-0.017	0.357	916	-0.009	
0.362	3337	-0.025	0.362	1822	-0.017	0.362	917	-0.010	
0.367	3342	-0.025	0.367	1823	-0.017	0.367	916	-0.010	
0.372	3350	-0.025	0.372	1826	-0.017	0.372	917	-0.010	
0.377	3363	-0.025	0.377	1829	-0.017	0.377	918	-0.010	
0.382	3375	-0.026	0.382	1834	-0.018	0.382	920	-0.010	
0.387	3386	-0.026	0.387	1838	-0.018	0.387	923	-0.010	
0.392	3393	-0.027	0.392	1838	-0.018	0.392	924	-0.011	
0.397	3401	-0.027	0.397	1833	-0.018	0.397	925	-0.011	
0.402	3419	-0.028	0.402	1835	-0.019	0.402	929	-0.011	
0.412	3427	-0.028	0.412	1839	-0.019	0.412	931	-0.011	
0.417	3435	-0.028	0.417	1844	-0.020	0.417	934	-0.012	
0.422	3445	-0.028	0.422	1852	-0.020	0.422	936	-0.012	
0.427	3450	-0.029	0.427	1853	-0.020	0.427	940	-0.012	
0.432	3453	-0.029	0.432	1857	-0.020	0.432	942	-0.012	
0.437	3453	-0.030	0.437	1854	-0.021	0.437	944	-0.013	
0.442	3463	-0.031	0.442	1852	-0.021	0.442	946	-0.013	
0.447	3473	-0.032	0.447	1857	-0.021	0.447	951	-0.013	
0.452	3481	-0.032	0.452	1808	-0.021	0.452	954	-0.014	
0.457	3494	-0.032	0.457	1869	-0.021	0.457	955	-0.014	
0.467	3517	-0.032	0.467	1864	-0.022	0.467	960	-0.014	
0.472	3530	-0.033	0.472	1860	-0.022	0.472	963	-0.014	
0.477	3543	-0.033	0.477	1862	-0.023	0.477	968	-0.014	
0.482	3548	-0.033	0.482	1864	-0.023	0.482	972	-0.015	
0.487	3561	-0.034	0.487	1861	-0.024	0.487	972	-0.015	
0.492	3576	-0.035	0.492	1862	-0.024	0.492	972	-0.015	
0.497	3584	-0.036	0.497	1869	-0.024	0.497	972	-0.015	
0.502	3592	-0.036	0.501	18/1	-0.024	0.502	974	-0.015	
0.507	3610	-0.030				0.507	983	-0.015	
0.512	3625	-0.037				0.515	982	-0.016	
0.522	3636	-0.038							
0.527	3641	-0.038							
0.532	3646	-0.039							
0.537	3659	-0.040							
0.542	3672	-0.040							
0.547	36/9	-0.041							
0.552	3605	-0.041							
0.557	3705	-0.041							
0.567	3710	-0.043							
0.572	3718	-0.043							
0.577	3728	-0.044							
0.582	3749	-0.044							
0.587	3764	-0.045							
0.592	3783	-0.045							
0.597	3/95	-0.046							
0.602	3806	-0.047							
0.007	3842	-0.047							
0.617	3855	-0.048							
0.622	3870	-0.048							
0.627	3880	-0.049							
0.632	3878	-0.050							
0.634	3886	-0.051							

(ASTM D3080)

Boring No.: TP-12 Sample: Depth: 6.0'

Location: Eden, UT

APPENDIX C

8950 9000		1.7									
8900				Material Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Generalized Anisotropic	
			and the second second	Cn		135	Mohr-Coulomb	35000	20		
885				Af		130	Mohr-Coulomb	100	36		
				Tw		120	Mohr-Coulomb	0	44		
				Qcl		120	Mohr-Coulomb	150	36		
8800				Qiso 2		120	Mohr-Coulomb	150	30		
	- Comment			Shear Plane		120	Mohr-Coulomb	0	12		
		40' WIDE KEYWAY THROUGH Q	sl	Anisotropic Qcl		120	Generalized Anisotropic			User Defined 1	
8750				Anisotropic Qlso		120	Generalized Anisotropic			User Defined 2	
8700										2	
1050	0 1100 1150	1200 1250 130	00	1350	1400	14	50 1500	1	550	1600	16
1		Geotechnica	al and Geolo	ogical Hazard	Invest	tigation - S	Summit Horizon Nei	ghborho	ood, L	Jtah	
-		Analysis Description		Section	B-B' - :	Static with	Кеуwау				
		Drawn By T	QH			Company	-	IGES			
SLIDEINT	TERPRET 6.024	Date 7-27	-2016			File Name	B-	B' Static.	slim		

Horizon Neighbourhood 01628-013 7/27/2016

This model assumes c>0 and the face of the slope is saturated to depth h

APPENDIX D

EVSGS Design Maps Detailed Report

2012/2015 International Building Code (41.368°N, 111.7608°W)

Site Class B – "Rock", Risk Category I/II/III

Section 1613.3.1 — Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2012/2015 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

From Figure 1613.3.1(1) ^[1]	$S_{s} = 0.829 \text{ g}$
From Figure 1613.3.1(2) [2]	S ₁ = 0.276 g

Section 1613.3.2 — Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class B, based on the site soil properties in accordance with Section 1613.

2010 ASCE-7 Standard – Table 20.3-1 SITE CLASS DEFINITIONS

Site Class	\overline{v}_{s}	\overline{N} or \overline{N}_{ch}	– S _u
A. Hard Rock	>5,000 ft/s	N/A	N/A
B. Rock	2,500 to 5,000 ft/s	N/A	N/A
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E. Soft clay soil	<600 ft/s	<15	<1,000 psf
	aving the 0 psf		
F. Soils requiring site response analysis in accordance with Section	See	e Section 20.3.1	I

21.1

For SI: $1ft/s = 0.3048 \text{ m/s} 11b/ft^2 = 0.0479 \text{ kN/m}^2$
Section 1613.3.3 — Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

Site Class	Mapped Spectral Response Acceleration at Short Period								
	$S_s \le 0.25$	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 0.75$ $S_{s} = 1.00$					
А	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.2	1.2	1.1	1.0	1.0				
D	1.6	1.4	1.2	1.1	1.0				
Е	2.5	1.7	1.2	0.9	0.9				
F	See Section 11.4.7 of ASCE 7								

TABLE 1613.3.3(1) VALUES OF SITE COEFFICIENT $\ensuremath{\mathsf{F}}_a$

Note: Use straight–line interpolation for intermediate values of $\ensuremath{\mathsf{S}}_{\ensuremath{\mathsf{s}}}$

For Site Class = B and S_{s} = 0.829 g, $F_{\rm a}$ = 1.000

TABLE 1613.3.3(2) VALUES OF SITE COEFFICIENT $\rm F_v$

Site Class	Mapped Spectral Response Acceleration at 1–s Period							
	$S_1 \le 0.10$	$S_1 = 0.20$ $S_1 = 0.30$		$S_1 = 0.40$	$S_1 \ge 0.50$			
A	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.7	1.6	1.5	1.4	1.3			
D	2.4	2.0	1.8	1.6	1.5			
E	3.5	3.2 2.8		2.4	2.4			
F	See Section 11.4.7 of ASCE 7							

Note: Use straight–line interpolation for intermediate values of $\ensuremath{\mathsf{S}}_1$

For Site Class = B and S_1 = 0.276 g, F_ν = 1.000

Equation (16-37):	$S_{MS} = F_a S_S = 1.000 \text{ x } 0.829 = 0.829 \text{ g}$
Equation (16-38):	$S_{M1} = F_v S_1 = 1.000 \text{ x } 0.276 = 0.276 \text{ g}$
Section 1613.3.4 — Design spectral respons	e acceleration parameters
Equation (16-39):	$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 0.829 = 0.553 \text{ g}$
Equation (16-40):	$S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.276 = 0.184 \text{ g}$

Section 1613.3.5 — Determination of seismic design category

TABLE 1613.3.5(1)		
SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD	(0.2 second)) RESPONSE ACCELERAT	ΓΙΟΝ

	RISK CATEGORY						
VALUE OF S _{DS}	l or ll	111	IV				
S _{DS} < 0.167g	А	А	А				
0.167g ≤ S _{DS} < 0.33g	В	В	С				
0.33g ≤ S _{DS} < 0.50g	С	С	D				
0.50g ≤ S _{DS}	D	D	D				

For Risk Category = I and S_{DS} = 0.553 g, Seismic Design Category = D

TABLE 1613.3.5(2)

SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

	RISK CATEGORY						
VALUE OF S _{D1}	l or ll		IV				
S _{D1} < 0.067g	А	А	А				
0.067g ≤ S _{D1} < 0.133g	В	В	С				
0.133g ≤ S _{D1} < 0.20g	С	С	D				
0.20g ≤ S _{D1}	D	D	D				

For Risk Category = I and S_{D1} = 0.184 g, Seismic Design Category = C

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 1613.3.5(1) or 1613.3.5(2)" = D

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

- 1. *Figure 1613.3.1(1)*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(1).pdf
- 2. *Figure 1613.3.1(2)*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(2).pdf

EUSGS Design Maps Summary Report

User-Specified Input

Report Title	Horizon Neighborhood Wed July 20, 2016 23:45:31 UTC
Building Code Reference Document	2012/2015 International Building Code (which utilizes USGS hazard data available in 2008)
Site Coordinates	41.368°N, 111.7608°W
Site Soil Classification	Site Class B – "Rock"
Risk Category	1/11/111

USGS-Provided Output

$S_s =$	0.829 g	S _{MS} =	0.829 g	S _{DS} =	0.553 g
S ₁ =	0.276 g	S _{M1} =	0.276 g	S _{D1} =	0.184 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

APPENDIX E

mountain GeoEnvironmenta

rvices, Inc.

SP

Project No.	01628-013				
	Horizon	Neighbourhood			
Date		by			
Ckd by		on			

r = 120 pcf Kp = 8.335 Pi = point load at top Pz = distributed load

Basis for Drilled Pier Design

Drilled Shaft (dia >24 in. or 61 cm)

Loads:

Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap= 0 % Shear Condition: Static

(with Load Factor) Vertical Load, Q= 100.0 -kp Distributed Load: Depth=0-ft Press.=0-kp/f2 Width=3.0-ft Depth=16-ft Press.=8.064-kp/f2 Width=3.0-ft

Shear Load, P= 68.0 -kp Moment, M= 0.0 -kp-f

Profile:

Pile Length, L= 24.0 -ft Top Height, H= 16 -ft Slope Angle, As= 20.0 Batter Angle, Ab= 0.0 Free Head Condition

Soil D	ata:						Pile Da	ata:					
Depth	Gamma	Phi	С	K	e50 or Dr	Nspt	Depth	Width	Area	Per.	I	Е	Weight
-ft	-lb/f3		-kp/f2	-lb/i3	%		-ft	-in	-in2	-in	-in4	-kp/i2	-kp/f
0	165.0	26.0	626.00	2956.0	0.03	60	0.0	36	1116.9	113.1	82577.7	3000	1.087
3	165.0	35.0	1044.00	2956.0	0.03	60	24.0						

Single Pile Lateral Analysis:

Top Deflection, yt= 1.40000-in Max. Moment, M= 2191.67-kp-f Top Deflection Slope, St= -0.00940

OK! Top Deflection, 1.4000-in is less than the Allowable Deflection= 2.00-in

Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999. The Max. Moment calculated by program is an internal force from the applied load conditions. Structural engineer has to check whether the pile has enough capacity to resist the moment with adequate factor of safety. If not, the pile may fail under the load conditions.

Summit/Horizon Neighborhood 36" dia. Pier 16H Outside Pier

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Summit/Horizon Neighborhood 36" dia. Pier 16H Outside Pier

Osummary ALLPILE 7 LATERAL ANALYSIS SUMMARY OUTPUT Copyright by CivilTech Software www.civiltechsoftware.com * * * * * * * * * * * Distributed Load: Width Depth Press. -kp/f2 -ft -ft 0 0 3.0 16 8.064 3.0 FACTORS AND CONDITIONS: Load Factor for Vertical Loads: 1.0 Load Factor for Lateral Loads: 1.0 Loads Supported by Pile Cap: 0 % Shear Condition: Static SINGLE PILE: (with Load Factor) Vertical Load= 100.00 -kp Shear= 68.00 -kp Moment= 0.00 - kp - fResults: Top Deflection, yt= 1.40000-in Max. Moment, M= 2191.67-kp-f Top Deflection Slope, St= -0.00940 Top Deflection, 1.4000-in, OK with the Allowable Deflection= 2.00-in Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999. Notes: Q - Vertical Load at pile top P - Lateral Shear Load at pile top M - Moment at pile top Xtop - Pile top total settlement yt - Pile top deflection St - Pile top deflection slope (deflection/unit length)

The Max. Moment calculated by program is an internal moment of shaft due to the loading. Egineers have to check whether the pile has enough moment capacity to resist the Max. Moment with adequate factor of safety. If not, the pile may be damaged under the loading. 1 1

Loads:

Profile:

Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap= 0 %

Shear Condition: Static

Vertical Load, Q= 100.0 -kp

Shear Load, P= 136.0 -kp Moment, M= 0.0 -kp-f

Pile Length, L= 24.0 -ft Top Height, H= 16 -ft Slope Angle, As= 20.0

Batter Angle, Ab= 0.0 Free Head Condition

Depth=0-ft Press.=0-kp/f2 Width=3.5-ft Depth=16-ft Press.=8.064-kp/f2 Width=3.5-ft

(with Load Factor)

Distributed Load:

Drilled Shaft (dia >24 in. or 61 cm)

Soil Data: Pile Data: Depth Gamma Phi С Κ e50 or Dr Nspt Depth Width Area Per. Т Е Weight -ft -lb/f3 -kp/f2 -lb/i3 -kp/i2 -kp/f % -ft -in -in2 -in -in4 0 165.0 26.0 2956.0 0.03 60 0.0 42 1484.5 131.9 152874.8 1.470 626.00 3000 3 165.0 35.0 1044.00 2956.0 0.03 60 24.0

Single Pile Lateral Analysis:

Top Deflection, yt= 1.31000-in Max. Moment, M= 3483.33-kp-f Top Deflection Slope, St= -0.00887 OK! Top Deflection, 1.3100-in is less than the Allowable Deflection= 2.00-in

Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999. The Max. Moment calculated by program is an internal force from the applied load conditions. Structural engineer has to check whether the pile has enough capacity to resist the moment with adequate factor of safety. If not, the pile may fail under the load conditions.

Summit/Horizon Neighborhood 42" dia. Pier 16H Inside Pier

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Summit/Horizon Neighborhood 42" dia. Pier 16H Inside Pier

Osummary ALLPILE 7 LATERAL ANALYSIS SUMMARY OUTPUT Copyright by CivilTech Software www.civiltechsoftware.com * * * * * * * * * * * Distributed Load: Width Depth Press. -ft -kp/f2 -ft 0 0 3.5 16 8.064 3.5 FACTORS AND CONDITIONS: Load Factor for Vertical Loads: 1.0 Load Factor for Lateral Loads: 1.0 Loads Supported by Pile Cap: 0 % Shear Condition: Static SINGLE PILE: (with Load Factor) Vertical Load= 100.00 -kp Shear= 136.00 -kp Moment= 0.00 - kp-fResults: Top Deflection, yt= 1.31000-in Max. Moment, M= 3483.33-kp-f Top Deflection Slope, St= -0.00887 Top Deflection, 1.3100-in, OK with the Allowable Deflection= 2.00-in Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999. Notes: Q - Vertical Load at pile top P - Lateral Shear Load at pile top M - Moment at pile top Xtop - Pile top total settlement yt - Pile top deflection St - Pile top deflection slope (deflection/unit length)

The Max. Moment calculated by program is an internal moment of shaft due to the loading. Egineers have to check whether the pile has enough moment capacity to resist the Max. Moment with adequate factor of safety. If not, the pile may be damaged under the loading. 1 1 1 1 1

APPENDIX F

