

Structural Calculations

For

LPC – Upper System Tank

Project Number: 16194

August 31, 2016

Prepared by ARW Engineers 1594 West Park Circle Ogden, Utah 84404

Project No16194	Sheet No
-----------------	----------

Project LPC - Upper System Tank

Prepared By WWY

Date 8/19/16

Design	Criteria
0001111	Cilicitat

Snow Load: 100 psf (see Sprendsheet)

Max Soil over Cover: 6" (75 psf)

Soil Bearing Pressure: 4000 psf

At Rest Horiz. Pressure: 57 pcf

Seismic Active Pressure: 46 pcf

Project No161°	74	Sheet N	lo
Project <u>LPC</u> -	Upper System	Tank	

I PAGE	structural consultants Prepared By WWY	Date 8/19/16
	Tank Geometry	
	Inside Diameter = 53'-0"	
	(4) interior columns spaced @ 17-8" o.c.	
	Wall height = 16'0"	
	Overflow @ 15'-6"	

UTAH SNOW LOAD STUDY

Version Date: July 20, 2012 author: TAB Reviewed by: TMD

Project: Liberty Upper System Tank

Description:

Date: 8/17/2016

Job#: 16194 By: DLP

County: Weber

Po: 43 psf S: 63 psf/1000 ft. A_o: 4.5 ft./1000 A: 5975 ft.

Pg: 102.4 psf

Table No. 1608.1.2 (b) REQUIRED SNOW LOADS FOR SELECTED UTAH CITIES AND TOWNS^{1,2}

The following jurisdictions require design snow load values that differ from the

equation in the Utah Snow Load Study.				
			Ground Snow	Roof Snow
County	City	Elevation	Load (psf)	Load (psf) ⁶
Carbon	Price ³	5550	43	30
	All other County Locations ⁵	-	1 - 1	-
Davis	Fruit Heights ³	4500-4850	57	40
Emery	Green River ³	4070	36	25
Garfield	Panguitch ³	6600	43	30
Rich	Woodruff ³	6315	57	40
	Laketown⁴	6000	57	40
	Garden City⁵	-	11-	-
	Randolph⁴	6300	57	40
San Juan	Monticello ³	6820	50	35
Summit	Coalville ³	5600	86	60
	Kamas⁴	6500	114	80
Tooele	Tooele ³	5100	43	30
Utah	Orem ³	4650	43	30
	Pleasant Grove⁴	5000	43	30
	Provo ⁵	-	-	=
Wasatch	Heber ⁵	12	-	-8
Washington		3460	29	20
	Santa Clara ³	2850	21	15
ı	St. George ³	2750	21	15
	All other County Locations ⁵	-	~	-
Wayne	Loa ³	7080	43	30

¹The IBC Requires a minimum live load - See 1607.11.2

²This table is informational only in that actual site elevations may vary. Table is only valid if site elevation is within 100 feet of the listed elevation. Otherwise contact the local Building Official

³Values adopted from table VII of the Utah Snow Load Study

⁴Values based on site-specific study. Contact local Building Official for additional information.

⁵Contact Local Building Official

 $^{^6}$ Based on C_e =1.0, C_t =1.0, and I_s =1.0

Project No. 16194 Sheet No.

Project LPC - Upper System Tank

Prepared By WWY

Date 8/19/16

Environmental Durability Factor

ACI 350-06 Section 9.2.6

$$S_d = \frac{\phi f_{\gamma}}{\chi g_s} \ge 1.0$$

 $S_d = \frac{\phi f_y}{\chi f_s} \ge 1.0$ where $\chi = \frac{factored load}{v factored load}$

 $S_5 = 20 \text{ ks}$ (section 9.2.6.2)

* This applies to direct & hoop tensile stress.

Water

$$S_4 = \frac{0.9.60 \text{ ks}}{1.4.20 \text{ ks}} = 1.93$$

50:1

$$S_{a} = \frac{0.9.60 \text{ KSI}}{1.6.20 \text{ KSI}} = 1.69$$

* Soil creates compression forces in hoop : Use Sd = 1.0

Flexural Stress

$$f_5 = \frac{320}{8\sqrt{5^2 + 4(2 + d_b/2)^2}}$$
 [ACI 350-06 Eq. 10-4]

$$S_d = \frac{0.90.60 \text{ ksl}}{1.4.20 \text{ ksl}} = 1.93$$

Program Authors: Last Revised Reviewed By: TAB & DOC 10/20/2010 TAB

Circular Concrete Tanks without Prestressing

(Based on the 1993 PCA Document)

De	esign Criteria					
			Estimation of Tank Wall Thickness			
fc	4500 psi					
D _{tank}	53 ft	Limit Ring Tension Stres	s in Concrete Wall from 7% to	12% of f'c		
H _{tank}	16 ft					
wall	12 in	For given t and H ² /Dt, wi	th a hinged base/free top (Tab	le A-5)		
luid Pressure	62.4 pcf)20/2 EE				
Soil Pressure	57 pcf	Max Coefficient=	0.611 (Table A-5)			
= _s	29000000 psi					
Ēc	3823676.24 psi	Wu	169 pcf			
ı	7.6	T _{max}	43647 lbs.			
Surcharge	175 pcf	Tunfactored	16154 lbs.	Compression C	heck	
Soil on Lid	1 ft	A _{s(req'd)}	0.81 in ²	F'c	423	
oad Factor	***************************************	A _{s(used)}	0.88 in ²	0.33fc	1485	
liquid pressure	1.4		OK 1#6@12"0.C.	OK		
Soil pressure	1.6		Each Face			
invironmental		F _{t(conc)}	158 psi			
Ourability Factor		,	001Y03900 - 00000			
lexure (liquid)	1.93	This equates to	3.51	% of f'c		
ension (liquid)	1.93	Wall thickness is	ок			
lexure (soil)	1.69					
ompression (soil)	1					
l ² /Dt	4.83					

The Following Load Cases were used in Analysis:

Load Case #1: Full of Water, No Lid, No Backfill Load Case #2: Empty, No Lid, w/Backfill Empty, w/Lid, w/Backfill

Load Case #4: Full of Water, w/Lid, Ignore Backfill

Load Case #1-Full of Water, No Lid, No Backfill

Assume Free Top/Hinged Base (Tables A-5 and A-7)

Effects of Possible outward movement will be handled by designing the entire portion of the wall for the maximum Ring Tension and Moment

 Ring Force=(A-5 Coef.) w_u HR
 w_u HR=
 71488.4352

 Moment =(A-7 Coef.) w_u H³
 w_u H³=
 690605.2608

	A-5 Coef.	RF (#)	A-7 Coef.	Moment (#-ft/ft)
Тор	-0.004	-268	0	0
0.1H	0.118	8429	0.0000	12
0.2H	0.238	17018	0.0002	139
0.3H	0.358	25583	0.0008	532
0.4H	0.469	33528	0.0019	1304
0.5H	0.559	39970	0.0038	2618
0.6H	0.611	43647	0.0061	4241
0.7H	0.597	42679	0.0085	5865
0.8H	0.493	35279	0.0098	6773
0.9H	0.288	20556	0.0080	5551
Bottom	0.000	0	0	0

Project Name LPC - Upper System Tank Project # 16194 Prepared By WWY Date 8/23/2016

TAB & DOC Program Authors: Last Revised 1/19/2006 Reviewed By: TMD

Load Case #2-Empty, No Lid, w/ Backfill

Use Durability Coefficients as Noted Previous

Soil Over Lid= 1 ft 175

Ring Force=(A-5 Coef.)w_uHR+(A-6 Coef.)pR

wuHR= -74631

pR= -14320.6 Moment=(A-7 Coef.)(w_uh³+ph²)

 $w_u h^3 + ph^2 =$ -752447

	A-5 Coef	RF (#)	A-6 Coef.	RF (#)	Total RF (#)	A-7 Coef.	Moment (#-ft/ft)
Тор	-0.004	280	0.996	-14266.8302	-13987	0	0
0.1H	0.118	-8799	1.018	-14577.0198	-23376	0.0000	-13
0.2H	0.238	-17766	1.038	-14865.5934	-32632	0.0002	-152
0.3H	0.358	-26708	1.058	-15149.3034	-41857	0.0008	-579
0.4H	0.469	-35002	1.069	-15308.7214	-50311	0.0019	-1421
0.5H	0.559	-41727	1.059	-15167.1366	-56894	0.0038	-2852
0.6H	0.611	-45566	1.011	-14471.6418	-60037	0.0061	-4621
0.7H	0.597	-44555	0.897	-12845.5782	-57400	0.0085	-6390
0.8H	0.493	-36830	0.693	-9931.201	-46761	0.0098	-7380
0.9H	0.288	-21460	0.388	-5549.908	-27010	0.0080	-6048
Bottom	0.000	0	0.000	0	0	0	0

Load Case #3-Empty, w/Lid, w/Backfill

Apply a shear force (V) @ top of wall to make Ring Tension = 0 @ top of Wall

When top of tank is free, Ring Force (LC#2) =

At top of wall (0.0H) from table A-8, Coefficient= -8.07 #

Therefore, the shear force (V) required to produce zero ring force at the top of the tank= (Coef. A-8 @ 0.0H)(VR/H)=(Ring Force from LC#2)

-13987 #

Therefore

V= -1046 # VR/H= -1733 #

Delta_{RF}=Change in Ring Force Due to V applied @ the top of wall

Delta_{RF}=(A-8 Coef.)(VR/H)

Find the change in moment (Delta_{mom}) due to the V applied @ top.

If S_D for moment is less than S_D for compression, then V is reduced by ($S_{DM}\!/S_{DC})$

Delta_{mom}=(A-9 Coef.)VH

VH= -16742

_	A-8 Coef.	Delta _{RF} (#)	LC#2 RF (#)	Total RF (#)	A-9 Coef.	Delta _{mom} (#-ft/ft)	LC #2 Moment (#-ft/ft)	Total Moment (#-ft/ft)
Тор	-8.071	13987	-13987	0	0	0	0	0
0.1H	-4.946	8571	-23376	-14805	0.0647	-1083	-13	-1096
0.2H	-2.475	4290	-32632	-28342	0.0797	-1334	-152	-1486
0.3H	-0.843	1460	-41857	-40397	0.0694	-1162	-579	-1741
0.4H	0.059	-102	-50311	-50413	0.0497	-832	-1421	-2253
0.5H	0.434	-753	-56894	-57647	0.0305	-511	-2852	-3364
0.6H	0.480	-831	-60037	-60868	0.0150	-252	-4621	-4873
0.7H	0.363	-629	-57400	-58030	0.0042	-70	-6390	-6460
0.8H	0.198	-344	-46761	-47104	-0.0027	45	-7380	-7335
0.9H	0.060	-104	-27010	-27114	-0.0075	126	-6048	-5922
Bottom	0.000	0	0	0	-0.0124	207	0	207

Program Authors: Last Revised Reviewed By:

TAB & DOC 1/19/2006 TMD

Load Case #4-Full of Water, w/Lid, ignore Backfill

Add the effects of shear @ the top of the tank to LC #1

At the top of the wall - Coefficient from Table A-8=

-8.07 #

(Coef. A-8 @ 0.0H)(VR/H) = (Ring Force from LC#1)

V= -20 # VR/H= -33 # VH= -321 #

(For Ring Force) (For Moment)

_	A-8 Coef.	Delta _{RF} (#)	LC#1 RF (#)	Total RF (#)	A-9 Coef.	Delta _{mom} (#-ft/ft)	LC#1 Moment (#-ft/ft)	Total Moment (#-ft/ft)
Top	-8.07	268	-268	0	0	0	0	0
0.1H	-4.95	164	8429	8593	0.065	-21	12	-9
0.2H	-2.48	82	17018	17101	0.080	-26	139	114
0.3H	-0.84	28	25583	25611	0.069	-22	532	509
0.4H	0.06	-2	33528	33526	0.050	-16	1304	1288
0.5H	0.43	-14	39970	39956	0.031	-10	2618	2608
0.6H	0.48	-16	43647	43631	0.015	-5	4241	4237
0.7H	0.36	-12	42679	42667	0.004	-1	5865	5864
0.8H	0.20	-7	35279	35272	-0.003	1	6773	6774
0.9H	0.06	-2	20556	20554	-0.008	2	5551	5553
Bottom	0	0	0	0	-0.012	4	0	4

Envelope of Ring Forces

_	LC#1	LC#2	LC#3	LC#4	Max	Min
Top	-268	-13987	0	0	0	-13987
0.1H	8429	-23376	-14805	8593	8593	-23376
0.2H	17018	-32632	-28342	17101	17101	-32632
0.3H	25583	-41857	-40397	25611	25611	-41857
0.4H	33528	-50311	-50413	33526	33528	-50413
0.5H	39970	-56894	-57647	39956	39970	-57647
0.6H	43647	-60037	-60868	43631	43647	-60868
0.7H	42679	-57400	-58030	42667	42679	-58030
0.8H	35279	-46761	-47104	35272	35279	-47104
0.9H	20556	-27010	-27114	20554	20556	-27114
Bottom	0	0	0	0	0	0

	Tension	Compression	
Bottom	0	0	
0.9H	21	-27	
0.8H	35	-47	controls
0.7H	43	-58 ,/	CONTION
0.6H	(44	-61)	
0.5H	40	-58	
0.4H	34	-50	
0.3H	26	-42	
0.2H	17	-33	
0.1H	9	-23	
Ton	0	-14	

Project Name LPC - Upper System Tank Project # 16194 Prepared By WWY Date 8/23/2016 Program Authors: T Last Revised Reviewed By:

TAB & DOC 1/19/2006 TMD

Envelope of Moments

	LC#1	LC#2	LC#3	LC#4	Max	Min
Top	0	0	0	0	0	0
0.1H	12	-13	-1096	-9	12	-1096
0.2H	139	-152	-1486	114	139	-1486
0.3H	532	-579	-1741	509	532	-1741
0.4H	1304	-1421	-2253	1288	1304	-2253
0.5H	2618	-2852	-3364	2608	2618	-3364
0.6H	4241	-4621	-4873	4237	4241	-4873
0.7H	5865	-6390	-6460	5864	5865	-6460
0.8H	6773	-7380	-7335	6774	6774	-7380
0.9H	5551	-6048	-5922	5553	5553	-6048
Bottom	0	0	207	4	207	0

Project No. 16194 Sheet No.

.

_____Once

Project LPC - Upper System Tank

Prepared By WWY

Date 8/19/16

Design of Wall Steel

Ring Steel

- Compression

- Tension

$$A_s = 44.0^k / 0.9.60 \text{ KSI} = 0.82 \text{ IN}^2$$

USE #6 BARS @ 12" o.c. Each Face = 0,88 12 \ \tag{0.82 N2 i.0K

minimum shrinkage Steel = 0.005 (12")(12") = 0.72 IN3/ft

USE #6 BARS @ 12"o.c. Each Face over full height of wall

Ft OK (see Spreadsheet)

Project No. 16194 Sheet No.

Project LPC - Upper System Tank

Prepared By WWY

Date 8/22/16

Design of Wall Steel

Moment Reinforcing

- Steel at Interior Face

$$M_v = 7 K-ft$$

$$\frac{m_{v}}{\phi f_{c}^{2} b d^{2}} = \frac{7k \cdot f \cdot 12}{0.9 \cdot 4.5 \cdot 12^{*} \cdot 9.5^{2}} = 0.019151$$

W = 0.0200 [Table A-20]

Pmin (temp. shrinkage) = 0.003

USF #6 BAR @ 12" O.C. E.F.

* This steel also works for exterior face

Shear Strength of Wall

$$V_{\nu} = 0.236 (1.6) (62.4 \text{ pcf}) (16^2) \cdot 1.69 = 10.2^k \angle 11.4^k : ok$$

coeff. PCA Table A-12

JOB TITLE: LPC - Upper System Tank BUILDING LOCATION : Liberty, UT

ENGINEERS

9:45 AM 23-Aug-16

16194 WWY

JOB #: PREPARED BY:

CONCRETE DEVELOPMENT AND LAP SPLICE DESIGN TABLE
BASED ON CHAPTER 12 OF THE 2011 ACI 318
Author: Matt McBride

Version: June 17, 2013

Concrete Properties

For horizontal reinforcement placed such that more than 12 in. of fresh concrete is cast below the development length or splice (i.e. Top Splice) = 1.3 - Otherwise = 1.0

For Epoxy-coated bars or wires with cover less than 3db, or clear spacing less than 6db = 1.5 - For all other Epoxy-coated bars or wires = 1.2 -Otherwise = 1.0 When Light-weight Aggregate Concrete is used = 0.75 - Otherwise = 1.0 For No. 6 smaller bars and deformed wires = 0.8 - Otherwise = 1.0

Rebar Properties fy = 60000 psi

	CONCRETE REINFORCING DEVELOPMENT & SPLICE LENGTHS	BAR SIZE	#6 #7 #8 #9 #10 #11 #14 #18	14 15 1cm 15 1cm 15 1cm 15 1cm 16 1cm 16 1cm	33 43 12 48 62 13 55 72 15 62 81 17 69 19 76 30 96 38 124 49 49	33 43 12 48 62 13 55 72 15 62 81 17 69 19 76 30 96 38 124 49 49	33 43 16 48 62 19 55 72 22 82 81 25 69 27 76 30 96 38 124 49	20 26 12 29 38 13 33 43 15 37 48 17 42 19 46 30	43 56 16 63 82 19 72 94 22 81 105 25 90 27 98 30 125 38 161 49	20 26 12 32 42 13 42 55 15 53 69 17 69 19 76 30
			6#						-	1011.00451
	THS		_					-		
	E LENG	SIZE	#8	9337	-	1000		-		
	SPLICE	BAR							Total I	557
	ENT &		2#	-s	62	62	62	38	82	42
	LOPM			Pl	48	48	48	59	63	32
	DEVE			l _{dh}			16	12	16	12
	CING		9#	_s				26		26
	CONCRETE REINFOR			_P	33	33	33	20	43	20
				-la	10	10	14	10	14	10
			#2	_s	36	36	36	22	47	22
				_P	28	28	28	17	36	17
	8			-fp	8	ω	1	80	11	80
			#	_s	29	29	29	18	38	18
			L	_P	22	22	22	14	29	14
				<u>-</u>	80	∞	ω	8	80	80
			#3	_s	17 22	22	22	16	29	16
		L		_p		17	17	12	22	12
		Concrete		Strength	3000 psi	3000 psi	3000 psi	3000 psi	3000 psi	3000 psi
		Con	1	Туре	NWC	NWC	NWC	NWC	NWC	NWC
			Bar Location		Vert. Wall Bars, Fill on Metal Deck	Horiz. Wall Bars, Footing Top Bars	Beam Bottom Bars, Column Bars	Footing Bottom Bars	Beam Top Bars	Slab on Grade

		_∞	_6	43	43	43		43	\neg
		#18	₽	107	107	107		139	
		4	_ E	33	33	33		33	
		#14	_p	84	84	84		108	
			_ 6	26	26	26	26	26	26
		#11	_s						
			_p	99	99	99	40	85	99
			-f	17	17	24	17	24	17
		#10	_s						
			_P	09	09	09	36	78	09
			- ₽	15	15	21	15	21	15
		6#	_s	70	70	70	43	91	09
			P	24	54	54	33	70	46
SH			- h	13	13	19	13	19	13
CONCRETE REINFORCING DEVELOPMENT & SPLICE LENGTHS	ZE	8#	<u>_s</u>	62	62	62	38	81	47
ICE L	BAR SIZE		Pl	48	48	48	29	62	36
ß SPL	B		-la	12	12	17	12	17	12
ENT?		4.1		22	22	22	33	20	36
LOPM			٥_	42	42	42	52	24	28
)EVE			౼	10	10	4	10	4	10
SING		9#	_s	38	38	38	23	48	23
FORC			_P	29	29	29	18	37	18
REIN			<u>-</u> 6	80	8	12	∞	12	∞
RETE		¥		31	31	31	20	40	20
SONC			_p	24	24	24	15	31	15
			-lg	7	7	6	7	6	7
		#	_s	25	25	25	16	33	16
			Pl	19	19	19	12	25	12
			-la	7	7	7	7	7	7
		#3		20	20	15 20	16	25	12 16
			_p	15	15		12	19	
	Concrete		Strength	4000 psi	4000 psi	4000 psi	4000 psi	4000 psi	4000 psi
	Conc	1	Туре	NWC	NWC	NWC	NWC	NWC	NWC
		Bar Location		Vert. Wall Bars, Fill on Metal Deck	Horiz. Wall Bars, Footing Top Bars	Beam Bottom Bars, Column Bars	Footing Bottom Bars	Beam Top Bars	Slab on Grade

Bart Location Type Strength Hg Hg </th <th></th> <th>Con</th> <th>Concrete</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>اد</th> <th></th> <th></th> <th>KEIN</th> <th></th> <th></th> <th>1 </th> <th>CONCRETE REINFORCING DEVELORMENT & STEICE LENGTRO</th> <th>٥ -</th> <th>BA</th> <th>BAR SIZE</th> <th>2</th> <th>2</th> <th></th> <th>\top</th>		Con	Concrete						اد			KEIN			1	CONCRETE REINFORCING DEVELORMENT & STEICE LENGTRO	٥ -	BA	BAR SIZE	2	2													\top
Type Strength l _d l _g				L	#3			#	Г		#2	Г		9#			2#	П		8#	H		6#	H	#	10	Н	#	11	Н	#14		#18	П
NWC 4500 psi 14 18 7 18 23 6 23 30 8 27 35 9 40 52 11 45 59 13 51 6 14 5	Bar Location	Туре	Strength	_0		-fp	P	_s	<u>-</u> 6	P _I		<u>-</u> F	_p	_s	_6	<u>P</u>		<u>-</u>	P	_s	-F	_p				55150			0000					20
NWC 4500 psi 14 18 7 18 23 6 23 30 8 27 35 9 40 52 11 45 59 13 10 6 14 55 14 50 psi 14 18 23 6 20 32 11 12 12 12 12 12 12 12 12 12 12 12 12	Vert. Wall Bars, Fill on Metal Deck		4500 psi	_		7	18	23	9	23	30	8	27	35	6	40	52	7	45	59	A-200	_			99	-	_	25	2			9020		
NWC 4500 psi 14 18 7 18 23 9 23 30 11 27 35 13 40 52 16 45 59 18 51 66 20 56 20 56 20 56 79 71 71 72 14 18 8 17 22 9 24 31 13 14 15 15 16 15 16 16 16 17 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Horiz. Wall Bars, Footing Top Bars	NWC	4500 psi			7	18	23	9	23	30	8	27	35	6	40	52	7	45	59	7500000				92	-	_	22	.0	-	_			
NWC 4500 psi 12 16 16 7 12 16 6 14 18 8 17 22 9 24 31 17 25 18 18 18 18 18 18 18 18 18 18 18 18 18	Beam Bottom Bars, Column Bars	NWC	4500 psi			7	18	23	6	23	30	11	27	35	13	40	52	16	45	59			-		92	2	-	22	N	_	-			~ I
NWC 4500 psi 12 16 17 12 16 18 18 18 18 18 18 18 18 18 18 18 18 18	Footing Bottom Bars	NWC	4500 psi		_	7	12	16	9	14	18	8	17	22	6	24	31	±	27	35					46	_		37	C/	55				- 1
NWC 4500 psi 12 16 7 12 16 6 14 18 8 17 22 9 27 35 11 34 44 13 44 57 14 56 16 62	Beam Top Bars	NWC	4500 psi	_	23	7	24	31	6	30	39	7	35	46	13	51	99	16	59	11		-			73	- 2		00	N	- 52	_	(2.5)	1242	0
	Slab on Grade	NWC	4500 psi			7	12	16	9	14	18	8	17	22	6	27	35	-	34	4		_			92	_	-	22	N	70			_	

								د	S	A H H	CONCRETE REINFORCING DEVELOPMENT & SPLICE LENGTHS	220	200	EVEL	CFNE	ŏ Z	SPEIL	7 7	200	n													_
	Con	Concrete	L														BAR	R SIZE	,,,														
Bar Location	,	:	L	#3		L	#			£			9#	Г		4,1	H		8#	H		6#		#	#10		#1,	11		#14		#18	П
	Type	Strength	_p		-lah	Pl	_s	l _{dh}	Pl	_s	_f	P	_s	<u>-</u> 5	P	_s	_ p	P	-s	-fs	P	- 8	-fb	P	l lo	_ _=	_ _p	s	£	n P	_ _#	 _p	f
Vert. Wall Bars, Fill on Metal Deck	NWC	5000 psi	13	17	9	17	22	6	22	29	7	56	34	6	38	49	9	43	99	12	48		13	54	~	15 5	59	-	23 7	75 3	30	96	38
Horiz. Wall Bars, Footing Top Bars	NWC	5000 psi	13 17	17	9	17	22	9	22	29	7	56	34	6	38	49	10	43	99	12	48		13	24		15 5	59		23 7	75 3	30	96	38
Beam Bottom Bars, Column Bars	NWC	5000 psi	13	13 17	9	17	22	8	22	29	11	26	34	13	38	49	15	43	99	17	48		19	54	7	21 5	59	.,	23 7	75 3	30	96	38
Footing Bottom Bars	NWC	5000 psi	12	12 16	9	12	16	9	13	17	7	16	21	6	23	30	9	56	34	12	59		13	32	-	15 3	36	.,	23				
Beam Top Bars	NWC	5000 psi	17	22	9	23	30	8	28	36	11	34	44	13	49	64	15	56	73	17	63	,	19	69	-2	21 7	92	- 1	23	97 3	30 1:	125 3	38
Slab on Grade	NWC	5000 psi	12	12 16	9	12	16	9	13	17	7	16	21	6	25	33	10	32	42	12	41		13	54	_	15	59	.,	23			-	

16194 WWY

JOB #: PREPARED BY:

CONCRETE LAP SPLICE TABLE

JOB TITLE: LPC - Upper System Tank - Horizontal Wall Reinforcement BUILDING LOCATION: Liberty, UT

ENGINEERS

Horizontal Wall Reinforcement

CONCRETE DEVELOPMENT AND LAP SPLICE DESIGN TABLE
BASED ON CHAPTER 12 OF THE 2011 ACI 318
Author: Matt McBride

Version: June 17, 2013

Concrete Properties

For horizontal reinforcement placed such that more than 12 in. of fresh concrete is cast below the development length or splice (i.e. Top Splice) = 1.3 - Otherwise = 1.0

For Epoxy-coated bars or wires with cover less than 3db, or clear spacing less than 6db = 1.5 - For all other Epoxy-coated bars or wires = 1.2 -Otherwise = 1.0 || || ° →

£ 0.1.0.

When Light-weight Aggregate Concrete is used = 0.75 - Otherwise = 1.0 For No. 6 smaller bars and deformed wires = 0.8 - Otherwise = 1.0| | | | >

Rebar Properties fy = 60000 psi

CONCRE	CONCRE	CONCRE	CONCRE	CONCRE	CONCRETE REINFORCING DEVELOPMENT & SPLICE LENGTHS	CRE		E REI	NFOR	SCING	DEVE	ELOPI	MENT	& SP	LICE	ENG.	LHS												
	1													_	BAR SIZE	ΙZΕ													
		#3		#	#	H	#2	5	L	9#		Ц	47			#8			6#			#10			#11		#14		#18
_P		_s	_f ₀	P	l l	ol He	s P	-F	-P	_s	-	_P	_s	- 6	_P		바	_P	_s	_ p	P	_s	_ f	_0	_s	_ 6	P	_ f	_p
22		59	œ	29 3	38 8	8	36 47	10	0 43	3 56	12	63	82	13	72	94	15	8	105	17	90		19	86		30	125	38	191
22	1	59	ω	29	38	8 36	6 47	7 10	0 43	3 56	12	63	82	13	72	94	15	8	105	17	90		19	86		30	125	38	161
22	_	59	80	29 3	38 1	11 36	36 47	7 14	4 43	3 56	16	9 63	8 82	19	72	94	22	8	105	25	90		27	86		30	125	38	191
13		13 17	8	18 2	23 8	8 2	22 29	9 10	0 26	34	12	38	49	13	43	26	15	49	64	17	54		19	59		30			
28		36	80	38 4	49 1	11 47	7 61	1 14	1 56	5 73	16	8	105	19	93	121	22	105	137	25	116		27	128		30	162	38	509
13	_	13 17	80	18 2	23 8	8	22 29	9 10	0 26	34	12	42	52	13	54	70	15	69	6	17	90		19	86		30			

				J	CONCRETE REINFORCING DEVELOPMENT & SPLICE LENGTHS	RETE!	REINF	ORCI	NG D	EVEL	OPME	NT &	SPLI	SE LE	NGTH	S												
													BA	BAR SIZE	111													
#3		_	#			#2	П		9#			2#			8#			6#	-	#	#10	-	#	_		#14	75-	#18
	_	lah la	_s	-h	P	_s	-fs	_p	_s	_ f	P	_s	_ f	_P	_s	<u>-</u>	ъ		- -		-F	_P	_s	_ 6	_P	- 6	_P	_6
25		7 25	33	7	31	40	80	37	48	10	54	70	12	62	81	13	70	91	15 7	82	17	7 85		26	108	33	139	43
25	,``	7 25	33	7	31	40	8	37	48	10	54	70	12	62	81	13	02	91	15 7	78	17	7 85	10	56	108	33	139	43
25		7 25	33	ი	31	40	12	37	48	4	54	70	17	62	81	19	07	91	21 7	82	24	85		56	108	33	139	43
16		7 15	20	7	19	25	80	23	30	10	33	43	12	37	48	13	42	25	15	47	17	7 51		56				
33	,~	7 33	43	6	41	53	12	49	64	41	71	95	17	81	105	19	91	118	21 1	101	24	11 11	-	56	141	33	181	43
4000 psi 12 16	7	7 15	20	7	19	25	8	23	30	10	36	47	12	47	61	13	09	78 1	15 7	82	17	7 85		26	2005			

								ű	ONCR	ETE F	EINF	ORCII	NG DE	EVEL	JMMC	CONCRETE REINFORCING DEVELOPMENT & SPLICE LENGTHS	SPLIC	ELEN	GTHS													
	Con	Concrete															BAF	BAR SIZE														
1				¥			#4	П		#2	Н		9#	П		47	H		8#		#		Н	#10		Ц	#1	_	97	#14	_	#18
Bar Location	Type	Strength	_P	_s	<u>-</u> 6	_p	_s	-tp	Р	- s	_6	_0	_s	- up-	Pl	_s	-faj	P		l н	8 P	-f	P -	s	l _d	_P	-l	_6	Pl	ldh	P	_€
Vert. Wall Bars, Fill on Metal Deck	NWC	4500 psi	18	23	7	24	31	9	30	39	8	35	46	6	51	99	1	2 69	1 11	13 6	98 99	5 14	1 73		16	8		25	102	31	13.	40
Horiz. Wall Bars, Footing Top Bars	NWC	4500 psi	18	23	7	. 24	31	9	30	39	8	35	46	б	21	99	7	29	, 77	13 6	98 99	14	73		16	8		25	102	31	131	40
Beam Bottom Bars, Column Bars	NWC	4500 psi	18	23	7	24	31	6	30	39	1	35	46	13	21	99	16	26	1 11	18 6	98 99	3 20	73	_	22	8		25	102	31	131	40
Footing Bottom Bars	NWC	4500 psi	12	16	7	14	18	9	18	23	8	21	27	6	31	40	1	35 4	46	13 4	40 52	14	44	_	16	48		25				
Beam Top Bars	NWC	4500 psi	23	30	7	31	40	6	38	49	11	46	09	13	29	87	16	92	99	18	86 112	2 20	95		22	104	4	25	133	3 31	171	40
Slab on Grade	NWC	4500 psi	12	16	7	14	18	9	18	23	8	21	27	6	34	44	=	44	57 1	13 5	57 74	14	1 73		16	8		25				
													١																			

		#18	l _{dh}	38	38	38		38	
		#,	P	125	125	125		162	
		#14	ldh	30	30	30		30	
		#	P	97	97	97		126	
			౼	23	23	23	23	23	23
		#11	-s						
			Pl	92	92	9/	46	66	9/
			바	15	15	21	15	21	15
		#10	_s						
			_P	69	69	69	42	90	69
			바	13	13	19	13	19	13
		6#	_s						
			P	63	63	63	38	81	24
윈			_ p	12	12	17	12	17	12
5	ш	8#	_8	73	73	73	44	94	22
	R SIZE		P	99	99	99	34	72	42
SP	BAR (Г	-la	10	10	15	9	15	10
CONCRETE REINFORCING DEVELOPMENT & SPLICE LENGT		2#	_s	64	64	64	38	82	43
OPME			Pl	49	49	49	59	63	33
EVEL			-fb	6	6	13	6	13	6
NG D		9#	_s	44	44	44	26	22	26
ORC			P	34	34	34	20	44	20
AEIN AEIN			_f _P	7	7	11	7	11	7
ETE		帮	_s	36	36	36	22	47	22
ONCR			_p	28	28	28	17	36	17
ၓ		Г	-5	9	9	∞	9	8	9
		#	_s	30	30	30	18	38	18
			P	23	23	23	14	29	4
			_f	9	9	9	9	9	9
		#3	_6	22	22	22		29	16
			P	17 22	17 22	17 22	12	22	12 16
	rete		Strength	5000 psi	5000 psi	5000 psi	5000 psi 12 16	5000 psi	5000 psi
	Concrete	1	Type	NWC	NWC	NWC	NWC	NWC	NWC
		Bar Location		Vert. Wall Bars, Fill on Metal Deck	Horiz. Wall Bars, Footing Top Bars	Beam Bottom Bars, Column Bars	Footing Bottom Bars	Beam Top Bars	Slab on Grade

Project No. 16194		_Sheet No	
Project LPC - VPPer	system Tank		

W	ENGINEER structural consultar		repared By	WWY		Date8/	22/16
	DL: 150 pcf (8",				90 psf		
	# SEE S	PREAD SHEET					
	USE 8" SLAE	3 W/ 4	1" drop	panels that	are b'xb'		-

Concrete Water Tank - Roof Design

8/23/2016 9:46:06 AM

Version Date: 10/28/10

Job Title LPC - Upper System Tank

Author TAB Job #

16194

Roof Slab Design

Min Thickness

Slab Span	17.667 ft	Est. Column Thickness	16 in
h _{min}	5.94 in		
Use Slab Thickness	8 in	d	5.5 in
f'c	4500 psi	fy	60 ksi

Loads

 $\begin{array}{cccc} \text{Dead Load} & & 115 \text{ psf} \\ \text{Live Load} & & 0 \text{ psf} \\ \text{Soil Load} & & 75 \text{ psf} \\ \text{Snow Load} & & 100 \text{ psf} \\ & & W_{\text{U}} & & 388 \text{ psf} \end{array}$

Shear Capacity of Slab

Round Column Dim 16 in

b_o 67.5442 in

 V_U 121.104 kips

φV_C (No Drop Panel) 74.7616 kips NG Use Drop Panel

Drop Panel Dimension 6 ft square

New b_o 310 in

φV_C Drop Panel 343.125 kips Ok

Drop Panel Thickness 4 in

b_o 80.1106 in

 ϕV_C 153.159 kips Ok

min thickness = 2/33 = 6.43" i. 8" slab is OK [ACI 350 9.5.3.2]

Flexural Design by Direct Design Method Of ACI 318

I ₂ I _n M ₀ Exterior Span M ⁺ factor Exterior Span M ⁻ factor Interior Span M ⁺ factor Interior Span M ⁻ factor	17.667 ft 16.3337 ft 228.598 K-ft 0.63 0.75 0.35 0.65	S _d Strip Width Exterior M ⁺ factored Moment Exterior M ⁻ factored Moment Interior M ⁺ factored Moment Interior M ⁻ factored Moment	1.93 8.833 ft 144.02 k-ft 171.45 k-ft 80.009 k-ft 148.59 k-ft
Col Strip Factored Mom.		Mid Strip Factored Mom	
M ⁺ Exterior M ⁻ Interior M ⁻ Exterior Positive Moment	0.6 0.75 0.75		0.4 0.25 0.25
Column Strip Moment per foot of width Mu/φ Mu/φ As a #4 Bar Spacing #5 Bar Spacing #6 Bar Spacing #7 Bar Spacing #8 Bar Spacing	166.771 k-ft 18.8805 k-ft/ft 20.9783 k-ft/ft 251.74 k-in/ft 0.84838 in^2 1.10899 2.83 in oc 4.38 in oc 6.22 in oc 8.49 in oc 11.17 in oc	Middle Strip Moment per foot of width Mu/φ Mu/φ As a #4 Bar Spacing #5 Bar Spacing #6 Bar Spacing #7 Bar Spacing #8 Bar Spacing	111.18 k-ft 12.587 k-ft/ft 13.986 k-ft/ft 167.83 k-in/ft 0.5437 in^2 0.7107 4.41 in oc 6.84 in oc 9.71 in oc 13.24 in oc 17.44 in oc
Exterior Negative Moment Enter new d for Col strip Column Strip Moment per foot of width Mu/φ Mu/φ As a #4 Bar Spacing #5 Bar Spacing #6 Bar Spacing #7 Bar Spacing #8 Bar Spacing	9.5 248.171 k-ft 28.0959 k-ft/ft 31.2177 k-ft/ft 374.613 k-in/ft 0.68997 in^2 0.90192 3.48 in oc 5.39 in oc 7.65 in oc 10.44 in oc 13.74 in oc	Middle Strip Moment per foot of width Mu/φ Mu/φ As a #4 Bar Spacing #5 Bar Spacing #6 Bar Spacing #7 Bar Spacing #8 Bar Spacing	82.724 k-ft 9.3653 k-ft/ft 10.406 k-ft/ft 124.87 k-in/ft 0.3971 in^2 0.5191 6.04 in oc 9.37 in oc 13.30 in oc 18.13 in oc 23.87 in oc

Interior Positive Moment

Column S	Strip	92.6507 k	-ft	Middle Strip	61.767	k-ft
Moment per foot of w	ridth	10.4892 k	c-ft/ft	Moment per foot of width	6.9928	k-ft/ft
N	lu/φ	11.6546 k	c-ft/ft	Mu/φ	7.7697	k-ft/ft
N	lu/φ	139.855 k	c-in/ft	Mu/φ	93.237	k-in/ft
	As	0.44761 i	n^2	As	0.2927	in^2
	а	0.58512		а	0.3826	
#4 Bar Spa	cing	5.36 i	n oc	#4 Bar Spacing		
#5 Bar Spa	cing	8.31 i	n oc	#5 Bar Spacing	12.71	in oc
#6 Bar Spa	_	11.80 i	n oc	#6 Bar Spacing	18.04	in oc
#7 Bar Spa	cing	16.09 i	n oc	#7 Bar Spacing	24.60	in oc
#8 Bar Spa	cing	21.18 i	n oc	#8 Bar Spacing	32.39	in oc

Interior Negative Moment

Enter new d for Col strip	9.5 in		
Column Strip	215.082 k-ft	Middle Strip	71.694 k-ft
Moment per foot of width	24.3498 k-ft/ft	Moment per foot of width	8.1166 k-ft/ft
Mu/φ	27.0553 k-ft/ft	Mu/φ	9.0184 k-ft/ft
Mu/φ	324.664 k-in/ft	Mu/φ	108.22 k-in/ft
As	0.59385 in^2	As	0.3418 in^2
а	0.77627	а	0.4468
#4 Bar Spacing	4.04 in oc	#4 Bar Spacing	7.02 in oc
#5 Bar Spacing	6.26 in oc	#5 Bar Spacing	10.88 in oc
#6 Bar Spacing	8.89 in oc	#6 Bar Spacing	15.45 in oc
#7 Bar Spacing	12.12 in oc	#7 Bar Spacing	21.06 in oc
#8 Bar Spacing	15.96 in oc	#8 Bar Spacing	27.73 in oc

How Far past support must negative moment reinf. Extend?

Column Strip	5.39011 ft	Use	6 ft
Middle Strip	3.59341 ft	Use	4 ft

Project No. 16174 Sheet No.

Project LPC-Upper System Tank

Prepared By WWY

Date 8/22/16

Column Design

Loads on Column uses PCA Table A-13 coeff. = 1,320

Dead Load = 115 psf (17-8")2 (1+0.2.0.712) (1.320) = 54.2"

Snow Load = 100 psf (17-8")2 (1.320) = 41.2"

Soil = 75 psf (17-8")2 (1+ 0.2.712) (1,320) = 35.3"

E = π (1.0)(62.4 lbs/43) (8"/12) + 0.4 (0.712) (1.25) (π.150ρcf. (16"/12) /4)= 162 ρμ

* SEE ENERCALC SOLUTION

USE 16" \$\Phi column W/ (8) #5 Bais S.R. = 0.760

USE 14" [column W/ (8) # 6 Bars S.R. = 0.857

* Transverse Reinf. (ACI 350 21.4.4)

Ps = 0.12 (4500) /60,000 = 0.009

Spacing = 14"/4 = 3.5"

$$S_{x} = 4 + \left(\frac{14 - 12}{3}\right) = 4.667$$
"

PER 10.9.3 $A_9 = \pi \cdot 16^{3}/4 = 201$ $A_c = \pi \cdot 13.5^{3}/4 = 143$ M^2

$$P_s = 0.45 \left(\frac{201}{143} - 1 \right)^{4.5} / _{60} = 0.0137$$

Reald pitch of #3 spiral = 0.0137 = $\frac{0.11(\pi)(13.5^{\circ})}{142.4}$ Spend = 2.38"

Rea'd pitch of 44 Spiral = 0.0137 = 0.20 (11) (13.5") Spead = 4.32"

Spacing of #3 hoops = $0.009 = \frac{0.11(77)(13.5")}{142.4}$ Special = 3.62"

USE #4 spiral W/4" pitch or #3 hoops @ 31/2" o.c.

Project ID:

Printed: 22 AUG 2016, 1:47PM

Concrete Column

rojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6
ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver:6.16.6.7

Lic. #: KW-06002489

ENGINEERS

Description: Column Des

Column Design - Circular

Code References

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10

Load Combinations Used: ASCE 7-10

General Information

f'c : Concrete 28 day strength	=	4.50 ksi
E=	=	3,122.0 ksi
Density	=	150.0 pcf
β	=	0.8250
fy - Main Rebar	=	60.0 ksi
É - Main Rebar	=	29,000.0 ksi
Allow. Reinforcing Limits		ASTM A615 Bars Used
Min. Reinf.	=	1.0 %
Max. Reinf.	=	8.0 %

Overall Column Height End Fixity

Height = (18.0 ft) Top & Bottom Pinned

Brace condition for deflection (buckling) along columns:

X-X (width) axis:

Unbraced Length for X-X Axis buckling = 18.0 ft, K = 1.0

Y-Y (depth) axis:

Unbraced Length for X-X Axis buckling = 18.0 ft, K = 1.0

Column Cross Section

Column Dimensions:

16.0in Diameter, Column Edge to Rebar

Edge Cover = 2.50in

Column Reinforcing:

8 - #5 bars

Applied Loads

Entered loads are factored per load combinations specified by user.

Column self weight included: 3,769.91 lbs * Dead Load Factor

AXIAL LOADS . .

Axial Load at 18.0 ft above base, Xecc = 3.0in, Yecc = 3.0in, D = 54.20, S = 41.20, H = 35.30 k

BENDING LOADS . . .

Lat. Uniform Load creating Mx-x, E = 0.1620 k/ft

DESIGN SUMMARY

1
1
1
/
ft
ft
-ft
е

Maximum SERVICE Load Reactions . .

Top along Y-Y	1.815 k	Bottom along Y-Y	1.815 k
Top along X-X	2.438 k	Bottom along X-X	1.815 k

Maximum SERVICE Load Deflections . . .

Along Y-Y -0.1179 in at for load combination: +D+S+H

Along X-X -0.1179 in at for load combination: +D+S+H

General Section Information $. \varphi = 0.750$ $\beta = 0.8250$ $\theta = 0.850$ $\rho : \%$ Reinforcing 1.233 % Rebar % Ok

p: % Reinforcing 1.233 % F Reinforcing Area 2.480 in^2 Concrete Area 201.062 in^2

Governing Load Combination Results

Governing Factored	Mom	ent	Dist. fr	rom	Axi	al Load			Ве	ending Anal	ysis k-ft		l Ifi	lization
Load Combination	X-X	Y-Y	base	ft	Pu	φ * Pn	δх	δx * Mux	δУ	δy * Muy	Alpha (deg)	δ Μυ		Ratio
+1.40D+1.60H	Actual	Actual	17.88	}	137.64	294.86	1.000	-32.87	1.000	32.87	45.000	46.48	99.99	0.465

Project ID:

Printed: 22 AUG 2016, 1:47PM

Concrete Column

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6
ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver.6.16.6.7

Licensee: ARW ENGINEERS

Lic. #: KW-06002489

Description:

ENGINEERS

Column Design - Circular

Governing	Load	Combination	Results

Governing Factored	Mom	nent	Dist. from	Axia	al Load			Ben	ding Anal	ysis k-ft		1 14:1	ization
Load Combination	X-X	Y-Y	base ft	Pu (p * Pn	δx	δx * Mux	δу 8	Sy * Muy	Alpha (deg)	δ Mu	φ Mn	Ratio
+1.20D+0.50Lr+1.60L+1.60H	Actual	Actual	17.88	126.04	294.86	1.000	-30.18	1.000	-30.18	45.000	42.68	99.99	0.427
+1.20D+1.60L+0.50S+1.60H	Actual	Actual	17.88	146.64	294.86	1.000	-35.29	1.000	-35.29	45.000	49.91	99.99	0.499
+1.20D+1.60Lr+0.50L+1.60H	Actual	Actual	17.88	126.04	294.86	1.000	-30.18	1.000	-30.18	45.000	42.68	99.99	0.427
+1.20D+1.60Lr+0.50W+1.60H	Actual	Actual	17.88	126.04	294.86	1.000	-30.18	1.000	-30.18	45.000	42.68	99.99	0.427
+1.20D+0.50L+1.60S+1.60H	Actual	Actual	17.88	191.96	253.34	1.158	-53.90	1.158	-53.90	45.000	76.23	100.35	0.760
+1.20D+1.60S+0.50W+1.60H	Actual	Actual	17.88	191.96	253.34	1.158	-53.90	1.158	-53.90	45.000	76.23	100.35	0.760
+1.20D+0.50Lr+0.50L+W+1.60H	Actual	Actual	17.88	126.04	294.86	1.000	-30.18	1.000	-30.18	45.000	42.68	99.99	0.427
+1.20D+0.50L+0.50S+W+1.60H	Actual	Actual	17.88	146.64	294.86	1.000	-35.29	1.000	-35.29	45.000	49.91	99.99	0.499
+1.20D+0.50L+0.20S+E+1.60H	Actual	Actual	17.88	134.28	230.99	1.509	-48.34	1.000	-32.22	45.000	58.10	100.03	0.581
+0.90D+W+0.90H	Actual	Actual	17.88	83.94	297.46	1.000	-20.00	1.000	-20.00	45.000	28.29	99.92	0.283
+0.90D+E+0.90H	Actual	Actual	17.88	83.94	262.93	1.267	-25.12	1.000	-20.00	45.000	32.11	100.39	0.320
Maximum Reactions									No	te: Only non-	zero read	tions are	listed.

Maximum Reactions			Note: Only non-zero reactions are lis					
	Reaction ald	ong X-X Axis	Reaction alo	ng Y-Y Axis	Axial Reaction			
Load Combination	@ Base	@ Тор	@ Base	@ Top	@ Base			
+D+H	1.243	1.243 k	1.243	1.243 k	93.270 k			
+D+L+H	1.243	1.243 k	1.243	1.243 k	93.270 k			
+D+Lr+H	1.243	1.243 k	1.243	1.243 k	93.270 k			
+D+S+H	1.815	1.815 k	1.815	1.815 k	134.470 k			
+D+0.750Lr+0.750L+H	1.243	1.243 k	1.243	1.243 k	93.270 k			
+D+0.750L+0.750S+H	1.672	1.672 k	1.672	1.672 k	124.170 k			
+D+0.60W+H	1.243	1.243 k	1.243	1.243 k	93.270 k			
+D+0.70E+H	1.243	1.243 k	0.222	2.264 k	93.270 k			
+D+0.750Lr+0.750L+0.450W+H	1.243	1.243 k	1.243	1.243 k	93.270 k			
+D+0.750L+0.750S+0.450W+H	1.672	1.672 k	1.672	1.672 k	124.170 k			
+D+0.750L+0.750S+0.5250E+H	1.672	1.672 k	0.907	2.438 k	124.170 k			
+0.60D+0.60W+0.60H	0.746	0.746 k	0.746	0.746 k	55.962 k			
+0.60D+0.70E+0.60H	0.746	0.746 k	0.275	1.766 k	55.962 k			
O Only	0.753	0.753 k	0.753	0.753 k	57.970 k			
_r Only		k		k	k			
_ Only		k		k	k			
S Only	0.572	0.572 k	0.572	0.572 k	41.200 k			
W Only		k		k	k			
E Only		 k	1 /58	1 458 6	k			

E Only			k	1.458	1.458 k	k	
H Only		0.490	0.490 k	0.490	0.490 k	35.300 k	
Maximum Moments					Note: Only non-zero reactions are I		
	Momen	t About X-X Ax	is		Moment Ab	oout Y-Y Axis	
Load Combination	@ Base	@ Top			@ Base	@ Тор	
+D+H			k-ft			k-ft	
+D+L+H			k-ft			k-ft	
+D+Lr+H			k-ft			k-ft	
+D+S+H			k-ft			k-ft	
+D+0.750Lr+0.750L+H			k-ft			k-ft	
+D+0.750L+0.750S+H			k-ft			k-ft	
+D+0.60W+H			k-ft			k-ft	
+D+0.70E+H			k-ft			k-ft	
+D+0.750Lr+0.750L+0.450W+H			k-ft			k-ft	
+D+0.750L+0.750S+0.450W+H			k-ft			k-ft	
+D+0.750L+0.750S+0.5250E+H			k-ft			k-ft	
+0.60D+0.60W+0.60H			k-ft			k-ft	
+0.60D+0.70E+0.60H			k-ft			k-ft	
D Only			k-ft			k-ft	
Lr Only			k-ft			k-ft	
L Only			k-ft			k-ft	
S Only			k-ft			k-ft	
W Only			k-ft			k-ft	
E Only			k-ft			k-ft	
H Only			k-ft			k-ft	

Project ID:

Printed: 22 AUG 2016, 1:47PM

Concrete Column

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6 ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver:6.16.6.7

Lic. #: KW-06002489

Licensee : ARW ENGINEERS

Description: Column Design - Circular

Maximum	Deflections	for Load	Combinations
---------	-------------	----------	--------------

Load Combination	Max. X-X De	eflection	Distance		Max. Y-Y Defle	ction	Distance		
+D+H	-0.0807	in	10.510	ft	-0.081	in	10.510	ft	
+D+L+H	-0.0807	in	10.510	ft	-0.081	in	10.510	ft	
+D+Lr+H	-0.0807	in	10.510	ft	-0.081	in	10.510	ft	
+D+S+H	-0.1179	in	10.510	ft	-0.118	in	10.510	ft	
+D+0.750Lr+0.750L+H	-0.0807	in	10.510	ft	-0.081	in	10.510	ft	
+D+0.750L+0.750S+H	-0.1086	in	10.510	ft	-0.109	in	10.510	ft	
+D+0.60W+H	-0.0807	in	10.510	ft	-0.081	in	10.510	ft	
+D+0.70E+H	-0.0807	in	10.510	ft	-0.055	in	11.114	ft	
+D+0.750Lr+0.750L+0.450W+H	-0.0807	in	10.510	ft	-0.081	in	10.510	ft	
+D+0.750L+0.750S+0.450W+H	-0.1086	in	10.510	ft	-0.109	in	10.510	ft	
+D+0.750L+0.750S+0.5250E+H	-0.1086	in	10.510	ft	-0.089	in	10.752	ft	
+0.60D+0.60W+0.60H	-0.0484	in	10.510	ft	-0.048	in	10.510	ft	
+0.60D+0.70E+0.60H	-0.0484	in	10.510	ft	-0.023	in	12.081	ft	
D Only	-0.0489	in	10.510	ft	-0.049	in	10.510	ft	
Lr Only	0.0000	in	0.000	ft	0.000	in	0.000	ft	
L Only	0.0000	in	0.000	ft	0.000	in	0.000	ft	
S Only	-0.0372	in	10.510	ft	-0.037	in	10.510	ft	
W Only	0.0000	in	0.000	ft	0.000	in	0.000	ft	
E Only	0.0000	in	0.000	ft	0.039	in	9.060	ft	
H Only	-0.0318	in	10.510	ft	-0.032	in	10.510	ft	
01									

Sketches

Project ID:

Printed: 22 AUG 2016, 1:47PM

Concrete Column

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6
ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver.6.16.6.7

Licensee : ARW ENGINEER

Lic. #: KW-06002489

ENGINEERS

Description: Column Design - Circular

Project ID:

Printed: 22 AUG 2016. 1:47PM

Concrete Column

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6 ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver.6.16.6.7

Lic. #: KW-06002489

Licensee: ARW ENGINEERS

Description : Column Design - Circular

Project ID:

Printed: 22 AUG 2016. 1:46PM

Concrete Column

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6 ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver:6.16.6.7

Lic. #: KW-06002489

Column Design - Square Description:

Code References

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10

Load Combinations Used: ASCE 7-10

General Information

f'c : Concrete 28 day strength	=	4.50 ksi
E= .	=	3,122.0 ksi
Density	=	150.0 pcf
β	=	0.8250
fy - Main Rebar	=	60.0 ksi
É - Main Rebar	=	29,000.0 ksi
Allow. Reinforcing Limits		ASTM A615 Bars Used
Min. Reinf.	=	1.0 %
Max. Reinf.	=	8.0 %

Overall Column Height **End Fixity**

(18.0 ft)Top & Bottom Pinned

Brace condition for deflection (buckling) along columns:

X-X (width) axis:

Unbraced Length for X-X Axis buckling = 18.0 ft, K = 1.0

Y-Y (depth) axis:

Unbraced Length for X-X Axis buckling = 18.0 ft, K = 1.0

Column Cross Section

Column Dimensions :

14.0in Square Column, Column Edge to

Rebar Edge Cover = 2.0in

Column Reinforcing:

4 - #6 bars @ corners,, 1.0 - #6 bars top & bottom between corner bars, 1.0 - #6 bars

left & right between corner bars

Applied Loads

Entered loads are factored per load combinations specified by user.

Column self weight included: 3,675.0 lbs * Dead Load Factor

AXIAL LOADS . . .

Axial Load at 18.0 ft above base, Xecc = 3.0in, Yecc = 3.0in, D = 54.20, S = 41.20, H = 35.30 k

BENDING LOADS . . .

Lat. Uniform Load creating Mx-x, E = 0.1620 k/ft

DESIGN SUMMARY

Load Combina	-1.20D+0.50L+1.6	0S+1.60H	
Location of ma	ax.above base		17.879 ft
Maximum Stre	ss Ratio +Mu^2)^.5 / (PhiPn	^2+PhiMn^2\^ 5	0.857:1
Pu =	191.850 k	φ * Pn =	224.157 k
Mu-x =	-54.118 k-ft	φ * Mn-x =	-62.840 k-ft
Mu-y =	-54.118 k-ft	Φ * Mn-y =	63.483 k-ft
Mu Angle =	45.0 deg		
Mu at Angle =	76.534 k-ft	φMn at Angle =	89.329 k-ft
Pn & Mn values	located at Pu-Mu	vector intersection with	h capacity curve
Column Capacit	ies		
Pnmax : Nomir	ive Axial Capacity	947.44 k	
Pnmin: Nomin	ial Capacity	-211.20 k	

Governing Load Combination Results

Maximum SERVICE Load Reactions	
Maximum SERVII E I dad Paactions	

Top along Y-Y	1.815 k	Bottom along Y-Y	1.815 k
Top along X-X	2.438 k	Bottom along X-X	1.815 k

Maximum SERVICE Load Deflections . . .

Along Y-Y	-0.1184 in at	10.510 ft	above base
for load com	nbination: +D+S+H		
Along X-X	-0.1184in at	10.510ft	above base
for load oom	-biti D . O . I I		

for load combination: +D+S+H

 $\beta = 0.8250$ General Section Information . $_{\mathbb{O}}$ = 0.650 0.80

p: % Reinforcing 1.796 % Rebar % Ok Reinforcing Area 3.520 in^2

Concrete Area 196.0 in^2

Φ Pn, max: Usable Compressive Axial Capacity 492.667 k Φ Pn, min : Usable Tension Axial Capacity -137.280 k

Governing Factored	Mom	ent	Dist.	from	Axi k	al Load			Ве	ending Analy	/sis k-ft		l Ifi	lization
Load Combination X-X Y	Y-Y	base	ft	Pu	φ * Pn	δ×	δx * Mux	δУ	δy * Muy	Alpha (deg)	δ Mu		Ratio	
+1.40D+1.60H	Actual	Actual	17.8	18	137.51	263.16	1.000	-32.87	1.000	-32.87	45.000	46.48	88.61	0.524

Project ID:

Printed: 22 AUG 2016, 1:46PM

Concrete Column

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.e6 ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver:6.16.6.7 Licensee: ARW ENGINEERS

Lic. # : KW-06002489

Column Design - Square

Governing Factored	N4	ont	Diet from	Axia	al Load			Ber	nding Anal	ysis k-ft			
Load Combination	Mom X-X	ent Y-Y	Dist. from base ft	k	φ * Pn	δ×	δx*Mux		δy * Muy	Alpha (deg)	δ Μυ	Uti φ Mn	lization Ratio
+1.20D+0.50Lr+1.60L+1.60H	Actual	Actual	17.88	125.93	260.68	1.000	-30.18	1.000	-30.18	45.000	42.68	88.69	0.481
+1.20D+1.60L+0.50S+1.60H	Actual	Actual	17.88	146.53	260.68	1.000	-35.29	1.000	-35.29	45.000	49.91	88.69	0.563
+1.20D+1.60Lr+0.50L+1.60H	Actual	Actual	17.88	125.93	260.68	1.000	-30.18	1.000	-30.18	45.000	42.68	88.69	0.481
+1.20D+1.60Lr+0.50W+1.60H	Actual	Actual	17.88	125.93	260.68	1.000	-30.18	1.000	-30.18	45.000	42.68	88.69	0.481
+1.20D+0.50L+1.60S+1.60H	Actual	Actual		191.85	224.16	1.163	-54.12	1.163	-54.12	45.000	76.53	89.33	0.857
+1.20D+1.60S+0.50W+1.60H	Actual	Actual	17.88	191.85		1.163	-54.12	1.163	-54.12	45.000	76.53	89.33	0.857
+1.20D+0.50Lr+0.50L+W+1.60H	Actual	Actual	17.88	125.93	260.68	1.000	-30.18	1.000	-30.18	45.000	42.68	88.69	0.48
+1.20D+0.50L+0.50S+W+1.60H	Actual	Actual	17.88	146.53	260.68	1.000	-35.29	1.000	-35.29	45.000	49.91	88.69	0.563
+1.20D+0.50L+0.20S+E+1.60H	Actual	Actual	17.88	134.17	205.74	1.512	-48.44	1.000	-32.22	45.000	58.18	89.26	0.652
+0.90D+W+0.90H	Actual	Actual	17.88	83.86	263.16	1.000	-20.00	1.000	-20.00	45.000	28.29	88.61	0.319
+0.90D+E+0.90H	Actual	Actual	17.88	83.86	233.15	1.268	-25.15	1.000	-20.00	45.000	32.13	89.26	0.360
Maximum Reactions										ote: Only nor			
1101111					ng X-X Axis				tion along \		Axia	l Reaction	
Load Combination			@ B		@ Тор			@ Bas		@ Тор		@ Base	
+D+H				1.243	1.24				243	1.243 k		93.175 k	
+D+L+H				1.243	1.24				.243	1.243 k		93.175 k	
+D+Lr+H				1.243	1.24				.243	1.243 k		93.175 k	
+D+S+H				1.815	1.81				.815	1.815 k		134.375 k	
+D+0.750Lr+0.750L+H				1.243	1.24	3 k		1.	.243	1.243 k		93.175 k	
+D+0.750L+0.750S+H				1.672	1.67			1.	.672	1.672 k		124.075 k	
+D+0.60W+H				1.243	1.24			1.	.243	1.243 k		93.175 k	
+D+0.70E+H				1.243	1.24	3 k		0.	.222	2.264 k		93.175 k	
+D+0.750Lr+0.750L+0.450W+H				1.243	1.24	3 k		1.	.243	1.243 k		93.175 k	
+D+0.750L+0.750S+0.450W+H				1.672	1.67	2 k		1	.672	1.672 k		124.075 k	
+D+0.750L+0.750S+0.5250E+H				1.672	1.67	2 k		0	.907	2.438 k		124.075 k	
+0.60D+0.60W+0.60H			(0.746	0.74			0	.746	0.746 k		55.905 k	
+0.60D+0.70E+0.60H			(0.746	0.74			0	.275	1.766 k		55.905 k	
D Only			(0.753	0.75	3 k		0	.753	0.753 k		57.875 k	
Lr Only						k				k		k	
L Only						k				· k		k	
S Only			9	0.572	0.57	2 k		0	.572	0.572 k		41.200 k	
W Only						k				k		k	
E Only						k		1	.458	1.458 k		k	
H Only]	0.490	0.49	0 k		0	.490	0.490 k		35.300 k	
Maximum Moments									No	ote: Only nor	n-zero rea	ctions are	listed.
LO PERMANEN SONE WITH			Moment Abo	out X-X A	xis				N	Noment About Y	'-Y Axis		
Load Combination		@	Base	@ Top					@	Base	@ Тор		
+D+H						k-ft						k-ft	
+D+L+H						k-ft						k-ft	
+D+Lr+H +D+S+H						k-ft k-ft						k-ft	
+D+0.750Lr+0.750L+H						k-ft						k-ft k-ft	
+D+0.750L+0.750S+H						k-ft						k-ft	
+D+0.60W+H						k-ft						k-ft	
+D+0.70E+H						k-ft						k-ft	
+D+0.750Lr+0.750L+0.450W+H						k-ft						k-ft	
+D+0.750L+0.750S+0.450W+H						k-ft						k-ft	
+D+0.750L+0.750S+0.5250E+H						k-ft						k-ft	
+0.60D+0.60W+0.60H						k-ft						k-ft	
+0.60D+0.70E+0.60H						k-ft						k-ft	
D Only						k-ft						k-ft	
Lr Only						k-ft						k-ft	
L Only						k-ft						k-ft	
S Only						k-ft						k-ft	
W Only						k-ft k-ft						k-ft k-ft	
E Only													

Project No.	16194	

Project LPC - Upper system Tank

Prepared By WWY

Date 8/22/16

Sheet No.

Footing Design

DL: 54.2 1000 + 150 PLF (16/12) /4. IT. 18' = 58.0"

5L: 41.2k

Soil: 35.3k

SEE ENERCALC SOLUTION

USE F 6.5 X 18" thick W/ (b) #6 BARS Each Direction

Continuous Wall Footing

DL: 115 psf (17-81/2) + 150 pcf (12"/12)(17-0") = 3570 plf

SL: 100 PSf (171-81/2) = 885 Plf

Soil: 75 psf (17'-81/2) = 665 psf

USE 3'-0" x 16" Footing W/ (3) #6 BARS

Project ID:

Printed: 23 AUG 2016, 9:29AM

General Footing

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6 ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver:6.16.6.7

Lic. #: KW-06002489

Column Footing Description:

Licensee: ARW ENGINEERS

Code References

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10

Load Combinations Used: ASCE 7-10

General Information

Material Properties f'c: Concrete 28 day strength fy: Rebar Yield Ec: Concrete Elastic Modulus Concrete Density	= ;	3.0 ksi 60.0 ksi 3,122.0 ksi 145.0 pcf 0.90	Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = =	4.0 ksf No 250.0 pcf 0.30
Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf. Min. Overturning Safety Factor	=	0.750 = = 0.00180 = 1.0:1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	ft ksf ft
Min. Sliding Safety Factor Add Ftg Wt for Soil Pressure Use ftg wt for stability, moments & shears		= 1.0:1 : Yes : Yes	Increases based on footing plan dimension Allowable pressure increase per foot of depth when max. length or width is greater than	=	ksf
Add Pedestal Wt for Soil Pressure Use Pedestal wt for stability, mom & shear Dimensions		: No : No	mon max. longer of weet to greater than	= .	ft
Width parallal to Y Y Avis	6	50 ft			

Width parallel to X-X Axis	=	6.50 ft
Length parallel to Z-Z Axis	· =	6.50 ft
Footing Thickness	=	18.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	14.0 in
pz : parallel to Z-Z Axis	=	14.0 in
Height	=	in
Rebar Centerline to Edge of Co	oncrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars	=		6.0
Reinforcing Bar Size	=	#	6
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size	= =	#	6.0

Bandwidth Distribution Check (ACI 15.4.4.2)

Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a

(Applied Loads)

		D	Lr	L	S	W	Е	Н
P : Column Load DB : Overburden	= =	58.0			41.20			35.30 k ksf
1-xx 1-zz	= =							k-ft k-ft
/-x /-z	= =							k k

Project ID:

Printed: 23 AUG 2016, 9:29AM

General Footing

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6 ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver.6.16.6.7 Licensee: ARW ENGINEERS

Lic. #: KW-06002489

ENGINEERS

Description: Column Footing

	Min. Ratio	Item	Ар	plied		Capacity	Governing	Load Combina	tion
PASS	0.8503	Soil Bearing	3.4	01 ksf		4.0 ksf	+D+S+H a	bout Z-Z axis	
PASS	n/a	Overturning - X-X		0.0 k-ft		0.0 k-ft	No Overtu		
PASS	n/a	Overturning - Z-Z		0.0 k-ft		0.0 k-ft	No Overtu	10.5	
PASS	n/a	Sliding - X-X		0.0 k		0.0 k	No Sliding		
PASS	n/a	Sliding - Z-Z		0.0 k		0.0 k	No Sliding		
PASS	n/a	Uplift		0.0 k		0.0 k	No Uplift		
PASS	0.6053	Z Flexure (+X)		54 k-ft		26.688 k-ft		.50L+1.60S+1	60H
PASS	0.6053	Z Flexure (-X)		54 k-ft		26.688 k-ft		.50L+1.60S+1	
PASS	0.6053	X Flexure (+Z)		54 k-ft		26.688 k-ft		.50L+1.60S+1	
PASS	0.6053	X Flexure (-Z)		54 k-ft		26.688 k-ft	+1.20D+0	.50L+1.60S+1	60H
PASS	0.4328	1-way Shear (+X)		56 psi		82.158 psi		.50L+1.60S+1	
PASS	0.4328	1-way Shear (-X)		56 psi		82.158 psi		.50L+1.60S+1	
PASS	0.4328	1-way Shear (+Z)		56 psi		82.158 psi		.50L+1.60S+1	
PASS	0.4328	1-way Shear (-Z)		56 psi		82.158 psi		.50L+1.60S+1	
PASS	0.5813	2-way Punching		10 psi		164.317 psi		.50L+1.60S+1	
etailed Res	sults			2.0					
oil Bearing									
otation Axis Load Co	& nbination	Gross Allowable	Xecc (in	Zecc)	Actu Bottom, -Z	al Soil Bearing Stres Top, +Z	ss @ Location Left, -X	n Right, +X	Actual / Allo Ratio
(-X, +D+H		4.0	n/a	0.0	2.426	2.426	n/a	n/a	0.607
-X, +D+L+H		4.0	n/a	0.0	2.426	2.426	n/a	n/a	0.607
-X, +D+Lr+H		4.0	n/a	0.0	2.426	2.426	n/a	n/a	0.607
-X, +D+S+H)Lr+0.750L+H	4.0 4.0	n/a n/a	0.0	3.401 2.426	3.401 2.426	n/a n/a	n/a n/a	0.850 0.607
	0L+0.750S+H	4.0	n/a	0.0	3.157	3.157	n/a	n/a	0.789
-X, +D+0.60		4.0	n/a	0.0	2.426	2.426	n/a	n/a	0.607
-X, +D+0.70I		4.0	n/a	0.0	2.426	2.426	n/a	n/a	0.607
	0Lr+0.750L+0.45		n/a	0.0	2.426	2.426	n/a	n/a	0.607
)L+0.750S+0.45()L+0.750S+0.525		n/a n/a	0.0	3.157 3.157	3.157 3.157	n/a n/a	n/a n/a	0.789 0.789
	0.60W+0.60H	4.0	n/a	0.0	1.455	1.455	n/a	n/a	0.763
X-X, +0.60D+		4.0	n/a	0.0	1.455	1.455	n/a	n/a	0.364
Z, +D+H		4.0	0.0	n/a	n/a	n/a	2.426	2.426	0.607
-Z, +D+L+H		4.0	0.0	n/a	n/a	n/a	2.426	2.426	0.607
-Z, +D+Lr+H -Z, +D+S+H		4.0 4.0	0.0 0.0	n/a n/a	n/a n/a	n/a n/a	2.426 3.401	2.426 3.401	0.607 0.850
)Lr+0.750L+H	4.0	0.0	n/a	n/a	n/a	2.426	2.426	0.607
	DL+0.750S+H	4.0	0.0	n/a	n/a	n/a	3.157	3.157	0.789
Z-Z, +D+0.60		4.0	0.0	n/a	n/a	n/a	2.426	2.426	0.607
Z-Z, +D+0.70	E+H	4.0	0.0	n/a	n/a	n/a	2.426	2.426	0.607
)Lr+0.750L+0.450		0.0	n/a	n/a	n/a	2.426	2.426	0.607
)L+0.750S+0.45()L+0.750S+0.525		0.0 0.0	n/a	n/a	n/a	3.157 3.157	3.157 3.157	0.789 0.789
	0.60W+0.60H	4.0	0.0	n/a n/a	n/a n/a	n/a n/a	1.455	1.455	0.765
	0.70E+0.60H	4.0	0.0	n/a	n/a	n/a	1.455	1.455	0.364
Overturning	Stability								
otation Axis	& mbination		Overturning	Moment		Resisting Moment	Stabi	lity Ratio	Status
	IO Overturning		9			<u> </u>			
Sliding Stabi	lity								All units k
	ation Axis								

Printed: 22 AUG 2016, 3:05PM

Licensee: ARW ENGINEERS

Wall Footing

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6 ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver.6.16.6.7

Lic. #: KW-06002489

Description : Continuous Wall Footing

Code References

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10

Load Combinations Used: ASCE 7-10

General Information

Material Properties fc: Concrete 28 day so fy: Rebar Yield Ec: Concrete Elastic N Concrete Density O Values Flexure	Modulus	= = = = = = = = = = = = = = = = = = = =	4.50 ksi 60.0 ksi 3,122.0 ksi 145.0 pcf 0.90	Soil Passive F		Sliding)	= = =	4.0 ksf No 250.0 pcf 0.30
Shear Analysis Settings Min Steel % Bending F Min Allow % Temp Rei	Reinf.	=	0.750	Allow, Pressu	d on footing pth below Surf re Increase pe footing is belo	ace r foot of depth	= = = = = = = = = = = = = = = = = = = =	0.0 ft 0.0 ksf 0.0 ft
Min. Overturning Safet Min. Sliding Safety Fac AutoCalc Footing Weig	y Factor ctor	= =	1.0:1 1.0:1 Yes		d on footing re Increase pe ng is wider tha	r foot of width	=	0.0 ksf 0.0 ft
Dimensions				Adjusted Allow	able Bearin	Reinforcing	=	4.0 ksf
Footing Width	=	3.0 ft	Footing Thic	kness =	16.0 in	Bars along X-X Axis		12.00

Footing Width = 3.0 ft Footing Thickness = 16.0 in Bars along X-X Axis

Wall Thickness = 12.0 in Rebar Centerline to Edge of Concrete... Bar spacing = 12.00

Wall center offset at Bottom of footing = 3.0 in Reinforcing Bar Size = # 6

Applied Loads

The state of the s		D	Lr	L	S	W	E	Н
P : Column Load	=	3.570	0.0	0.0	0.8850	0.0	0.0	0.6650 k
OB : Overburden	=	0.0	0.0	0.0	0.0	0.0	0.0	0.0 ksf
V-x	=	0.0	0.0	0.0	0.0	0.0	0.0	0.0 k
M-zz	=	0.0	0.0	0.0	0.0	0.0	0.0	0.0 k-ft
Vx applied	=	0.0 in a	above top of footi	ng				

Project ID:

ENGINEERS

Printed: 22 AUG 2016. 3:05PM

					_					
v	v	2	ш	9	_	^	1	ŤI	n	~
A	A	a	ш			v	v	u		ч

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6 ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver.6.16.6.7 Licensee: ARW ENGINEERS

Lic. #: KW-06002489

Description:	Continuous Wall	Footing	re dicercalisas canada escal	CANCEL CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT	in and the second state of the second	THE PROPERTY OF THE PROPERTY O		LO PIER LUMBER DE	the seathern and
DESIGN S	UMMARY						Des	ign OK	
	Factor of Safety	Item		Applied		Capacity	Governing Lo	A STATE OF THE PARTY OF THE PAR	ation
PASS	n/a	Overturning - Z-Z		0.0 k	-ft	0.0 k-ft	No Ov	erturning	
PASS		Sliding - X-X		0.0 k		0.0 k	No	Sliding	
PASS	n/a	Uplift		0.0 k		0.0 k	No	Uplift	
	Utilization Ratio	ltem		Applied		Capacity	Governing Lo	oad Combin	ation
PASS	0.6855	Soil Bearing		2.742 k	sf	4.0 ksf	+D	+S+H	
PASS		Z Flexure (+X)		0.9634 k		25.171 k-ft		50L+1.60S+	-1
PASS		Z Flexure (-X)		0.7701 k		25.171 k-ft		+E+0.90H	
PASS		1-way Shear (+X)		0.0 p		100.623 psi		n/a	8
PASS		1-way Shear (-X)		2.550 p	SI	100.623 psi	+1.20D+0.	50L+1.60S+	-1
Detailed R									
Soil Bearing	A 1900					Actual Soil B	paring Strees	Actual / Alle	owahla
Rotation Ax Load C	ombination		G	ross Allowable	Xecc	-X	+X	Ratio	
, +D+H				4.0 ksf	2.639 in	0.9086 ksf	2.301 ksf		0.575
, +D+L+H , +D+Lr+H				4.0 ksf 4.0 ksf	2.639 in 2.639 in	0.9086 ksf 0.9086 ksf	2.301 ksf 2.301 ksf		0.575 0.575
, +D+S+H				4.0 ksf	2.695 in	1.058 ksf	2.742 ksf		0.686
. +D+0.750L	_r+0.750L+H			4.0 ksf	2.639 in	0.9086 ksf	2.301 ksf		0.575
	_+0.750S+H			4.0 ksf	2.682 in	1.021 ksf	2.632 ksf		0.658
, +D+0.60W , +D+0.70E-				4.0 ksf 4.0 ksf	2.639 in 2.639 in	0.9086 ksf 0.9086 ksf	2.301 ksf 2.301 ksf		0.575 0.575
	_r+0.750L+0.450W+H			4.0 ksf	2.639 in	0.9086 ksf	2.301 ksf		0.575
	_+0.750S+0.450W+H			4.0 ksf	2.682 in	1.021 ksf	2.632 ksf		0.658
	_+0.750S+0.5250E+F	ł		4.0 ksf	2.682 in	1.021 ksf	2.632 ksf		0.658
, +0.60D+0.0 , +0.60D+0.	60W+0.60H			4.0 ksf 4.0 ksf	2.639 in 2.639 in	0.5451 ksf 0.5451 ksf	1.381 ksf 1.381 ksf		0.345 0.345
Overturning				4.0 (3)	2.033 111	0.0401 K31	1.501 KSI	Units : k-ff	
Rotation Ax Load C	is & combination		Ove	rturning Moment		Resisting Moment	Stability Ratio	Stati	us
Footing Has Sliding Stal	s NO Overturning bility								
	ication Axis								
	Combination			Sliding Force		Resisting Force	Sliding SafetyRation	o Stati	us
Footing Has Footing Fle									
Flexure A	xis & Load Combina	ation Mu k-ft	Which Side?	Tension @ Bot. or Top ?	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
, +1.40D+1.	60H	1.22		Bottom	0.3456	Min Temp %	0.44	25.171	OK
, +1.40D+1.		0.881	+X	Bottom	0.3456	Min Temp %	0.44	25.171	OK
	50Lr+1.60L+1.60H	1.071	-X		0.3456	Min Temp %	0.44	25.171	OK
	50Lr+1.60L+1.60H	0.7753 1.145			0.3456	Min Temp %	0.44 0.44	25.171	OK
	60L+0.50S+1.60H 60L+0.50S+1.60H	0.8341	-X +X		0.3456 0.3456	Min Temp % Min Temp %	0.44	25.171 25.171	OK OK
	60Lr+0.50L+1.60H	1.071	-X		0.3456	Min Temp %	0.44	25.171	OK
	60Lr+0.50L+1.60H	0.7753	+X	Bottom	0.3456	Min Temp %	0.44	25.171	OK
	.60Lr+0.50W+1.60H	1.071	-X	Bottom	0.3456	Min Temp % Min Temp %	0.44	25.171	OK
	.60Lr+0.50W+1.60H .50L+1.60S+1.60H	0.7753 1.307	+X -X	Bottom Bottom	0.3456 0.3456	Min Temp %	0.44 0.44	25.171 25.171	OK OK
	.50L+1.60S+1.60H	0.9634	+X		0.3456	Min Temp %	0.44	25.171	OK
, +1.20D+1.	.60S+0.50W+1.60H	1.307	-X	Bottom	0.3456	Min Temp %	0.44	25.171	OK
	.60S+0.50W+1.60H	0.9634	+X	Bottom	0.3456	Min Temp %	0.44	25.171	OK
	.50Lr+0.50L+W+1.60 .50Lr+0.50L+W+1.60		-X +X		0.3456 0.3456	Min Temp % Min Temp %	0.44 0.44	25.171 25.171	OK OK
	.50L+0.50S+W+1.60h				0.3456	Min Temp %	0.44	25.171	OK
	.50L+0.50S+W+1.60H				0.3456	Min Temp %	0.44	25.171	OK

INTERPORT OF STATE O

User-Specified Input

Report Title Liberty Upper System Tank

Wed August 17, 2016 16:17:16 UTC

Building Code Reference Document ASCE 7-10 Standard

(which utilizes USGS hazard data available in 2008)

Site Coordinates 41.3864°N, 111.9022°W

Site Soil Classification Site Class B - "Rock"

Risk Category I/II/III

USGS-Provided Output

$$S_s = 1.068 g$$

$$S_{MS} = 1.068 g$$

$$S_{DS} = 0.712 g$$

$$S_1 = 0.370 g$$

$$S_{M1} = 0.370 g$$

$$S_{D1} = 0.247 g$$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For PGA_M, T_L , C_{RS} , and C_{R1} values, please view the detailed report.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

Project Name LPC - Upper System Tank Project # 16194 Prepared By WWY Date 8/23/2016 Program Authors: Last Revised Reviewed By: TAB & DOC 1/19/2006 TAB

Required Freeboard

Tank Volume 255802 Gallons
Ht to Water 15.5 ft

 $\begin{array}{c|cccc} \text{New H}_L & & 15.5 & \text{ft} \\ \text{New d}_f & & 0.5 & \text{ft} \\ \end{array}$

Height to Liquid after Freeboard Check (IF desired to change from above)

h_n 17 ft
T 0.167442881 s
T_o 0.069382022 s
T_L 8 s
S_a 0.456457993 g
S_a 0.712 g

height above base to highest level of structure
Approximate Fundamental Period as Per ASCE 7 eqn 12.8-7
Per ASCE 7
Per ASCE 7 (fig 22-15)
For periods less than T₀

For periods \geq to T_o and \leq to T_s

Find Pressure at Roof to Shell interface from insufficient freeboard depth.

SA (T _C
Theta
h_r
V_{EMPTY}
d
d _f /d
h _r /d
X_f/R
X_{f}
ρ
P_{max}
F _{max}

0.052004275	7_
0.052694275	g
3.01636981	degrees
0.5	ft
1470.788961	ft ³
1.396398298	ft
0.358064029	
0.358064029	
0.95	
25.175	ft
1.94	slugs/ft ³
32.21	psf
405.48	plf

Spectral Acceleration at Tc

Angle of free surface at sloshing load

height from top of wall to underside of topmost point of lid

Empty Volume of tank above water

Vertical displacement of liquid surface

Fig 6 from "Earthquake Induced Sloshing in Tanks with insufficient Freeboard"

mass density of liquid

Weight of Roof is heavier, therefore ok

Slab wt = 150 pcf , 8 /12 . 0.6 = 60 psf

#5 Radial Dowels @ 16" o.c. okay (Roof Slab to Wall) $P_{\text{r}}/M = \frac{60 \text{ ksl} \cdot 0.31 \text{ m}^3 \cdot 10^{11}/16}{1.67} = 8353 \text{ plf}$

 x_f/R as a function of actual/required freeboard d_f/d and normalized roof height h_r/d

Weight

D/H_L 3.419354839 Wi/W_L 0.33 PCA EB219 fig 4-4 (b) 0.61 PCA EB219 fig 4-4 (b) Wc/W_L W_{L} 2223 kips Weight Of Water Wi 734 kips Impulsive Weight 1356 kips Wc Convective Weight Tw 12 inches Wall Thickness Roof Thickness Tr 8 inches W_{W} 407 kips Weight of Walls W_{R} 238 kips Weight of Roof

D_{outer} 55.00 ft

Period

Base Shear

R	1.5 Response Modification Factor						
C_{si}	0.59						
C _{si (min)}	6.15						
C _{sc}	0.59						
C _{sc (min)}	0.04						
Vi	1022 kips	Impulsive Base Shear					
Vc	74 kips	Convective Base Shear					
V_T	1025 kips	Total Base Shear					

Overturning Moment

r ACI 350)

Overall Stability Check

Sliding (Neglecting Backfill)
Weight of tank w/out contents:

Walls 407 kips Roof 238 kips Columns 30 kips Base Slab 229 kips Water 2223 kips 3127 kips Total Weight Friction Coeff 0.41 Base Shear 1025 Safety Factor 1.25 ok

Overturning

OTM 9511 kip ft RM 82856 kip ft Safety Factor 8.7 ok

Design of Walls for In-Plane Loading

V_u	1025	kips	Base Shear				
V_c	9.8	kips/ft	Shear in wall				
α_{c}	3	See AC	l 318 eqn 21-7				
ρ_{t}	0.006111	See AC	l 318 eqn 21-7	#6 at 12" oc EF			
φVn	60.1	kips/ft	ok	DVn= 60.1 F/F	7	Vc = 9.8 K/ft	:. 0k

PER PCA EB219 for D>>H out of plane bending effects are small and can be neglected.

Project No. 16194

Project LPC - UPPER System Tank

Prepared By WWY

Date 8/22/16

Sheet No.

Seismic	Forces	00	Empty	Tank

seismic Active Pressure = 46 pcf.16 = 736 psf

At-Rest Pressure = 57pcf.16 = 912 psf

W =

* SEE ENERCALC SOLUTION

* Equivalent W

1.649 K-ft =
$$\frac{w(16)}{2}$$
 · 7.863' (162 - 7.863°)
3.162

This is used in spreadsheet

Project ID:

Licensee: ARW ENGINEER

Printed: 23 AUG 2016, 8:32AM

Steel Beam

ENGINEERS

ojects 2016\16194 - LPC - Upper System Tank\Engineering\Calculations\Other\16194_lpc - upper system tank.ec6 ENERCALC, INC. 1983-2016, Build:6.16.6.7, Ver:6.16.6.7

Lic. #: KW-06002489

Description : Maximum Moment

CODE REFERENCES

Calculations per AISC 360-10, IBC 2012, ASCE 7-10

Load Combination Set: ASCE 7-10

Material Properties

Analysis Method: Allowable Strength Design

Beam Bracing: Beam is Fully Braced against lateral-torsional buckling

Bending Axis: Major Axis Bending

Fy: Steel Yield:

50.0 ksi

E: Modulus :

29,000.0 ksi

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Load for Span Number 1

Max Downward Total Deflection

Max Upward Total Deflection

+D+0.750L+0.750S+0.5250E+H Dsgn. L = 16.00 ft

+0.60D+0.60W+0.60H

0.039

0.011

1.65

Varying Uniform Load : D(S,E) = 0.0570->0.0 k/ft, Extent = 0.0 -->> 16.0 ft, Trib Width = 1.0 ft Varying Uniform Load : D(S,E) = 0.0->0.0460 k/ft, Extent = 0.0 -->> 16.0 ft, Trib Width = 1.0 ft

		, The That The It	
DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio = Section used for this span (Ma : Applied	0.039 : 1 Ma W8x18 1.649 k-ft	ximum Shear Stress Ratio = Section used for this span Va : Applied	0.011 : 1 W8x18 0.4267 k
Mn / Omega : Allowable	42.415 k-ft	Vn/Omega : Allowable	37.444 k
Load Combination Location of maximum on span Span # where maximum occurs	+D+H 7.863ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	+D+H 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection	0.000 in Ratio = 0.000 in Ratio =	0 <360 0 <360	

4518 >=180

1.65

70.83

42.42 1.00 1.00

0.43

56.17

37 44

0 < 180

0.042 in Ratio =

0.000 in Ratio =

Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax -Ma Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega +D+H Dsgn. L = 16.00 ft 0.039 0.011 1 1.65 1.65 70.83 42.42 1.00 1.00 0.43 56.17 37.44 +D+I +H Dsgn. L = 16.00 ft 0.039 0.011 1.65 1.65 70.83 42.42 1.00 1.00 0.43 56.17 37.44 +D+Lr+H Dsgn. L = 16.00 ft 0.039 0.011 1.65 1.65 70.83 42.42 1.00 1.00 0.43 56.17 37.44 +D+S+H Dsgn. L = 16.00 ft 0.039 0.011 1.65 1.65 70.83 42.42 1.00 1.00 0.43 56.17 37.44 +D+0.750Lr+0.750L+H Dsgn. L = 16.00 ft 0.039 0.011 1.65 1.65 70.83 42.42 1.00 1.00 0.43 56.17 37.44 +D+0.750L+0.750S+H Dsgn. L = 16.00 ft 0.039 0.011 1.65 1.65 70.83 42.42 1.00 1.00 0.43 56.17 37.44 +D+0.60W+H Dsgn. L = 16.00 ft 0.039 0.011 1.65 1.65 70.83 42.42 1.00 1.00 0.43 56.17 37.44 +D+0.70E+H Dsgn. L = 16.00 ft 0.039 0.011 1.65 70.83 1.65 42.42 1.00 1.00 0.43 56.17 37.44 +D+0.750Lr+0.750L+0.450W+H Dsgn. L = 16.00 ft 0.039 0.011 1.65 165 70.83 42.42 1.00 1.00 0.43 56.17 37.44 +D+0.750L+0.750S+0.450W+H Dsgn. L = 16.00 ft 0.039 0.011 1.65 1.65 70.83 42.42 1.00 1.00 0.43 56.17 37.44

Program Authors: Last Revised Reviewed By:

TAB & DOC 10/20/2010 TAB

Circular Concrete Tanks without Prestressing

(Based on the 1993 PCA Document)

De	sign Criteria							
			Estima	ation of T	ank Wall Thicknes	S		
fc	4500 psi	MAN 45 15-45 142 145 145	ab Section Schemotophysics		70-50 W 29-59			
D _{tank}	53 ft	Limit Ring Tension Stress	in Concrete Wall from	m 7% to 1	12% of fc			
H _{tank}	16 ft							
t _{wall}	12 in	For given t and H ² /Dt, wit	h a hinged base/free t	top (Table	e A-5)			
Fluid Pressure	62.4 pcf							
Soil Pressure	(104 pcf)	Max Coefficient=	0.611 (Table	A-5)				
E _s	29000000 psi		100 (
Ec	3823676.24 psi	w _u	169 pcf					
n	7.6	T _{max}	43647 lbs.					
Surcharge	175 pcf	Tunfactored	16154 lbs.		Compre	ssion Ch	eck	
Soil on Lid	1 ft	$A_{s(req'd)}$	0.81 in ²		F	'c	684	
Load Factor		A _{s(used)}	0.88 in ²		0.33	rc	1485	
Filiquid pressure	1.4		OK			OK		
F _{Soil pressure}	1.6							
Environmental	***************************************	F _{t(conc)}	158 psi					
Durability Factor		120						
Flexure (liquid)	1.93	This equates to		3.51	% of f'c			
Tension (liquid)	1,93	Wall thickness is		oĸ				
Flexure (soil)	1.69							
Compression (soil) H ² /Dt	4.00							
H /DL	4.83							

The Following Load Cases were used in Analysis:

Load Case #1: Full of Water, No Lid, No Backfill Empty, No Lid, w/Backfill Empty, w/Lid, w/Backfill Full of Water, w/Lid, Ignore Backfill Load Case #2: Load Case #3:

Load Case #4:

Load Case #1-Full of Water, No Lid, No Backfill

Assume Free Top/Hinged Base (Tables A-5 and A-7)
Effects of Possible outward movement will be handled by designing the entire portion of the wall for the maximum Ring Tension and Moment

Ring Force=(A-5 Coef.)wuHR $w_uHR=$ 71488.4352 Moment =(A-7 Coef.)w_uH³ $w_uH^3=$ 690605.2608

	A-5 Coef.	RF (#)	A-7 Coef.	Moment (#-ft/ft)
Тор	-0.004	-268	0	0
0.1H	0.118	8429	0.0000	12
0.2H	0.238	17018	0.0002	139
0.3H	0.358	25583	0.0008	532
0.4H	0.469	33528	0.0019	1304
0.5H	0.559	39970	0.0038	2618
0.6H	0.611	43647	0.0061	4241
0.7H	0.597	42679	0.0085	5865
0.8H	0.493	35279	0.0098	6773
0.9H	0.288	20556	0.0080	5551
Bottom	0.000	0	0	0

Project Name LPC - Upper System Tank Project # 16194 Prepared By WWY Date 8/23/2016 Program Authors: TAB & DOC Last Revised 1/19/2006 Reviewed By: TMD

Load Case #2-Empty, No Lid, w/ Backfill

Use Durability Coefficients as Noted Previous

Soil Over Lid= 1 ft

175

-136168

Ring Force=(A-5 Coef.)w_uHR+(A-6 Coef.)pR

 $w_uHR=$

Moment=(A-7 Coef.)(w_uh³+ph²)

 $w_u h^3 + ph^2 = -1273000$

pR= -14320.6

	A-5 Coef	RF (#)	A-6 Coef.	RF (#)	Total RF (#)	A-7 Coef.	Moment (#-ft/ft)
Top	-0.004	511	0.996	-14266.8302	-13756	0	0
0.1H	0.118	-16055	1.018	-14577.0198	-30632	0.0000	-22
0.2H	0.238	-32416	1.038	-14865.5934	-47281	0.0002	-257
0.3H	0.358	-48730	1.058	-15149.3034	-63880	0.0008	-980
0.4H	0.469	-63863	1.069	-15308.7214	-79172	0.0019	-2404
0.5H	0.559	-76134	1.059	-15167.1366	-91301	0.0038	-4825
0.6H	0.611	-83137	1.011	-14471.6418	-97609	0.0061	-7818
0.7H	0.597	-81293	0.897	-12845.5782	-94138	0.0085	-10811
0.8H	0.493	-67198	0.693	-9931.201	-77129	0.0098	-12485
0.9H	0.288	-39155	0.388	-5549.908	-44705	0.0080	-10232
Bottom	0.000	0	0.000	0	0	0	0

Load Case #3-Empty, w/Lid, w/Backfill

Apply a shear force (V) @ top of wall to make Ring Tension = 0 @ top of Wall

When top of tank is free, Ring Force (LC#2) = -13756 #

At top of wall (0.0H) from table A-8, Coefficient= -8.07 #

Therefore, the shear force (V) required to produce zero ring force at the top of the tank= (Coef. A-8 @ 0.0H)(VR/H)=(Ring Force from LC#2)

Therefore

V= -1029 # VR/H= -1704 #

 $\mathsf{Delta}_\mathsf{RF}\text{=}\mathsf{Change}$ in Ring Force Due to V applied @ the top of wall

Delta_{RF}=(A-8 Coef.)(VR/H)

Find the change in moment (Delta $_{mom}$) due to the V applied @ top.

If S_D for moment is less than S_D for compression, then V is reduced by (S_{DM}/S_{DC})

Delta_{mom}=(A-9 Coef.)VH

VH= -16465

	A-8 Coef.	Delta _{RF}	LC#2 RF	Total RF	A-9 Coef.	Delta _{mom}	LC #2 Moment	Total Moment
-		(#)	(#)	(#)		(#-ft/ft)	(#-ft/ft)	(#-ft/ft)
Тор	-8.071	13756	-13756	0	0	0	0	0
0.1H	-4.946	8430	-30632	-22202	0.0647	-1065	-22	-1087
0.2H	-2.475	4219	-47281	-43062	0.0797	-1312	-257	-1569
0.3H	-0.843	1436	-63880	-62443	0.0694	-1142	-980	-2122
0.4H	0.059	-101	-79172	-79272	0.0497	-819	-2404	-3223
0.5H	0.434	-740	-91301	-92041	0.0305	-503	-4825	-5328
0.6H	0.480	-817	-97609	-98426	0.0150	-248	-7818	-8066
0.7H	0.363	-619	-94138	-94757	0.0042	-69	-10811	-10880
0.8H	0.198	-338	-77129	-77467	-0.0027	44	-12485	-12441
0.9H	0.060	-102	-44705	-44807	-0.0075	124	-10232	-10108
Bottom	0.000	0	0	0	-0.0124	203	0	203

Program Authors: Last Revised Reviewed By: TAB & DOC 1/19/2006 TMD

Load Case #4-Full of Water, w/Lid, ignore Backfill

Add the effects of shear @ the top of the tank to LC #1

At the top of the wall - Coefficient from Table A-8=

-8.07 #

(Coef. A-8 @ 0.0H)(VR/H) = (Ring Force from LC#1)

V= -20 # VR/H= -33 # VH= -321 #

(For Ring Force) (For Moment)

_	A-8 Coef.	Delta _{RF} (#)	LC#1 RF (#)	Total RF (#)	A-9 Coef.	Delta _{mom} (#-ft/ft)	LC#1 Moment (#-ft/ft)	Total Moment (#-ft/ft)
Тор	-8.07	268	-268	0	0	0	0	0
0.1H	-4.95	164	8429	8593	0.065	-21	12	-9
0.2H	-2.48	82	17018	17101	0.080	-26	139	114
0.3H	-0.84	28	25583	25611	0.069	-22	532	509
0.4H	0.06	-2	33528	33526	0.050	-16	1304	1288
0.5H	0.43	-14	39970	39956	0.031	-10	2618	2608
0.6H	0.48	-16	43647	43631	0.015	-5	4241	4237
0.7H	0.36	-12	42679	42667	0.004	-1	5865	5864
0.8H	0.20	-7	35279	35272	-0.003	1	6773	6774
0.9H	0.06	-2	20556	20554	-0.008	2	5551	5553
Bottom	0	0	0	0	-0.012	4	0	4

Envelope of Ring Forces

	LC#1	LC#2	LC#3	LC#4	Max	Min
Тор	-268	-13756	0	0	0	-13756
0.1H	8429	-30632	-22202	8593	8593	-30632
0.2H	17018	-47281	-43062	17101	17101	-47281
0.3H	25583	-63880	-62443	25611	25611	-63880
0.4H	33528	-79172	-79272	33526	33528	-79272
0.5H	39970	-91301	-92041	39956	39970	-92041
0.6H	43647	-97609	-98426	43631	43647	-98426
0.7H	42679	-94138	-94757	42667	42679	-94757
0.8H	35279	-77129	-77467	35272	35279	-77467
0.9H	20556	-44705	-44807	20554	20556	-44807
Bottom	0	0	0	0	0	0

Project Name LPC - Upper System Tank Project # 16194 Prepared By WWY Date 8/23/2016 Program Authors: Last Revised Reviewed By:

TAB & DOC 1/19/2006 TMD

Envelope of Moments

	LC#1	LC#2	LC#3	LC#4	Max	Min
Top	0	0	0	0	0	0
0.1H	12	-22	-1087	-9	12	-1087
0.2H	139	-257	-1569	114	139	-1569
0.3H	532	-980	-2122	509	532	-2122
0.4H	1304	-2404	-3223	1288	1304	-3223
0.5H	2618	-4825	-5328	2608	2618	-5328
0.6H	4241	-7818	-8066	4237	4241	-8066
0.7H	5865	-10811	-10880	5864	5865	-10880
0.8H	6773	-12485	-12441	6774	6774	-12485
0.9H	5551	-10232	-10108	5553	5553	-10232
Bottom	0	0	203	4	203	0

	Tension O.F.	Tension I.F.
Bottom	0	0
0.9H	6.	-10 (catsol
0.8H	(7	-10 Controls
0.7H	6	-11
0.6H	4	-8
0.5H	3	-5
0.4H	1	-3
0.3H	1	-2
0.2H	0	-2
0.1H	0	-1
Тор	0	0

Project No. 16194

Sheet No.

Project LPC - Upper System Tank

Prepared By WWY

Date 8/23/16

Design	70	Wall	Steel
			The second secon

Ring Steel

$$f_c = \frac{c}{A} = \frac{98^k}{12.12} = 681 \text{ psi}$$

- Tension

$$A_5 = 44.0^k / 0.9.60 \text{ ks} = 0.82 \text{ in}^2$$

USE #6 BARS @ 12" o.c. Each Face = 0.88 m2 > 0.82 m2 : 0k

Project No. 16194 Sheet No.

Project LPC - Upper System Tank

Prepared By WWY

Date 8/23/16

Design of Wall Steel

- Steel at Interior Face

m = 12 K-f+

Moment Renforcing

 $\frac{m_{c}}{4 f^{2} + b d^{2}} = \frac{12 k \cdot 4 \cdot 12}{0.9 \cdot 4.5 \cdot 12^{2} \cdot 9.5^{2}} = 0.0328$

W= 0.034 [Table A-20]

P = 0.034 .4.5/60 = 0.00255

Pmin (temp. shrinkage) = 0.003

! MIN Reinforcement provided is adequate

* Mu = 7 K-ft @ Exterior Face : min. steel Reinforcement is adequate