Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

KEYNOTES

1) COORDINATE FINALDETALING \& DESIGN OF
STAIR WI FABRICATOR
2) MATERAL \& FIIISHELEETIONS BY
OWNER; COITRACTOR TO PROVIDE SAMPLES

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A
(2)

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Exhibit A

Mr. Grant H. Blakeslee
Summit, LLC
3632 North Wolf Creek Drive
Eden, Utah 84310
IGES Project No. 01628-006

RE: Geotechnical Investigation Report
Lot 34R of Powder Mountain Resort
7958 East Heartwood Drive
Weber County, Utah
Mr. Blakeslee,
As requested, IGES has conducted a geotechnical investigation for the proposed residence to be constructed on Lot 34R of the Powder Mountain Resort located at 7958 East Heartwood Drive in Weber County, Utah. The approximate location of the property is illustrated on the Site Vicinity Map (Figure A-1 in Appendix A). The purposes of our investigation was to assess the nature and engineering properties of the subsurface soils at the proposed home site and to provide recommendations for the design and construction of foundations, grading, and drainage. The scope of work completed for this study included subsurface exploration, laboratory testing, engineering analyses and preparation of this letter.

Project Understanding

Our understanding of the project is based primarily on our previous involvement with the Powder Mountain resort project, which included two geotechnical investigations for the greater 200-acre Powder Mountain Resort expansion project (IGES, 2012a and 2012b).

The Powder Mountain Resort expansion project is located southeast of SR-158 (Powder Mountain Road), south of previously developed portions of Powder Mountain Resort, in unincorporated Weber County, Utah. The project is accessed by Powder Ridge Road.

Lot 34 R is a $3 / 4$-acre single-family residential lot with a buildable envelope of approximately 0.21 acres. A single-family home will be constructed at the site, presumably a high-end vacation home. Construction plans were not available for our review; however, we assume the new home will be a one- or two-story wood-framed structure, with a basement, founded on conventional spread footings. The development is expected to include improvements common for residential developments such as underground utilities, curb and gutter, flatwork, landscaping, and possibly appurtenant structures.

Exhibit B

Lot 34R of Powder Mountain Resort
7958 East Heartwood Drive, Weber County, Utah

METHOD OF STUDY

Literature Review

IGES completed a geotechnical investigation for the Powder Mountain Resort expansion in 2012 (2012a, 2012b). Our previous work included twenty-two test pits and one soil boring excavated at various locations across the 200 -acre development; as a part of this current study, the logs from relevant nearby test pits and other data from our reports were reviewed. In addition, Western Geologic (2012) completed a geologic hazard study for the greater 200-acre Powder Mountain expansion project - this report was reviewed to assess the potential impact of geologic hazards on the subject lot.

Field Investigation

Subsurface soils were investigated by excavating one test pit approximately 12 feet below the existing site grade. The approximate location of the test pit is illustrated on the Geotechnical Map (Figure A-2 in Appendix A). The soil types and conditions were visually logged at the time of the excavation in general accordance with the Unified Soil Classification System (USCS). Subsurface soil classifications and descriptions are included on the test pit log included as Figure A-3 in Appendix A. A key to USCS symbols and terminology is included as Figure A-4.

Laboratory Testing

Samples retrieved during the subsurface investigation were transported to the laboratory for evaluation of engineering properties. Specific laboratory tests include:

- Moisture Content and Unit Weight
- Soluble Sulfate, Soluble Chloride, pH and Resistivity

Results of the laboratory testing are discussed in this report and presented in Appendix B. Some test results, including moisture content; and unit weight, have been incorporated into the test pit \log (Figure A-3).

In addition to laboratory testing on samples obtained from this lot, engineering analysis was also based on previously completed laboratory work on soil samples obtained near the site (IGES, 2012a \& 2012b).

Engineering Analysis

Engineering analyses were performed using soil data obtained from laboratory testing and empirical correlations based on material density, depositional characteristics and classification. Appropriate factors of safety were applied to the results consistent with industry standards and the accepted standard of care. An allowable bearing pressure value was proportioned based on estimated shear strength of bearing soils.

Exhibit B

Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah

FINDINGS

Surface Conditions

At the time of the excavation, the lot was in a relatively natural state and was covered with a variety of vegetation including weeds and native grasses. Frequent boulders (>12 inches) were observed throughout the site. The site is relative flat, draining gently to the north, away from Heartwood Drive.

Earth Materials

The soil at the surface of the site consists of approximately 6 inches of poorly-developed topsoil consisting of mottled, medium-dense silty sand. The topsoil encountered was characterized by an abundance of organic matter (roots, etc.). The topsoil was underlain by medium dense clayey sand extending to a depth of approximately 9 feet below existing grade. Underlying this layer, we encountered coarse colluvium consisting of mediumdense clayey gravel. The colluvium was characterized by abundant coarse angular rock fragments, which extended to the bottom of the excavation (approximately 12 feet below the existing grade).

Detailed descriptions of earth materials encountered are presented on the test pit log, Figure A-3, in Appendix A.

Groundwater

Groundwater was not encountered in the test pit excavation. Based on our observations, groundwater is not anticipated to adversely impact the proposed construction. However, groundwater levels could rise at any time based on several factors including recent precipitation, on- or off-site runoff, irrigation, and time of year (e.g., spring run-off). Should the groundwater become a concern during the proposed construction, IGES should be contacted so that dewatering recommendations may be provided.

Geology and Geologic Hazards

Geology and geologic hazards have been previously addressed by Western Geologic in a separate submittal (Western Geologic, 2012). This work has also been referenced in our previous geotechnical reports for the project (IGES, 2012a and 2012b). The report by Western Geologic indicates that the lot is located outside of known geologically unstable areas.

During our subsurface investigation, potentially adverse geologic structures (e.g., evidence of faulting or landslides) were not evident to the maximum depth of exploration (12 feet). Geomorphic expressions of shallow, surficial landslides were not observed on, or near the lot. Based on currently available data and our observations, the potential for geologic hazards such as landslides, liquefaction, or surface fault rupture impacting the site is considered low.

Exhibit B

Lot 34R of Powder Mountain Resort
7958 East Heartwood Drive, Weber County, Utah

Seismicity

Following the criteria outlined in the 2012 International Building Code (IBC, 2012), spectral response at the site was evaluated for the Maximum Considered Earthquake (MCE) which equates to a probabilistic seismic event having a two percent probability of exceedance in 50 years (2PE50). Spectral accelerations were determined based on the location of the site using the U.S. Seismic "DesignMaps" Web Application (USGS, 2012); this software incorporates seismic hazard maps depicting probabilistic ground motions and spectral response data developed for the United States by the U. S. Geological Survey as part of NEHRP/NSHMP (Frankel et al., 1996). These maps have been incorporated into both NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA, 1997) and the International Building Code (IBC) (International Code Council, 2012).

To account for site effects, site coefficients that vary with the magnitude of spectral acceleration and Site Class are used. Site Class is a parameter that accounts for site amplification effects of soft soils and is based on the average shear wave velocity of the upper 100 feet; based on our field exploration and our understanding of the geology in this area, the subject site is appropriately classified as Site Class C (Very Dense Soil and Soft Rock). Based on IBC criteria, the short-period (F_{a}) coefficient is 1.070 and long-period (F_{v}) site coefficient is 1.526 . Based on the design spectral response accelerations for a Building Risk Category of I, II or III, the site's Seismic Design Category is D. The short- and longperiod Design Spectral Response Accelerations are presented in Table 1.0; a summary of the Design Maps analysis is presented in Appendix C. The peak ground acceleration (PGA) may be taken as $0.4 *$ Sms.

Table 1.0
Short- and Long-Period Spectral Accelerations for MCE

Parameter	Short Period $(0.2 ~ s e c)$	Long Period $(\mathbf{1 . 0 ~ s e c})$
MCE Spectral Response Acceleration (g)	$\mathrm{Ss}_{\mathrm{s}}=0.826$	$\mathrm{~S}_{1}=0.274$
MCE Spectral Response Acceleration Site Class C (g)	$\mathrm{SMS}_{\mathrm{MS}}=\mathrm{S}_{\mathrm{s}} \mathrm{F}_{\mathrm{a}}=0.883$	$\mathrm{~S}_{\mathrm{M} 1}=\mathrm{S}_{1} \mathrm{~F}_{\mathrm{v}}=0.419$
Design Spectral Response Acceleration (g)	$\mathrm{S}_{\mathrm{DS}}=\mathrm{S}_{\mathrm{MS}^{*} 2 / 3}=0.589$	$\mathrm{~S}_{\mathrm{DI}}=\mathrm{S}_{\mathrm{M} 1 *^{2} / 3}=0.279$

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the field observations, laboratory testing and previously completed geotechnical investigation (IGES, 2012a), the subsurface conditions are considered suitable for the proposed construction provided that the recommendations presented in this report are incorporated into the design and construction of the project.

Exhibit B

Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah

General Site Preparation and Grading

Prior to the placement of foundations, general site grading is recommended to provide proper support for exterior concrete flatwork, concrete slabs-on-grade, and pavement sections. Site grading is also recommended to provide proper drainage and moisture control on the subject property and to aid in preventing differential movement in foundation soils as a result of variations in moisture conditions.

Below proposed structures, fills, and man-made improvements, all vegetation, topsoil, debris and undocumented fill soils (if any) should be removed. Any existing utilities should be re-routed or protected in place. The exposed native soils should then be proof-rolled with heavy rubber-tired equipment such as a scraper or loader. Any soft/loose areas identified during proof-rolling should be removed and replaced with structural fill. All excavation bottoms should be observed by an IGES representative during proof rolling or otherwise prior to placement of engineered fill to evaluate whether soft, loose, or otherwise deleterious earth materials have been removed and that recommendations presented in this report have been complied with.

Excavations

Soft, loose, or otherwise unsuitable soils beneath structural elements, hardscape or pavements may need to be over-excavated and replaced with structural fill. If overexcavation is required, the excavations should extend one foot laterally for every foot of depth of over-excavation. Excavations should extend laterally at least two feet beyond flatwork, pavements, and slabs-on-grade. Structural fill should consist of granular materials and should be placed and compacted in accordance with the recommendations presented in this report.

Prior to placing engineered fill, all excavation bottoms should be scarified to at least 6 inches, moisture-conditioned as necessary at or slightly above optimum moisture content (OMC), and compacted to at least 90 percent of the maximum dry density (MDD) as determined by ASTM D-1557 (Modified Proctor). Even though we did not encountered bedrock in the test pit for this lot, shallow bedrock was observed in most of the adjacent lots. Thus, it is possible shallow bedrock exists in some area of the lot. Scarification is not required where bedrock is exposed.

Excavation Stability

The contractor is responsible for site safety, including all temporary trenches excavated at the site and the design of any required temporary shoring. The contractor is responsible for providing the "competent person" required by Occupational Safety and Health (OSHA) standards to evaluate soil conditions. For planning purposes, Soil Type C is expected to predominate at the site (sands and gravels). Close coordination between the competent person and IGES should be maintained to facilitate construction while providing safe excavations.

Based on OSHA guidelines for excavation safety, trenches with vertical walls up to 5 feet in depth may be occupied. Where very moist soil conditions or groundwater is encountered,

Exhibit B

Lot $34 R$ of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah
or when the trench is deeper than 5 feet, we recommend a trench-shield or shoring be used as a protective system to workers in the trench. As an alternative to shoring or shielding, trench walls may be laid back at one and one half horizontal to one vertical $(11 / 2 \mathrm{H}: 1 \mathrm{~V})(34$ degrees) in accordance with OSHA Type C soils. Trench walls may need to be laid back at a steeper grade pending evaluation of soil conditions by the geotechnical engineer. Soil conditions should be evaluated in the field on a case-by-case basis. Large rocks exposed on excavation walls should be removed (scaled) to minimize rock fall hazards.

Structural Fill and Compaction

All fill placed for the support of structures, flatwork or pavements should consist of structural fill. Structural fill should consist of granular native soils, which may be defined as soils with less than 25% fines, $10-60 \%$ sand, and contain no rock larger than 4 inches in nominal size (6 inches in greatest dimension). Structural fill should also be free of vegetation and debris. Soils not meeting these criteria may be suitable for use as structural fill; however, such soils should be evaluated on a case by case basis and should be approved by IGES prior to use.

All structural fill should be placed in maximum 4-inch loose lifts if compacted by small hand-operated compaction equipment, maximum 6 -inch loose lifts if compacted by lightduty rollers, and maximum 8 -inch loose lifts if compacted by heavy duty compaction equipment that is capable of efficiently compacting the entire thickness of the lift. Additional lift thickness may be allowed by IGES provided the Contractor can demonstrate sufficient compaction can be achieved with a given lift thickness with the equipment in use. We recommend that all structural fill be compacted on a horizontal plane, unless otherwise approved by IGES. Structural fill underlying all shallow footings and pavements should be compacted to at least 95 percent of the MDD as determined by ASTM D-1557. The moisture content should be at, or slightly above, the OMC for all structural fill. Any imported fill materials should be approved prior to importing. Also, prior to placing any fill, the excavations should be observed by IGES to confirm that unsuitable materials have been removed.

Specifications from governing authorities such as Weber County and/or special service districts having their own precedence for backfill and compaction should be followed where more stringent.

Utility Trench Backfill

Utility trenches should be backfilled with structural fill in accordance with the previous section. Utility trenches can be backfilled with the onsite soils free of debris, organic and oversized material. Prior to backfilling the trench, pipes should be bedded in and shaded with a uniform granular material that has a Sand Equivalent (SE) of 30 or greater. Pipe bedding may be water-densified in-place (jetting). Alternatively, pipe bedding and shading may consist of clean $3 / 4$-inch gravel, which generally does not require densification. Native earth materials can be used as backfill over the pipe bedding zone. All utility trenches backfilled below pavement sections, curb and gutter, hardscape, should be backfilled with structural fill compacted to at least 95 percent of the MDD as determined by ASTM D1557. All other trenches should be backfilled and compacted to approximately 90 percent

Exhibit B

Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah
of the MDD (ASTM D-1557). However, in all cases the pipe bedding and shading should meet the design criteria of the pipe manufacturer. Specifications from governing authorities having their own precedence for backfill and compaction should be followed where they are more stringent.

Oversize Material

Even though we did not encountered bedrock in the test pit for this lot, shallow bedrock was observed on some of the adjacent lots. Thus, it is possible shallow bedrock exists in some area of the lot. Frequent boulders (>12 inches) were also observed on the surface of the site. Based on our observations at the site and previously completed geotechnical investigation, there is a moderate potential for the presence of oversize materials (larger than 6 inches in greatest dimension). Large rocks, particularly boulders, may require special handling, such as segregation from structural fill, and disposal. Particularly large boulders may require special equipment for removal during excavation of the basement.

Foundations

Based on our field observations and considering the presence of relatively competent native earth materials, we recommend that the footings for proposed home be founded either entirely on competent native soils or entirely on structural fill. Native/fill transition zones are not allowed beneath a single structure footprint. If soft, loose, or otherwise deleterious earth materials are exposed in the footing excavations, then the footings should be deepened such that all footings bear on relatively uniform, competent native earth materials. Alternatively, the foundation excavation may be over-excavated a minimum of 2 feet below the bottom of proposed footings and replaced with structural fill, such that the footings bear entirely on a uniform fill blanket. We recommend that IGES inspect the bottom of the foundation excavation prior to the placement of steel or concrete to identify the competent native earth materials as well as any unsuitable soils or transition zones. Additional over-excavation may be required based on the actual subsurface conditions observed.

Shallow spread or continuous wall footings constructed entirely on competent, uniform native earth materials or on a minimum of 2 feet of structural fill may be proportioned utilizing a maximum net allowable bearing pressure of $\mathbf{2 , 2 0 0}$ pounds per square foot (psf) for dead load plus live load conditions. The net allowable bearing value presented above is for dead load plus live load conditions. The minimum recommended footing width is 20 inches for continuous wall footings and 30 inches for isolated spread footings.

All conventional foundations exposed to the full effects of frost should be established at a minimum depth of 42 inches below the lowest adjacent final grade. Interior footings, not subjected to the full effects of frost (i.e., a continuously heated structure), may be established at higher elevations, however, a minimum depth of embedment of 12 inches is recommended for confinement purposes.

Foundation drains should be installed around below-ground foundations (e.g., basement walls) to minimize the potential for flooding from shallow groundwater, which may be present at various times during the year, particularly spring run-off.

Exhibit B

Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah

Settlement

Static settlement of properly designed and constructed conventional foundations, founded as described above, are anticipated to be on the order of 1 inch or less. Differential settlement is expected to be half of total settlement over a distance of 30 feet.

Competent native earth materials and/or properly compacted structural fill is expected to exhibit negligible seismically-induced settlement during a MCE seismic event.

Earth Pressure and Lateral Resistance

Lateral forces imposed upon conventional foundations due to wind or seismic forces may be resisted by the development of passive earth pressures and friction between the base of the footing and the supporting soils. In determining the frictional resistance against concrete, a coefficient of friction of 0.45 for sandy native soils or structural fill should be used.

Ultimate lateral earth pressures from granular backfill acting against retaining walls, temporary shoring, or buried structures may be computed from the lateral pressure coefficients or equivalent fluid densities presented in Table 2.0:

Table 2.0
Lateral Earth Pressure Coefficients

Condition	Level Backfill		2H:1V Backfill	
	Lateral Pressure Coefficient	Equivalent Fluid Density (pcf)	Lateral Pressure Coefficient	Equivalent Fluid Density (pcf)
	0.33	35	0.53	56
At-rest (Ko)	0.50	55	0.80	85
Passive (Kp)	3.0	320	-	-

These coefficients and densities assume no buildup of hydrostatic pressures. The force of water should be added to the presented values if hydrostatic pressures are anticipated.

Clayey soils drain poorly and may swell upon wetting, thereby greatly increasing lateral pressures acting on earth retaining structures; therefore, clayey soils should not be used as retaining wall backfill. Backfill should consist of native granular soil with an Expansion Index (EI) less than 20.

Walls and structures allowed to rotate slightly should use the active condition. If the element is to be constrained against rotation (i.e., a basement or buried tank wall), the atrest condition should be used. These values should be used with an appropriate factor of safety against overturning and sliding. A value of 1.5 is typically used. Additionally, if passive resistance is calculated in conjunction with frictional resistance, the passive resistance should be reduced by $1 / 2$.

Exhibit B

Lot $34 R$ of Powder Mountain Resort
7958 East Heartwood Drive, Weber County, Utah

Concrete Slab-on-Grade Construction

To minimize settlement and cracking of slabs, and to aid in drainage beneath the concrete floor slabs, all concrete slabs should be founded on a minimum 4-inch layer of compacted gravel overlying properly prepared subgrade. The gravel should consist of free-draining gravel or road base with a $3 / 4$-inch maximum particle size and no more than 5 percent passing the No. 200 mesh sieve. The layer should be compacted to at least 95 percent of the MDD as determined by ASTM D-1557.

All concrete slabs should be designed to minimize cracking as a result of shrinkage. Consideration should be given to reinforcing the slab with a welded wire fabric, re-bar, or fibermesh. Slab reinforcement should be designed by the structural engineer; however, as a minimum, slab reinforcement should consist of 4 ' $\times 4$ '' W $4.0 \times \mathrm{W} 4.0$ welded wire mesh within the middle third of the slab. We recommend that concrete be tested to assess that the slump and/or air content is in compliance with the plans and specifications. We recommend that concrete be placed in general accordance with the requirements of the American Concrete Institute (ACI). A Modulus of Subgrade Reaction of $\mathbf{2 6 0} \mathbf{~ p s i / i n c h ~ m a y ~}$ be used for design.

A moisture barrier (vapor retarder) consisting of 10 -mil thick Visqueen (or equivalent) plastic sheeting should be placed below slabs-on-grade where moisture-sensitive floor coverings or equipment is planned. Prior to placing this moisture barrier, any objects that could puncture it, such as protruding gravel or rocks, should be removed from the building pad. Alternatively, the subgrade may be covered with 2 inches of clean sand.

Moisture Protection

Moisture should not be allowed to infiltrate into the soils in the vicinity of the foundations. As such, design strategies to minimize ponding and infiltration near the home should be implemented. The new home may be subject to sheet flow during periods of heavy rain or snow melt; therefore, the Civil Engineer may also wish to consider construction of additional surface drainage to intercept surface runoff, or a curtain drain to intercept seasonal groundwater flow, if any.

We recommend that hand watering, desert landscaping or Xeriscape be considered within 5 feet of the foundations. We further recommend roof runoff devices be installed to direct all runoff a minimum of 10 feet away from structures. The home builder should be responsible for compacting the exterior backfill soils around the foundation. Additionally, the ground surface within 10 feet of the house should be constructed so as to slope a minimum of five percent away from the home. Pavement sections should be constructed to divert surface water off of the pavement into storm drains. Parking strips and roadway shoulder areas should be constructed to prevent infiltration of water into the areas surrounding pavement. Landscape plans must conform to Weber County development codes.

IGES recommends a perimeter foundation drain be constructed for the proposed residential structure in accordance with the International Residential Code (IRC).

Exhibit B

Lot $34 R$ of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah

Soil Corrosion Potential

Laboratory testing of a representative soil sample obtained from the test pit indicated that the soil sample tested had a sulfate content of 8 ppm . Accordingly, the soils are classified as having a 'low' potential for deterioration of concrete due to the presence of soluble sulfate. As such, conventional Type I/II Portland cement may be used for all concrete in contact with site soils.

To evaluate the corrosion potential of ferrous metal in contact with onsite native soil a sample was tested for soil resistivity, soluble chloride and pH . The test indicated that the onsite soil tested has a minimum soil resistivity of $3,156 \mathrm{OHM}-\mathrm{cm}$, soluble chloride content of 3.8 ppm and a pH of 8.2 . Based on this result, the onsite native soil is considered to be moderately corrosive to ferrous metal. Consideration should be given to retaining the services of a qualified corrosion engineer to provide an assessment of any metal that may be associated with construction of ancillary water lines and reinforcing steel, valves etc.

Construction Considerations

Although shallow bedrock was not identified during our subsurface investigation, it is known that shallow bedrock may occur locally within this area. Although not anticipated, if shallow bedrock is encountered, this material may require special equipment and/or blasting for removal during excavation of the basement.

In addition, several large boulders were observed during our subsurface exploration; as such, excavation of the basement may generate an abundance of over-size material that may require special handling, processing, or disposal.

CLOSURE

The recommendations presented in this letter are based on limited field exploration, literature review, and a general understanding of the proposed construction. The subsurface data used in the preparation of this letter were obtained from the exploration(s) made for this investigation. It is possible that variations in the soil and groundwater conditions could exist beyond the point explored. The nature and extent of variations may not be evident until construction occurs. If any conditions are encountered at this site that are different from those described in this letter, IGES should be immediately notified so that any necessary revisions to recommendations contained in this letter may be made. In addition, if the scope of the proposed construction changes from that described in this letter, IGES should also be notified.

This report was prepared in accordance with the generally accepted standard of practice at the time the report was written. No warranty, expressed or implied, is made.

It is the Client's responsibility to see that all parties to the project including the Designer, Contractor, Subcontractors, etc. are made aware of this letter in its entirety. The use of information contained in this report for bidding purposes should be done at the Contractor's option and risk.

Exhibit B

Lot 34R of Powder Mountain Resort
7958 East Heartwood Drive, Weber County, Utah

Additional Services

The recommendations presented in this report are based on the assumption that an adequate program of tests and observations will be made during the construction. IGES staff should be on site to verify compliance with these recommendations. These tests and observations should include, but not necessarily be limited to, the following:

- Observations and testing during site preparation, earthwork and structural fill placement.
- Consultation as may be required during construction.
- Quality control testing of cast-in-place concrete.
- Review of plans and specifications to assess compliance with our recommendations.

We appreciate the opportunity to be of service on this project. Should you have any questions regarding the report or wish to discuss additional services, please contact the undersigned at (801) 748-4044.

Respectfully submitted,

 IGES, Inc.

Shun Li, P.E.I.
Staff Engineer

Attachments:

References

Appendix A
Figure A-1 - Site Vicinity Map
Figure A-2 - Geotechnical Map
Figure A-3 - Test Pit Log
Figure A-4 - Key to Soil Symbols and Terminology
Appendix B - Laboratory Results
Appendix C - 2012 IBC MCE and Design Response Acceleration

Exhibit B

Lot 34R of Powder Mountain Resort
7958 East Heartwood Drive, Weber County, Utah

References

AMEC, 2001, Report Engineering Geologic Reconnaissance/Geotechnical Study Powder Mountain Resort.

Federal Emergency Management Agency [FEMA], 1997, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA 302, Washington, D.C.

Frankel, A., Mueller, C., Barnard, T., Perkins, D., Leyendecker, E.V., Dickman, N., Hanson, S., and Hopper, M., 1996, National Seismic-hazard Maps: Documentation, U.S. Geological Survey Open-File Report 96-532, June.

IGES, Inc., 2012a, Design Geotechnical Investigation, Powder Mountain Resort, Weber County, Utah, Project No. 01628-003, dated November 9, 2012.

IGES, Inc., 2012b, Preliminary Geotechnical Investigation, Powder Mountain Resort, Weber County, Utah, Project No. 01628-001, dated July 26, 2012.

International Building Code [IBC], 2012, International Code Council, Inc.
PSI, 2012, Geophysical ReMi Investigation, Powder Mountain Resort, Phase 1A, Weber County, Utah, PSI Project No. 0710375, dated September 18, 2012.
U.S. Geological Survey, 2012, U.S. Seismic "Design Maps" Web Application, site: https://geohazards.usgs.gov/secure/designmaps/us/application.php.

Western Geologic, 2012, Report: Geologic Hazards Reconnaissance, Proposed Area 1 Mixed-Use Development, Powder Mountain Resort, Weber County, Utah, dated August 28, 2012.

Exhibit B

APPENDIX A

Exhibit B

Base Map:
USGS Huntsville, Browns Hole, James Peak and Sharp Mountain 7.5-Minute Quadrangle Topographic Maps (2011)

MAP LOCATION

Geotechnical Investigation

Lot 34R of Powder Mountain Resort
7958 East Heartwood Drive
Weber County, Utah
SITE VICINITY MAP

Exhibit B

Exhibit B

MAJOR DIVISIONS			USCS SYMBOL		TYPICAL DESCRIPTIONS	
COARSE GRAINED SOILS (More than half of material is larger than the \#200 sieve)	GRAVELS (More than half of coarse fraction is larger than the \#4 sieve)	CLEAN GRAVELS	\% $0 \cdot 1$	GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES	
		WITH LITTLE OR NO FINES	30.	GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES	
		GRavels WITH OVER 12% FINES		GM	SILTY GRAVELS, GRAVEL-SILT-SAND MIXTURES	
				GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES	
	SANDS (More than half of coarse fraction is smaller than the \#4 sieve)	CLEAN SANDS WITH LITTLE or no fines		SW	WELL-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES	
				SP	POORLY-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES	
		SANDS WITH OVER 12% FINES		SM	SILTY SANDS, SAND-GRAVEL-SILT MIXTURES	
				SC	CLAYEY SANDS SAND-GRAVEL-CLAY MIXTURES	
Fine GRAINED SOILS (More than half of material is smaller than the \#200 sieve)	SILTS AND CLAYS (Liquid limit less than 50)			ML	INORGANIC SILTS \& VERY FINE SANDS, SILTY OR CLAYEY FINE SANDS, CLAYEY SILTS WITH SLIGHT PLASTICITY	
			CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		
			OL	ORGANIC SILTS \& ORGANIC SILTY CLAYS OF LOW PLASTICITY		
	SILTS AND CLAYS (Liquid limit greater than 50)				MH	INORGANIC SILTS, MICACEOUS OR dIATOMACEOUS FINE SAND OR SILT
				CH	INORGANIC CLAYS OF HIGH PLASTICITY. fat clays	
				OH	ORGANIC CLAYS \& ORGANIC SILTS OF MEDIUM-TO-HIGH PLASTICITY	
HIGHLY ORGANIC SOILS				$\begin{aligned} & 32 \\ & x=1 \\ & 3 \times 1 \end{aligned}$	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

LOG KEY SYMBOLS

BORING
$=$WATER LEVEL (level after completion)

CEMENTATION

DESCRIPTION	DESCRIPTION
WEAKELY	CRUMBLES OR BREAKS WITH HANDLING OR SLIGHT FINGER PRESSURE
MODERATELY	CRUMBLES OR BREAKS WITH CONSIDERABLE FINGER PRESSURE
STRONGLY	WILL NOT CRUMBLE OR BREAK WITH FINGER PRESSURE

OTHER TESTS KEY

C	CONSOLIDATION	SA	SIEVE ANALYSIS
AL	ATTERBERG LIMITS	DS	DIIECTT SHEAR
UC	UNCONFINED COMPRESSION	T	TRIAXIAL
S	SOLUBILITY	R	RESISTIVITY
O	ORGANIC CONTENT	RV	R-VALUE
CBR	CALIFORNIA BEARING RATIO	SU	SOLUBLE SULFATES
COMP	MOISTURE/DENSITY RELATIONSHIP	PM	PERMEABILITY
CI	CALIFORNIA IMPACT	-200	\% FINER THAN \#200
COL	COLLAPSE POTENTIAL	GS	SPECIFIC GRAVITY
SS	SHRINK SWELL	SL	SWELLLOAD

MODIFIERS

DESCRIPTION	$\%$
TRACE	<5
SOME	$5-12$
WITH	>12

GENERAL NOTES

1. Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual.
2. No warranty is provided as to the continuity of soil conditions between individual sample locations.
3. Logs represent general soil conditions observed at the point of exploration on the date indicated.
4. In general, Unified Soil Classification designations presented on the logs were evaluated by visual methods only. Therefore, actual designations (based on laboratory tests) may vary.

APPARENT / RELATIVE DENSITY - COARSE-GRAINED SOIL

APPARENT DENSITY	SPT (blows/ft)	MODIFIED CA. SAMPLER (blows/f)	CALIFORNIA SAMLER (blows/f)	RELATIIVE DNSITY $(\%)$	FIELD TEST
VERY LOOSE	<4	<4	<5	$0-15$	EASILY PENETRATED WITH 1/2-INCH REINFORCING ROD PUSHED BY HAND
LOOSE	$4-10$	$5-12$	$5-15$	$15-35$	DIFFICULT TO PENETRATE WITH $1 / 2$-INCH REINFORCING ROD PUSHED BY HAND
MEDIUM DENSE	$10-30$	$12-35$	$15-40$	$35-65$	EASILY PENETRATED A FOOT WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER
DENSE	$30-50$	$35-60$	$40-70$	$65-85$	DIFFICULT TO PENETRATED A FOOT WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER
VERY DENSE	>50	>60	>70	$85-100$	PENETRATED ONLY A FEW INCHES WITH 1/2-INGH REINFORCING ROD DRIVEN WITH 5-LB HAMMER

CONSISTENCY -FINE-GRAINED SOIL		TORVANE	$\begin{array}{c\|} \text { POCKET } \\ \text { PENETROMETER } \end{array}$	FIELD TEST
CONSISTENCY	$\begin{aligned} & \text { SPT } \\ & \text { (blowsft) } \end{aligned}$	$\begin{aligned} & \text { UNTRAINED } \\ & \text { STRANANR (tsf) } \end{aligned}$	$\begin{aligned} & \text { UNCONFINED } \\ & \text { COMPNESSIE } \\ & \text { STRENGTH (IST) } \end{aligned}$	
VERY SOFT	<2	<0.125	<0.25	EASILY PENETRATED SEVERAL INCHES BY THUMB. EXUDES BETWEEN THUMB AND FINGERS WHEN SQUEEZED BY HAND.
SOFT	2-4	$0.125-0.25$	0.25-0.5	EASILY PENETRATED ONE INCH BY THUMB. MOLDED BY LIGHT FINGER PRESSURE.
MEDIUM STIFF	4-8	0.25-0.5	0.5-1.0	PENETRATED OVER $1 / 2$ INCH BY THUMB WITH MODERATE EFFORT. MOLDED BY STRONG FINGER PRESSURE.
STIFF	8-15	0.5-1.0	1.0-2.0	INDENTED ABOUT $1 / 2 \mathrm{INCH}$ BY THUMB BUT PENETRATED ONLY WITH GREAT EFFORT.
VERY STIFF	15-30	1.0-2.0	2.0-4.0	READILY INDENTED BY THUMBNAIL.
HARD	>30	>2.0	>4.0	INDENTED WITH DIFFICULTY BY THUMENAIL.

Exhibit B

APPENDIX B

Project: GTI - Powder Mountain Resort
No: 01628-006
Location: Weber County, Utah
Date: 7/29/2014
By: MP

	Boring No.								
	Sample:	Lot34TP1							
	Depth:	$4.0{ }^{\prime}$							
03E000000	Sample height, H (in)	5.446							
	Sample diameter, D (in)	2.416							
	Sample volume, V (ft^{3})	0.0144							
	Mass rings + wet soil (g)	948.80							
	Mass rings/tare (g)	250.66							
	Moist soil, Ws (g)	698.14							
	Moist unit wt., γ_{m} (pcf)	106.53							
$\begin{array}{\|c} \dot{0} \\ \frac{\pi}{0} \\ 0 \\ 0 \\ 3 \end{array}$	Wet soil + tare (g)	819.67							
	Dry soil + tare (g)	670.76							
	Tare (g)	122.36							
Water Content, w (\%)		27.2							
Dry Unit Wt., γ_{d} (pef)		83.8							

\qquad
\qquad

Ions in Water by Chemically Suppressed Ion Chromatography (AASHTO T 288. T289, ASTM D4327, and CI580)

Project: GTI - Powder Mountain Resort

No: 01628-006
Location: Weber County, Utah
Date: 8/5/2014
By: ET

	Boring No.				
	Sample	Lot 34 TP1			
	Depth	9.5 '			
	Wet soil + tare (g)	140.57			
	Dry soil + tare (g)	127.24			
	Tare (g)	37.80			
	Water content (\%)	14.9			
$\begin{aligned} & \text { 采 } \\ & \text { 号 } \\ & \text { U } \end{aligned}$	pH	8.16			
	Soluble chloride* (ppm)	3.8			
	Soluble sulfate** (ppm)	8			
	Pin method	2			
	Soil box	Miller Small			
		Approximate Soil condition $(\%)$	Resistance Reading (Ω)	Soil Box Multiplier (cm)	Resistivity $(\Omega-\mathrm{cm})$
		As Is	8550	0.67	5729
		+3	6570	0.67	4402
		$+6$	4710	0.67	3156
		+9	4760	0.67	3189
	Minimum resistivity (Ω-cm)	3156			

* Performed by AWAL using EPA 300.0
** Performed by AWAL using ASTM
C1580

Entered by: \qquad
Reviewed: \qquad

Exhibit B

APPENDIX C

User-Specified Input

2012 International Building Code
(which utilizes USGS hazard data available in 2008)
Site Coordinates $41.36961^{\circ} \mathrm{N}, 111.7579^{\circ} \mathrm{W}$
Site Soil Classification Site Class C - "Very Dense Soil and Soft Rock"
Risk Category I/II/III

USGS-Provided Output

$\mathbf{S}_{\mathrm{S}}=0.826 \mathrm{~g}$	$\mathbf{S}_{\mathrm{MS}}=0.883 \mathrm{~g}$	$\mathbf{S}_{\mathrm{DS}}=0.589 \mathrm{~g}$
$\mathbf{S}_{1}=0.274 \mathrm{~g}$	$\mathbf{S}_{\mathrm{M} 1}=0.419 \mathrm{~g}$	$\mathbf{S}_{\mathrm{D} 1}=0.279 \mathrm{~g}$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

$\mathrm{MCE}_{\mathrm{R}}$ Response Spectrum

Design Response Spectrum

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

\%USGS Design Maps Detailed Report

2012 International Building Code ($41.36961^{\circ} \mathrm{N}, 111.7579^{\circ} \mathrm{W}$)
Site Class C - "Very Dense Soil and Soft Rock", Risk Category I/II/III

Section 1613.3.1 - Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_{s}) and 1.3 (to obtain S_{1}). Maps in the 2012 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

Section 1613.3.2 - Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class C, based on the site soil properties in accordance with Section 1613.

2010 ASCE-7 Standard - Table 20.3-1
 SITE CLASS DEFINITIONS

Site Class	$\bar{v}_{\mathbf{s}}$	\bar{N} or $\bar{N}_{\text {ch }}$	\bar{s}_{u}
A. Hard Rock	$>5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
B. Rock	2,500 to $5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
C. Very dense soil and soft rock	1,200 to $2,500 \mathrm{ft} / \mathrm{s}$	>50	$>2,000 \mathrm{psf}$
D. Stiff Soil	600 to $1,200 \mathrm{ft} / \mathrm{s}$	15 to 50	1,000 to $2,000 \mathrm{psf}$
E. Soft clay soil	$<600 \mathrm{ft} / \mathrm{s}$	<15	$<1,000 \mathrm{psf}$

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI >20,
- Moisture content $w \geq 40 \%$, and
- Undrained shear strength $\bar{s}_{\mathrm{u}}<500 \mathrm{psf}$
F. Soils requiring site response

See Section 20.3.1
analysis in accordance with Section
21.1

$$
\text { For SI: } 1 \mathrm{ft} / \mathrm{s}=0.3048 \mathrm{~m} / \mathrm{s} 1 \mathrm{lb} / \mathrm{ft}^{2}=0.0479 \mathrm{kN} / \mathrm{m}^{2}
$$

Section 1613.3.3 - Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

TABLE 1613.3.3(1)
VALUES OF SITE COEFFICIENT F_{a}

Site Class	Mapped Spectral Response Acceleration at Short Period				
	$\mathrm{S}_{\mathrm{s}} \leq 0.25$	$\mathrm{S}_{\mathrm{s}}=0.50$	$\mathrm{S}_{\mathrm{s}}=0.75$	$\mathrm{S}_{\mathrm{S}}=1.00$	$S_{s} \geq 1.25$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F	See Section 11.4.7 of ASCE 7				
Note: Use straight-line interpolation for intermediate values of S_{s}					
For Site Class $=C$ and $S_{\text {s }}=0.826 \mathrm{~g}, \mathrm{~F}_{\mathrm{a}}=1.070$					
TABLE 1613.3.3(2) VALUES OF SITE COEFFICIENT F_{v}					
Site Class	Mapped Spectral Response Acceleration at 1-s Period				
	$\mathrm{S}_{1} \leq 0.10$	$\mathrm{S}_{1}=0.20$	$\mathrm{S}_{1}=0.30$	$\mathrm{S}_{1}=0.40$	$\mathrm{S}_{1} \geq 0.50$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F	See Section 11.4.7 of ASCE 7				

Note: Use straight-line interpolation for intermediate values of S_{1}

For Site Class $=\mathbf{C}$ and $\mathrm{S}_{1}=\mathbf{0 . 2 7 4} \mathrm{g}, \mathrm{F}_{\mathrm{v}}=\mathbf{1 . 5 2 6}$

$$
S_{M S}=F_{\mathrm{a}} \mathrm{~S}_{\mathrm{S}}=1.070 \times 0.826=0.883 \mathrm{~g}
$$

$$
S_{M 1}=F_{v} S_{1}=1.526 \times 0.274=0.419 \mathrm{~g}
$$

Section 1613.3.4 - Design spectral response acceleration parameters

$$
S_{D S}=2 / 3 S_{M S}=2 / 3 \times 0.883=0.589 \mathrm{~g}
$$

$$
S_{D 1}=2 / 3 S_{M 1}=2 / 3 \times 0.419=0.279 \mathrm{~g}
$$

Section 1613.3.5 - Determination of seismic design category
TABLE 1613.3.5(1)
SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

VALUE OF S	RISK CATEGORY		
	I or II	III	IV
$\mathrm{S}_{\mathrm{DS}}<0.167 \mathrm{~g}$	A	A	A
$0.167 \mathrm{~g} \leq \mathrm{S}_{\mathrm{DS}}<0.33 \mathrm{~g}$	B	B	C
$0.33 \mathrm{~g} \leq \mathrm{S}_{\mathrm{DS}}<0.50 \mathrm{~g}$	C	C	D
$\mathbf{0 . 5 0 \mathrm { g }} \leq \mathrm{S}_{\mathrm{DS}}$	D	D	D

For Risk Category $=1$ and $S_{D S}=0.589$ g, Seismic Design Category $=D$
TABLE 1613.3.5(2)
SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

VALUE OF S ${ }_{\mathrm{D} 1}$	RISK CATEGORY		
	I Or II	III	IV
$\mathrm{S}_{\mathrm{D} 1}<0.067 \mathrm{~g}$	A	A	A
$0.067 \mathrm{~g} \leq \mathrm{S}_{\mathrm{D} 1}<0.133 \mathrm{~g}$	B	B	C
$0.133 \mathrm{~g} \leq \mathrm{S}_{\mathrm{D} 1}<0.20 \mathrm{~g}$	C	C	D
$0.20 \mathrm{~g} \leq \mathrm{S}_{\mathrm{D} 1}$	D	D	D

For Risk Category $=1$ and $S_{D 1}=0.279$ g, Seismic Design Category $=\mathrm{D}$

Note: When S_{1} is greater than or equal to 0.75 g , the Seismic Design Category is \mathbf{E} for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with
Table 1613.3.5(1) or 1613.3.5(2)" = D

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 1613.3.1(1): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012Fig1613p3p1(1).pdf
2. Figure 1613.3.1(2): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012Fig1613p3p1(2).pdf

Mr. Grant H. Blakeslee
Summit, LLC
3632 North Wolf Creek Drive
Eden, Utah 84310
IGES Project No. 01628-006

RE: Geotechnical Investigation Report (Revised) Lot 34R of Powder Mountain Resort
 7958 East Heartwood Drive
 Weber County, Utah

Mr. Blakeslee,
As requested, IGES has conducted a geotechnical investigation for the proposed residence to be constructed on Lot 34 R of the Powder Mountain Resort located at 7958 East Heartwood Drive in Weber County, Utah. The approximate location of the property is illustrated on the Site Vicinity Map (Figure A-1 in Appendix A). The purposes of our investigation was to assess the nature and engineering properties of the subsurface soils at the proposed home site and to provide recommendations for the design and construction of foundations, grading, and drainage. The scope of work completed for this study included subsurface exploration, laboratory testing, engineering analyses and preparation of this letter. This report has been revised from the original report dated August 7, 2014 to further discuss the presence of bedrock at the site.

Project Understanding

Our understanding of the project is based primarily on our previous involvement with the Powder Mountain resort project, which included two geotechnical investigations for the greater 200-acre Powder Mountain Resort expansion project (IGES, 2012a and 2012b).

The Powder Mountain Resort expansion project is located southeast of SR-158 (Powder Mountain Road), south of previously developed portions of Powder Mountain Resort, in unincorporated Weber County, Utah. The project is accessed by Powder Ridge Road.

Lot 34 R is a $3 / 4$-acre single-family residential lot with a buildable envelope of approximately 0.21 acres. A single-family home will be constructed at the site, presumably a high-end vacation home. Construction plans were not available for our review; however, we assume the new home will be a one- or two-story wood-framed structure, with a walkout basement, founded on conventional spread footings. The development is expected to include improvements common for residential subdivisions such as underground utilities, curb and gutter, flatwork, landscaping, and possibly appurtenant structures.

Exhibit B

Lot 34R of Powder Mountain Resort
7958 East Heartwood Drive, Weber County, Utah

METHOD OF STUDY

Literature Review

IGES completed a geotechnical investigation for the Powder Mountain Resort expansion in 2012 (2012a, 2012b). Our previous work included twenty-two test pits and one soil boring excavated at various locations across the 200 -acre development; as a part of this current study, the logs from relevant nearby test pits and other data from our reports were reviewed. In addition, Western Geologic (2012) completed a geologic hazard study for the greater 200-acre Powder Mountain expansion project - this report was reviewed to assess the potential impact of geologic hazards on the subject lot.

Field Investigation

Subsurface soils were investigated by excavating one test pit approximately 12 feet below the existing site grade. The approximate location of the test pit is illustrated on the Geotechnical Map (Figure A-2 in Appendix A). The soil types and conditions were visually logged at the time of the excavation in general accordance with the Unified Soil Classification System (USCS). Subsurface soil classifications and descriptions are included on the test pit log included as Figure A-3 in Appendix A. A key to USCS symbols and terminology is included as Figure A-4.

Laboratory Testing

Samples retrieved during the subsurface investigation were transported to the laboratory for evaluation of engineering properties. Specific laboratory tests include:

- Moisture Content and Unit Weight
- Soluble Sulfate, Soluble Chloride, pH and Resistivity

Results of the laboratory testing are discussed in this report and presented in Appendix B. Some test results, including moisture content; and unit weight, have been incorporated into the test pit \log (Figure A-3).

In addition to laboratory testing on samples obtained from this lot, engineering analysis was also based on previously completed laboratory work on soil samples obtained near the site (IGES, 2012a \& 2012b).

Engineering Analysis

Engineering analyses were performed using soil data obtained from laboratory testing and empirical correlations based on material density, depositional characteristics and classification. Appropriate factors of safety were applied to the results consistent with industry standards and the accepted standard of care. An allowable bearing pressure value was proportioned based on estimated shear strength of bearing soils.

Exhibit B

Lot $34 R$ of Powder Mountain Resort
7958 East Heartwood Drive, Weber County, Utah

FINDINGS

Surface Conditions

At the time of the excavation, the lot was in a relatively natural state and was covered with a variety of vegetation including mature pine trees, native grasses and shrubs. The lot slopes relatively steeply toward north at a gradient of approximately $2.4 \mathrm{H}: 1 \mathrm{~V}$, away from Heartwood Drive. On the southern boundary of the lot there is a 'ridge' jutting northeast into the building envelope, forming a topographic high point for the lot. This ridge is covered with a stand of mature pine trees. The ridge also represents an exposure of bedrock (dolomite). The remainder of the lot is essentially a sloped grassy field. Aside from the rocky outcrops on the ridge, several angular boulders could be observed at various locations on the surface.

Earth Materials

The earth materials exposed at the site consist of a rocky northeast-southwest-trending salient exposing dolomite bedrock, surrounded by a thick sequence of sandy colluvial cover (this is illustrated on Figure A-2). The soil at the surface of the site consists of approximately 6 inches of poorly-developed topsoil consisting of mottled silty sand characterized by an abundance of organic matter (roots, etc.). The topsoil was underlain by medium dense clayey sand extending to a depth of approximately 9 feet below existing grade. Underlying this layer, we encountered coarse colluvium consisting of mediumdense clayey gravel. The colluvium was characterized by abundant coarse angular rock fragments, which extended to the bottom of the excavation (approximately 12 feet below the existing grade). Due to the coarsness of the colluvium at 12 feet, it is postulated that bedrock could have been within a few feet of the bottom of the test pit; however, difficult excavating conditions limited the depth of the test pit.

Upon the topographic high point of the lot (illustrated on Figure A-2 in red, designated as geologic unit (r), we observed bedrock outcrops consisting of highly weathered, closely fractured dark gray dolomite. The rock unit is fairly hard - samples could only be obtained with a firm blow from a rock hammer. It should be noted that the rock/colluvium contact it thought to dip steeply, since bedrock was not encountered in the test pit even though the test pit was excavated near the bedrock outcrop.

Detailed descriptions of earth materials encountered are presented on the test pit log, Figure A-3, in Appendix A.

Groundwater

Groundwater was not encountered in the test pit excavation. Based on our observations, groundwater is not anticipated to adversely impact the proposed construction. However, groundwater levels could rise at any time based on several factors including recent precipitation, on- or off-site runoff, irrigation, and time of year (e.g., spring run-off). Should the groundwater become a concern during the proposed construction, IGES should be contacted so that dewatering recommendations may be provided.

Geology and Geologic Hazards

Geology and geologic hazards have been previously addressed by Western Geologic in a separate submittal (Western Geologic, 2012). This work has also been referenced in our previous geotechnical reports for the project (IGES, 2012a and 2012b). The report by Western Geologic indicates that the lot is located outside of known geologically unstable areas. The Western Geologic report also includes a large-scale geologic map that shows the subject lot in an area mapped as "undifferentiated dolomite". Dolomite is a rock that has similar mechanical properties to limestone and is fairly hard, often forming cliffs and other near-vertical formations.

During our subsurface investigation, potentially adverse geologic structures (e.g., evidence of faulting or landslides) were not evident to the maximum depth of exploration (12 feet). Geomorphic expressions of shallow, surficial landslides were not observed on, or near the lot. Based on currently available data and our observations, the potential for geologic hazards such as landslides, liquefaction, or surface fault rupture impacting the site is considered low.

Seismicity

Following the criteria outlined in the 2012 International Building Code (IBC, 2012), spectral response at the site was evaluated for the Maximum Considered Earthquake (MCE) which equates to a probabilistic seismic event having a two percent probability of exceedance in 50 years (2PE50). Spectral accelerations were determined based on the location of the site using the U.S. Seismic "DesignMaps" Web Application (USGS, 2012); this software incorporates seismic hazard maps depicting probabilistic ground motions and spectral response data developed for the United States by the U. S. Geological Survey as part of NEHRP/NSHMP (Frankel et al., 1996). These maps have been incorporated into both NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA, 1997) and the International Building Code (IBC) (International Code Council, 2012).

To account for site effects, site coefficients that vary with the magnitude of spectral acceleration and Site Class are used. Site Class is a parameter that accounts for site amplification effects of soft soils and is based on the average shear wave velocity of the upper 100 feet; based on our field exploration and our understanding of the geology in this area, the subject site is appropriately classified as Site Class B (Rock). Based on IBC criteria, the short-period (Fa_{a}) coefficient is 1.0 and long-period (F_{v}) site coefficient is 1.0. Based on the design spectral response accelerations for a Building Risk Category of I, II or III, the site's Seismic Design Category is D. The short- and long-period Design Spectral Response Accelerations are presented in Table 1.0; a summary of the Design Maps analysis is presented in Appendix C. The peak ground acceleration (PGA) may be taken as $0.4 * \mathrm{~S}_{\mathrm{ms}}$.

Table 1.0
Short- and Long-Period Spectral Accelerations for MCE

Parameter	Short Period $(\mathbf{0 . 2} \mathbf{~ s e c})$	Long Period $\mathbf{(1 . 0 ~ s e c)}$
MCE Spectral Response Acceleration (g)	$\mathrm{Ss}=0.826$	$\mathrm{~S}_{1}=0.274$
MCE Spectral Response Acceleration Site Class C (g)	$\mathrm{SMS}=\mathrm{S}_{\mathrm{s}} \mathrm{Fa}_{\mathrm{a}}=0.826$	$\mathrm{~S}_{\mathrm{M} 1}=\mathrm{S}_{1} \mathrm{~F}_{\mathrm{v}}=0.274$
Design Spectral Response Acceleration (g)	$\mathrm{SDS}=\mathrm{SMS}_{\mathrm{M}^{2} / 3}=0.551$	$\mathrm{SD}_{\mathrm{D} 1}=\mathrm{S}_{\mathrm{M} 1 *^{*} / 3}=0.183$

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the field observations, laboratory testing and previously completed geotechnical investigation (IGES, 2012a), the subsurface conditions are considered suitable for the proposed construction provided that the recommendations presented in this report are incorporated into the design and construction of the project.

General Site Preparation and Grading

Prior to the placement of foundations, general site grading is recommended to provide proper support for exterior concrete flatwork, concrete slabs-on-grade, and pavement sections. Site grading is also recommended to provide proper drainage and moisture control on the subject property and to aid in preventing differential movement in foundation soils as a result of variations in moisture conditions.

Below proposed structures, fills, and man-made improvements, all vegetation, topsoil, debris and undocumented fill soils (if any) should be removed. Any existing utilities should be re-routed or protected in place. The exposed native soils should then be proof-rolled with heavy rubber-tired equipment such as a scraper or loader. Any soft/loose areas identified during proof-rolling should be removed and replaced with structural fill. All excavation bottoms should be observed by an IGES representative during proof rolling or otherwise prior to placement of engineered fill to evaluate whether soft, loose, or otherwise deleterious earth materials have been removed and that recommendations presented in this report have been complied with.

Excavations

Soft, loose, or otherwise unsuitable soils beneath structural elements, hardscape or pavements may need to be over-excavated and replaced with structural fill. If overexcavation is required, the excavations should extend one foot laterally for every foot of depth of over-excavation. Excavations should extend laterally at least two feet beyond flatwork, pavements, and slabs-on-grade. Structural fill should consist of granular materials and should be placed and compacted in accordance with the recommendations presented in this report.

Exhibit B

Prior to placing engineered fill, all excavation bottoms should be scarified to at least 6 inches, moisture-conditioned as necessary at or slightly above optimum moisture content (OMC), and compacted to at least 90 percent of the maximum dry density (MDD) as determined by ASTM D-1557 (Modified Proctor). Scarification is not required where bedrock is exposed.

Excavation Stability

The contractor is responsible for site safety, including all temporary trenches excavated at the site and the design of any required temporary shoring. The contractor is responsible for providing the "competent person" required by Occupational Safety and Health (OSHA) standards to evaluate soil conditions. For planning purposes, Soil Type C is expected to predominate at the site (sands and gravels). Close coordination between the competent person and IGES should be maintained to facilitate construction while providing safe excavations.

Based on OSHA guidelines for excavation safety, trenches with vertical walls up to 5 feet in depth may be occupied. Where very moist soil conditions or groundwater is encountered, or when the trench is deeper than 5 feet, we recommend a trench-shield or shoring be used as a protective system to workers in the trench. As an alternative to shoring or shielding, trench walls may be laid back at one and one half horizontal to one vertical ($1 \frac{1}{2} \mathrm{H}: 1 \mathrm{~V}$) (34 degrees) in accordance with OSHA Type C soils. Trench walls may need to be laid back at a steeper grade pending evaluation of soil conditions by the geotechnical engineer. Soil conditions should be evaluated in the field on a case-by-case basis. Large rocks exposed on excavation walls should be removed (scaled) to minimize rock fall hazards. Where dolomite bedrock is exposed, near-vertical walls $(0.25 \mathrm{H}: 1 \mathrm{~V})$ may be permitted provided adverse jointing or bedding patterns are absent and the excavation is assessed by the OSHA 'competent person' prior to occupancy.

Structural Fill and Compaction

All fill placed for the support of structures, flatwork or pavements should consist of structural fill. Structural fill should consist of granular native soils, which may be defined as soils with less than 25% fines, $10-60 \%$ sand, and contain no rock larger than 4 inches in nominal size (6 inches in greatest dimension). Structural fill should also be free of vegetation and debris. Soils not meeting these criteria may be suitable for use as structural fill; however, such soils should be evaluated on a case by case basis and should be approved by IGES prior to use.

All structural fill should be placed in maximum 4-inch loose lifts if compacted by small hand-operated compaction equipment, maximum 6-inch loose lifts if compacted by lightduty rollers, and maximum 8 -inch loose lifts if compacted by heavy duty compaction equipment that is capable of efficiently compacting the entire thickness of the lift. Additional lift thickness may be allowed by IGES provided the Contractor can demonstrate sufficient compaction can be achieved with a given lift thickness with the equipment in use. We recommend that all structural fill be compacted on a horizontal plane, unless otherwise approved by IGES. Structural fill underlying all shallow footings and pavements should be compacted to at least 95 percent of the MDD as determined by ASTM D-1557.

Exhibit B

Lot 34R of Powder Mountain Resort
7958 East Heartwood Drive, Weber County, Utah
The moisture content should be at, or slightly above, the OMC for all structural fill. Any imported fill materials should be approved prior to importing. Also, prior to placing any fill, the excavations should be observed by IGES to confirm that unsuitable materials have been removed.

Specifications from governing authorities such as Weber County and/or special service districts having their own precedence for backfill and compaction should be followed where more stringent.

Utility Trench Backfill

Utility trenches should be backfilled with structural fill in accordance with the previous section. Utility trenches can be backfilled with the onsite soils free of debris, organic and oversized material. Prior to backfilling the trench, pipes should be bedded in and shaded with a uniform granular material that has a Sand Equivalent (SE) of 30 or greater. Pipe bedding may be water-densified in-place (jetting). Alternatively, pipe bedding and shading may consist of clean $3 / 4$-inch gravel, which generally does not require densification. Native earth materials can be used as backfill over the pipe bedding zone. All utility trenches backfilled below pavement sections, curb and gutter, hardscape, should be backfilled with structural fill compacted to at least 95 percent of the MDD as determined by ASTM D1557. All other trenches should be backfilled and compacted to approximately 90 percent of the MDD (ASTM D-1557). However, in all cases the pipe bedding and shading should meet the design criteria of the pipe manufacturer. Specifications from governing authorities having their own precedence for backfill and compaction should be followed where they are more stringent.

Foundations

Based on our field observations and considering the presence of bedrock exposures within the building envelope, we recommend that the footings for proposed home be founded entirely on bedrock. Bedrock/soil transition zones are not allowed. However, it is possible, and even likely, that deep colluvial deposits located on the north side of the building envelope may preclude the practical construction of all foundation on bedrock; as such, as an alternative to extending all foundations to bedrock, foundations constructed over colluvium may be underpinned with micropiles or a similar underpinning technology. This is conceptually illustrated on Figure D-1 in Appendix D.

Since the bedrock/colluvium contact cannot be known with certainty, and since the design of the new home is currently in the planning stages, the extent to which micropiles will be necessary (or perhaps not required) will not be evident until the basement is excavated. We recommend that IGES inspect the bottom of the foundation excavation prior to the placement of steel or concrete to identify any unsuitable soils or transition zones. If bedrock/soil transitions zones are identified, the Contractor may wish to pot-hole to assess the depth to bedrock and thus determine if deepening the foundations is practical, or if underpinning the foundations is the preferred option.

It should be noted that the bedrock at the site is expected to be very difficult to excavate (see Construction Considerations on page 11 of this report).

Exhibit B

Lot 34R of Powder Mountain Resort
7958 East Heartwood Drive, Weber County, Utah

Shallow spread or continuous wall footings constructed entirely on competent bedrock may be proportioned utilizing a maximum net allowable bearing pressure of $\mathbf{5 , 0 0 0}$ pounds per square foot (psf) for dead load plus live load conditions. The net allowable bearing value presented above is for dead load plus live load conditions. The minimum recommended footing width is 20 inches for continuous wall footings and 30 inches for isolated spread footings.

All conventional foundations exposed to the full effects of frost should be established at a minimum depth of 42 inches below the lowest adjacent final grade. Interior footings, not subjected to the full effects of frost (i.e., a continuously heated structure), may be established at higher elevations, however, a minimum depth of embedment of 12 inches is recommended for confinement purposes.

Foundation drains should be installed around below-ground foundations (e.g., basement walls) to minimize the potential for flooding from shallow groundwater, which may be present at various times during the year, particularly spring run-off.

Underpinning

Underpinning, if used, should be designed by IGES or an engineer experienced in deep foundation design. For planning purposes, underpinning may consist of micropiles conforming to the following criteria:

- Injection Bore micropile, R38N hollow bar, uncased.
- 6-inch grouted diameter.
- Socket a minimum of three feet into bedrock or 20 feet into colluvium, whichever is shorter.
- A single micropile, as described above, may be assumed to have an allowable axial capacity of 35 kips.
- Lateral resistance, if required by the Structural Engineer, will require a cased micropile and must be designed for specific project requirements.

Settlement

Static settlement of properly designed and constructed conventional foundations, founded as described above, are anticipated to be on the order of 1 inch or less. Differential settlement is expected to be half of total settlement over a distance of 30 feet.

Competent native earth materials and/or properly compacted structural fill is expected to exhibit negligible seismically-induced settlement during a MCE seismic event.

Earth Pressure and Lateral Resistance

Lateral forces imposed upon conventional foundations due to wind or seismic forces may be resisted by the development of passive earth pressures and friction between the base of the footing and the supporting soils. In determining the frictional resistance against
concrete, a coefficient of friction of 0.45 for sandy native soils or structural fill should be used.

Ultimate lateral earth pressures from granular backfill acting against retaining walls, temporary shoring, or buried structures may be computed from the lateral pressure coefficients or equivalent fluid densities presented in Table 2.0. These lateral pressures should be assumed even if the backfill is placed in a relatively narrow gap between a vertical bedrock cut and the foundation wall.

Table 2.0
Lateral Earth Pressure Coefficients

Condition	Level Backfill		2H:1V Backfill	
	Lateral Pressure Coefficient	Equivalent Fluid Density (pcf)	Lateral Pressure Coefficient	Equivalent Fluid Density (pcf)
	0.33	35	0.53	56
At-rest (Ko)	0.50	55	0.80	85
Passive (Kp)	3.0	320	-	-

These coefficients and densities assume no buildup of hydrostatic pressures. The force of water should be added to the presented values if hydrostatic pressures are anticipated.

Clayey soils drain poorly and may swell upon wetting, thereby greatly increasing lateral pressures acting on earth retaining structures; therefore, clayey soils should not be used as retaining wall backfill. Backfill should consist of native granular soil with an Expansion Index (EI) less than 20.

Walls and structures allowed to rotate slightly should use the active condition. If the element is to be constrained against rotation (i.e., a basement or buried tank wall), the atrest condition should be used. These values should be used with an appropriate factor of safety against overturning and sliding. A value of 1.5 is typically used. Additionally, if passive resistance is calculated in conjunction with frictional resistance, the passive resistance should be reduced by $1 / 2$.

Concrete Slab-on-Grade Construction

To minimize settlement and cracking of slabs, and to aid in drainage beneath the concrete floor slabs, all concrete slabs should be founded on a minimum 4-inch layer of compacted gravel overlying properly prepared subgrade. The gravel should consist of free-draining gravel or road base with a $3 / 4$-inch maximum particle size and no more than 5 percent passing the No. 200 mesh sieve. The layer should be compacted to at least 95 percent of the MDD as determined by ASTM D-1557.

All concrete slabs should be designed to minimize cracking as a result of shrinkage. Consideration should be given to reinforcing the slab with a welded wire fabric, re-bar, or fibermesh. Slab reinforcement should be designed by the structural engineer; however, as

Exhibit B

a minimum, slab reinforcement should consist of 4 ' $\times 4$ '" $\mathrm{W} 4.0 \times \mathrm{W} 4.0$ welded wire mesh within the middle third of the slab. We recommend that concrete be tested to assess that the slump and/or air content is in compliance with the plans and specifications. We recommend that concrete be placed in general accordance with the requirements of the American Concrete Institute (ACI). A Modulus of Subgrade Reaction of $\mathbf{4 0 0}$ psi/inch may be used for design.

A moisture barrier (vapor retarder) consisting of 10 -mil thick Visqueen (or equivalent) plastic sheeting should be placed below slabs-on-grade where moisture-sensitive floor coverings or equipment is planned. Prior to placing this moisture barrier, any objects that could puncture it, such as protruding gravel or rocks, should be removed from the building pad. Alternatively, the subgrade may be covered with 2 inches of clean sand.

Moisture Protection

Moisture should not be allowed to infiltrate into the soils in the vicinity of the foundations. As such, design strategies to minimize ponding and infiltration near the home should be implemented. The new home may be subject to sheet flow during periods of heavy rain or snow melt; therefore, the Civil Engineer may also wish to consider construction of additional surface drainage to intercept surface runoff, or a curtain drain to intercept seasonal groundwater flow, if any.

We recommend that hand watering, desert landscaping or Xeriscape be considered within 5 feet of the foundations. We further recommend roof runoff devices be installed to direct all runoff a minimum of 10 feet away from structures. The home builder should be responsible for compacting the exterior backfill soils around the foundation. Additionally, the ground surface within 10 feet of the house should be constructed so as to slope a minimum of five percent away from the home. Pavement sections should be constructed to divert surface water off of the pavement into storm drains. Parking strips and roadway shoulder areas should be constructed to prevent infiltration of water into the areas surrounding pavement. Landscape plans must conform to Weber County development codes.

IGES recommends a perimeter foundation drain be constructed for the proposed residential structure in accordance with the International Residential Code (IRC).

Soil Corrosion Potential

Laboratory testing of a representative soil sample obtained from the test pit indicated that the soil sample tested had a sulfate content of 8 ppm . Accordingly, the soils are classified as having a 'low' potential for deterioration of concrete due to the presence of soluble sulfate. As such, conventional Type I/II Portland cement may be used for all concrete in contact with site soils.

To evaluate the corrosion potential of ferrous metal in contact with onsite native soil a sample was tested for soil resistivity, soluble chloride and pH . The test indicated that the onsite soil tested has a minimum soil resistivity of $3,156 \mathrm{OHM}-\mathrm{cm}$, soluble chloride content of 3.8 ppm and a pH of 8.2 . Based on this result, the onsite native soil is considered to be
moderately corrosive to ferrous metal. Consideration should be given to retaining the services of a qualified corrosion engineer to provide an assessment of any metal that may be associated with construction of ancillary water lines and reinforcing steel, valves etc.

Construction Considerations

- Excavation Difficulty: bedrock consisting of relatively hard dolomite is exposed at the surface within the building envelope. Based on conversations with contractors currently working in the vicinity, this rock is expected to be relatively difficult to remove. Special heavy-duty excavation equipment will likely be required, such as a hammer hoe.
- Over-Size Material: A bedrock outcrop was observed within the building footprint of this lot. In addition, large boulders up to 12 inches were observed on the surface; larger boulders may be present within the colluvial soil. As such, development of the lot is expected to generate a substantial amount of over-size material (rocks larger than 6 inches in greatest dimension). Large rocks, particularly boulders, may require special handling, such as segregation from structural fill, and disposal. Bedrock is expected to require specialized equipment for removal during excavation of the basement.

CLOSURE

The recommendations presented in this letter are based on limited field exploration, literature review, and a general understanding of the proposed construction. The subsurface data used in the preparation of this letter were obtained from the exploration(s) made for this investigation. It is possible that variations in the soil and groundwater conditions could exist beyond the point explored. The nature and extent of variations may not be evident until construction occurs. If any conditions are encountered at this site that are different from those described in this letter, IGES should be immediately notified so that any necessary revisions to recommendations contained in this letter may be made. In addition, if the scope of the proposed construction changes from that described in this letter, IGES should also be notified.

This report was prepared in accordance with the generally accepted standard of practice at the time the report was written. No warranty, expressed or implied, is made.

It is the Client's responsibility to see that all parties to the project including the Designer, Contractor, Subcontractors, etc. are made aware of this letter in its entirety. The use of information contained in this report for bidding purposes should be done at the Contractor's option and risk.

Additional Services

The recommendations presented in this report are based on the assumption that an adequate program of tests and observations will be made during the construction. IGES staff should be on site to verify compliance with these recommendations. These tests and observations should include, but not necessarily be limited to, the following:

Exhibit B

Lot 34R of Powder Mountain Resort
7958 East Heartwood Drive, Weber County, Utah

- Observations and testing during site preparation, earthwork and structural fill placement.
- Consultation as may be required during construction.
- Quality control testing of cast-in-place concrete.
- Review of plans and specifications to assess compliance with our recommendations.

We appreciate the opportunity to be of service on this project. Should you have any questions regarding the report or wish to discuss additional services, please contact the undersigned at (801) 748-4044.

Respectfully submitted,

 IGES, Inc.

Shun Li, P.E.I.
Staff Engineer

Reviewed by:

David A. Glass, P.E.
Senior Geotechnical Engineer

Attachments:

References

Appendix A
Figure A-1 - Site Vicinity Map
Figure A-2 - Geotechnical Map
Figure A-3 - Test Pit Log
Figure A-4 - Key to Soil Symbols and Terminology
Appendix B - Laboratory Results
Appendix C - 2012 IBC MCE and Design Response Acceleration
Appendix B - Laboratory Results
Figure D-1 - Conceptual Cross-Section - Foundation Underpinning
Figure D-2 - Conceptual Cross-Section - Source Plan-View

References

AMEC, 2001, Report Engineering Geologic Reconnaissance/Geotechnical Study Powder Mountain Resort.

Federal Emergency Management Agency [FEMA], 1997, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA 302, Washington, D.C.

Frankel, A., Mueller, C., Barnard, T., Perkins, D., Leyendecker, E.V., Dickman, N., Hanson, S., and Hopper, M., 1996, National Seismic-hazard Maps: Documentation, U.S. Geological Survey Open-File Report 96-532, June.

IGES, Inc., 2012a, Design Geotechnical Investigation, Powder Mountain Resort, Weber County, Utah, Project No. 01628-003, dated November 9, 2012.

IGES, Inc., 2012b, Preliminary Geotechnical Investigation, Powder Mountain Resort, Weber County, Utah, Project No. 01628-001, dated July 26, 2012.

International Building Code [IBC], 2012, International Code Council, Inc.
PSI, 2012, Geophysical ReMi Investigation, Powder Mountain Resort, Phase 1A, Weber County, Utah, PSI Project No. 0710375, dated September 18, 2012.
U.S. Geological Survey, 2012, U.S. Seismic "Design Maps" Web Application, site: https://geohazards.usgs.gov/secure/designmaps/us/application.php.

Western Geologic, 2012, Report: Geologic Hazards Reconnaissance, Proposed Area 1 Mixed-Use Development, Powder Mountain Resort, Weber County, Utah, dated August 28, 2012.

Exhibit B

APPENDIX A

Exhibit B

Exhibit B

SCALE $1 "=50$

Exhibit B
Copyright (c) 2014, IGES, INC.

SAMPLE TYPE
\square-GRAB SAMPLE
$\boldsymbol{\square}$-3" O.D. THIN-WALLED HAND SAMPLER
WATER LEVEL
$\boldsymbol{\nabla}$-MEASURED
$\boldsymbol{\nabla}$-ESTIMATED

Exhibit B
UNIFIED SOIL CLASSIFICATION SYSTEM

LOG KEY SYMBOLS

BORING SAMPLE LOCATION		TEST-PIT SAMPLE LOCATION
V WATER LEVEL = (level after completion)	$\stackrel{\nabla}{=}$	WATER LEVEL (level where first encountered)

CEMENTATION

DESCRIPTION	DESCRIPTION
WEAKELY	CRUMBLES OR BREAKS WITH HANDLING OR SLIGHT FINGER PRESSURE
MODERATELY	CRUMBLES OR BREAKS WITH CONSIDERABLE FINGER PRESSURE
STRONGLY	WILL NOT CRUMBLE OR BREAK WITH FINGER PRESSURE

OTHER TESTS KEY

C	CONSOLIDATION	SA	SIEVE ANALYSIS
AL	ATTERBERG LIMITS	DS	DIRECT SHEAR
UC	UNCONFINED COMPRESSION	T	TRIAXIAL
S	SOLUBILITY	R	RESISTIVITY
O	ORGANIC CONTENT	RV	R-VALUE
CBR	CALIFORNIA BEARING RATIO	SU	SOLUBLE SULFATES
COMP	MOISTURE/DENSITY RELATIONSHIP	PM	PERMEABILITY
CI	CALIFORNIA IMPACT	-200	\% FINER THAN \#200
COL	COLLAPSE POTENTIAL	Gs	SPECIFIC GRAVITY
SS	SHRINK SWELL	SL	SWELL LOAD

MODIFIERS

DESCRIPTION	$\%$
TRACE	<5
SOME	$5-12$
WITH	>12

MOISTURE CONTENT

| DESCRIPTION | FIELD TEST |
| :--- | :--- | :--- |
| DRY | ABSENCE OF MOISTURE, DUSTY, DRY TO THE TOUCH |
| MOIST | DAMP BUT NO VISIBLE WATER |
| WET | VISIBLE FREE WATER, USUALLY SOIL BELOW WATER TABLE |

STRATIFICATION		
DESCRIPTION	THICKNESS	DESCRIPTION
SEAM	$1 / 16-1 / 2^{\prime \prime}$	THICKNESS
LAYER	$1 / 2-12^{\prime \prime}$	OCCASIONAL
FREQUENT	ONE OR LESS PER FOOT OF THICKNESS	
FORE THAN ONE PER FOOT OF THICKNESS		

GENERAL NOTES

1. Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual.
2. No warranty is provided as to the continuity of soil conditions between individual sample locations.
3. Logs represent general soil conditions observed at the point of exploration on the date indicated.
4. In general, Unified Soil Classification designations presented on the logs were evaluated by visual methods only. Therefore, actual designations (based on laboratory tests) may vary.

APPARENT / RELATIVE DENSITY - COARSE-GRAINED SOIL

APPARENT DENSITY	SPT (blows/ft)	MODIFIED CA. SAMPLER (blows/ft)	CALIFORNIA SAMPLER (blows/ft)	RELATIVE DENSITY (\%)	FIELD TEST
VERY LOOSE	<4	<4	<5	$0-15$	EASILY PENETRATED WITH 1/2-INCH REINFORCING ROD PUSHED BY HAND
LOOSE	$4-10$	$5-12$	$5-15$	$15-35$	DIFFICULT TO PENETRATE WITH 1/2-INCH REINFORCING ROD PUSHED BY HAND
MEDIUM DENSE	$10-30$	$12-35$	$15-40$	$35-65$	EASILY PENETRATED A FOOT WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER
DENSE	$30-50$	$35-60$	$40-70$	$65-85$	DIFFICULT TO PENETRATED A FOOT WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER
VERY DENSE	>50	>60	>70	$85-100$	PENETRATED ONLY A FEW INCHES WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER

CONSISTENCY -FINE-GRAINED SOIL		TORVANE	$\begin{array}{c\|} \text { POCKET } \\ \text { PENETROMETER } \end{array}$	FIELD TEST
CONSISTENCY	SPT (blows/ft)	$\begin{aligned} & \text { UNTRAINED } \\ & \text { STREAEARE (tsf) } \end{aligned}$	$\begin{aligned} & \text { UNCONFINED } \\ & \text { COMPRESSVIVE } \\ & \text { STRENGTH (tsf) } \\ & \hline \end{aligned}$	
VERY SOFT	<2	<0.125	<0.25	EASILY PENETRATED SEVERAL INCHES BY THUMB. EXUDES BETWEEN THUMB AND FINGERS WHEN SQUEEZED BY HAND.
SOFT	2-4	0.125-0.25	0.25-0.5	EASILY PENETRATED ONE INCH BY THUMB. MOLDED BY LIGHT FINGER PRESSURE.
MEDIUM STIFF	4-8	0.25-0.5	0.5-1.0	PENETRATED OVER $1 / 2$ INCH BY THUMB WITH MODERATE EFFORT. MOLDED BY STRONG FINGER PRESSURE.
STIFF	8-15	0.5-1.0	1.0-2.0	INDENTED ABOUT $1 / 2 \mathrm{INCH}$ BY THUMB BUT PENETRATED ONLY WITH GREAT EFFORT.
VERY STIFF	15-30	1.0-2.0	2.0-4.0	READILY INDENTED BY THUMBNAIL.
HARD	>30	>2.0	>4.0	INDENTED WITH DIFFICULTY BY THUMBNAIL.

Key to Soil Symbols and Terminology

Exhibit B

APPENDIX B

Project: GTI - Powder Mountain Resort
No: 01628-006
Location: Weber County, Utah
Date: 7/29/2014
By: MP

	Boring No.								
	Sample:	Lot34TP1							
	Depth:	$4.0{ }^{\prime}$							
Unit Weight Info.	Sample height, H (in)	5.446							
	Sample diameter, D (in)	2.416							
	Sample volume, V (ft ${ }^{3}$)	0.0144							
	Mass rings + wet soil (g)	948.80							
	Mass rings/tare (g)	250.66							
	Moist soil, Ws (g)	698.14							
	Moist unit wt., γ_{m} (pcf)	106.53							
$\left\lvert\, \begin{array}{cc} \pm & \ddot{y} \\ \frac{0}{0} & 0 \\ 3 & 5 \\ 3 & 0 \end{array}\right.$	Wet soil + tare (g)	819.67							
	Dry soil + tare (g)	670.76							
	Tare (g)	122.36							
Water Content, w (\%)		27.2							
Dry Unit Wt., γ_{d} (pef)		83.8							

\qquad
\qquad

Project：GTI－Powder Mountain Resort
No：01628－006
Location：Weber County，Utah
Date：8／5／2014
By：ET

	Boring No．				
	Sample	Lot 34 TP1			
	Depth	9.51			
	Wet soil＋tare（g）	140.57			
	Dry soil＋tare（g）	127.24			
	Tare（g）	37.80			
	Water content（\％）	14.9			
$\begin{aligned} & \text { 耍 } \\ & \text { 的 } \\ & \text { む } \end{aligned}$	pH	8.16			
	Soluble chloride＊（ppm）	3.8			
	Soluble sulfate＊＊ （ppm）	8			
	Pin method	2			
	Soil box	Miller Small			
		$\begin{array}{\|c} \hline \text { Approximate } \\ \text { Soil } \\ \text { condition } \\ (\%) \\ \hline \end{array}$	Resistance Reading (Ω)	Soil Box Multiplier （cm）	Resistivity $(\Omega-\mathrm{cm})$
		As Is	8550	0.67	5729
		＋3	6570	0.67	4402
		＋6	4710	0.67	3156
		＋9	4760	0.67	3189
	Minimum resistivity （ $\Omega-\mathrm{cm}$ ）	3156			

＊Performed by AWAL using EPA 300.0
＊＊Performed by AWAL using ASTM
C1580

Entered by： \qquad
\qquad

Exhibit B

APPENDIX C

Exhibit B USGS Design Maps Summary Report

User-Specified Input

USGS-Provided Output

$\mathbf{S}_{\mathrm{S}}=0.826 \mathrm{~g}$	$\mathbf{S}_{\mathrm{MS}}=0.826 \mathrm{~g}$	$\mathbf{S}_{\mathrm{DS}}=0.551 \mathrm{~g}$
$\mathbf{S}_{1}=0.274 \mathrm{~g}$	$\mathbf{S}_{\mathrm{M} 1}=0.274 \mathrm{~g}$	$\mathbf{S}_{\mathrm{D} 1}=0.183 \mathrm{~g}$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

2012 International Building Code ($41.3696^{\circ} \mathrm{N}, 111.7579^{\circ} \mathrm{W}$)
Site Class B - "Rock", Risk Category I/II/III

Section 1613.3.1 - Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_{5}) and 1.3 (to obtain S_{1}). Maps in the 2012 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

From Figure $1613.3 .1(1)^{[1]}$

From Figure 1613.3.1(2) ${ }^{[2]}$

$$
\mathrm{S}_{\mathrm{s}}=0.826 \mathrm{~g}
$$

$$
S_{1}=0.274 \mathrm{~g}
$$

Section 1613.3.2 - Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class B, based on the site soil properties in accordance with Section 1613.

$$
\begin{aligned}
& 2010 \text { ASCE-7 Standard - Table 20.3-1 } \\
& \text { SITE CLASS DEFINITIONS }
\end{aligned}
$$

Site Class	$\bar{v}_{\mathbf{s}}$	$\overline{\mathbf{N}}$ or $\overline{\boldsymbol{N}}_{\text {ch }}$	$\bar{s}_{\mathbf{u}}$
A. Hard Rock	$>5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
B. Rock	2,500 to $5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
C. Very dense soil and soft rock	1,200 to $2,500 \mathrm{ft} / \mathrm{s}$	>50	$>2,000 \mathrm{psf}$
D. Stiff Soil	600 to $1,200 \mathrm{ft} / \mathrm{s}$	15 to 50	1,000 to $2,000 \mathrm{psf}$
E. Soft clay soil	$<600 \mathrm{ft} / \mathrm{s}$	<15	$<1,000 \mathrm{psf}$

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI > 20,
- Moisture content $w \geq 40 \%$, and
- Undrained shear strength $\bar{s}_{u}<500 \mathrm{psf}$
F. Soils requiring site response See Section 20.3.1 analysis in accordance with Section
21.1

$$
\text { For SI: } 1 \mathrm{ft} / \mathrm{s}=0.3048 \mathrm{~m} / \mathrm{s} 1 \mathrm{lb} / \mathrm{ft}^{2}=0.0479 \mathrm{kN} / \mathrm{m}^{2}
$$

Exhibit B
Section 1613.3.3 - Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

TABLE 1613.3.3(1)
VALUES OF SITE COEFFICIENT F_{a}

Site Class	Mapped Spectral Response Acceleration at Short Period				
	$\mathrm{S}_{\mathrm{s}} \leq 0.25$	$\mathrm{~S}_{\mathrm{s}}=0.50$	$\mathrm{~S}_{\mathrm{s}}=0.75$	$\mathrm{~S}_{\mathrm{s}}=1.00$	$\mathrm{~S}_{\mathrm{s}} \geq 1.25$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F		See Section 11.4 .7 of ASCE 7			

Note: Use straight-line interpolation for intermediate values of S_{s}

$$
\text { For Site Class }=B \text { and } S_{s}=0.826 \mathrm{~g}, F_{\mathrm{a}}=1.000
$$

TABLE 1613.3.3(2)
VALUES OF SITE COEFFICIENT F_{v}

Site Class	Mapped Spectral Response Acceleration at 1-s Period				
	$\mathrm{S}_{1} \leq 0.10$	$\mathrm{~S}_{1}=0.20$	$\mathrm{~S}_{1}=0.30$	$\mathrm{~S}_{1}=0.40$	$\mathrm{~S}_{1} \geq 0.50$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F		See Section 11.4.7 of ASCE 7			

Note: Use straight-line interpolation for intermediate values of S_{1}

```
For Site Class = B and S S = 0.274 g, Fv=1.000
```


Exhibit B

Equation (16-37):

$$
S_{M S}=F_{a} S_{S}=1.000 \times 0.826=0.826 \mathrm{~g}
$$

Equation (16-38):

$$
S_{M 1}=F_{\mathrm{v}} \mathrm{~S}_{1}=1.000 \times 0.274=0.274 \mathrm{~g}
$$

Section 1613.3.4 - Design spectral response acceleration parameters

Equation (16-39):

$$
S_{D S}=2 / 3 S_{M S}=2 / 3 \times 0.826=0.551 \mathrm{~g}
$$

$$
S_{D 1}=2 / 3 S_{M 1}=2 / 3 \times 0.274=0.183 \mathrm{~g}
$$

Exhibit B
Section 1613.3.5 - Determination of seismic design category

TABLE 1613.3.5(1)
SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

VALUE OF S	RISK CATEGORY		
	\mathbf{I} or II	III	IV
$\mathbf{S}_{\mathrm{Ds}}<\mathbf{0 . 1 6 7 g}$	A	A	A
$\mathbf{0 . 1 6 7 g} \leq \mathbf{S}_{\mathbf{D S}}<\mathbf{0 . 3 3 g}$	B	B	C
$\mathbf{0 . 3 3 g} \leq \mathbf{S}_{\mathbf{D s}}<\mathbf{0 . 5 0 g}$	C	C	D
$\mathbf{0 . 5 0 g} \leq \mathbf{S}_{\mathbf{D S}}$	D	D	D

For Risk Category $=\mathrm{I}$ and $\mathrm{S}_{\mathrm{DS}}=\mathbf{0 . 5 5 1} \mathrm{g}$, Seismic Design Category = D

TABLE 1613.3.5(2)
SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

VALUE OF S $_{\mathrm{D} 1}$	RISK CATEGORY n		
	I or II	III	IV
$\mathbf{S}_{\mathrm{D} 1}<\mathbf{0 . 0 6 7 g}$	A	A	A
$0.067 \mathrm{~g} \leq \mathbf{S}_{\mathrm{D} 1}<0.133 \mathrm{~g}$	B	B	C
$0.133 \mathrm{~g} \leq \mathbf{S}_{\mathrm{D} 1}<0.20 \mathrm{~g}$	C	C	D
$0.20 \mathrm{~g} \leq \mathbf{S}_{\mathrm{D} 1}$	D	D	D

For Risk Category $=I$ and $S_{D 1}=0.183 \mathrm{~g}$, Seismic Design Category = C
Note: When S_{1} is greater than or equal to 0.75 g , the Seismic Design Category is \mathbf{E} for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with
Table 1613.3.5(1) or $1613.3 .5(2)^{\prime \prime}=D$

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 1613.3.1(1): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(1).pdf
2. Figure 1613.3.1(2): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(2).pdf

\author{

Summit Powder Mountain
 c/o Ms. Andrea Milner
 3632 North Wolf Creek Drive
 Eden, Utah 84310
 IGES Project No. 01628-006
 | Subject: | Addendum to Geotechnical Report - Geology \& Slope Stability |
| :--- | :--- |
| | Lot 34R of Powder Mountain Resort |
| | 7958 East Heartwood Drive |
| | Weber County, Utah |

}

Ms. Milner:
As requested, IGES has prepared the following addendum to the referenced geotechnical report to further address geologic issues, such as the presence (or absence) of geologic hazards and slope stability. This addendum is intended to address issues that have recently come to light during the review process for adjacent properties; specifically, geologic review comments by the Weber County geologist. The purpose of this addendum is to adequately address geology consistent with recent questions brought up by the Weber County geologist, and to comply with the Weber County Hillside Development Review Procedures.

Description of Geologic Units

A geologic investigation that included geologic mapping of Lot 13 and the surrounding area was conducted by IGES between August 26 and 27, 2015 (IGES, 2015a). This investigation covered the Lot 34 R property area within its area of investigation, and included field mapping, aerial photograph review, and the review of other available geologic data (Western Geologic, 2012; Sorenson and Crittenden, Jr., 1979) pertaining to the area of interest. A brief description of the geologic units found adjacent to and across the Lot 34 R property is presented in the following paragraphs.

A prominent bedrock outcrop of the Dolomite Member of the Cambrian St. Charles Limestone near the southwestern corner of Lot 27 (located just south of Lot 34 R) provided an understanding of the bedrock stratigraphy. At lot 27, approximately 45 feet of bedrock is continuously exposed, and displays four distinct lithologic units:

1. Unit 1: The uppermost unit is a dark gray, sparry ${ }^{1}$ dolomite found to contain abundant round, curved, whitish-yellow shell fragments in massive blocks. The exposed thickness of this unit at this location is approximately 3 feet.
[^0]
Exhibit B

2. Unit 2: Immediately underlying Unit 1 is a dark gray to light gray sparry dolomite containing faint laminations in thickly bedded blocks. Within the unit are distinct dark gray beds that contain abundant rounded Girvanella ${ }^{2}$ nodules up to 1 centimeter in diameter. Bedding becomes more prominent with depth in this unit, which is approximately 10 to 12 feet thick.
3. Unit 3: Immediately underlying Unit 2 is a dark gray, sparry dolomite that is transitional between the overlying two units, in that it contains some laminations and curved shelly material. The unit is thickly to moderately bedded, and is distinct from the overlying units in that it contains abundant thin yellow stringers of calcium carbonate. The unit is seen to be approximately 20 to 25 feet thick.
4. Unit 4: The basal unit in the exposed outcrop is a light gray to pinkish gray, finely sparry dolomite with a highly variegated, mottled coloration in irregular, elongated lobes. Distinct to this unit is the presence of small vugs up to 2 inches in diameter, commonly filled with recrystallized dolomite. The exposed thickness of this unit at this location is approximately 5 feet.

Bedding at this outcrop (Lot 27) was found to strike at $\mathrm{N} 24^{\circ} \mathrm{W}$ and dip at $25^{\circ} \mathrm{NE}$, which was largely characteristic of the bedding found on Lot 34R and the Ridge Nest property to the west, which, as a whole, consist largely of bedrock outcrops. Across Lot 34R and adjacent properties to the west and south, the bedrock was found to have blocky jointing, with the two major joint sets being orthogonal to one another. The joint set parallel to the bedding has the same strike and dip orientation as the bedding, while the other major joint set perpendicular to the first has a strike of approximately $\mathrm{N} 24^{\circ} \mathrm{W}$ and a dip of approximately $65^{\circ} \mathrm{SW}$.

Bedrock was found to be largely moderately fractured (distance between fractures $\sim 0.5-1.0$ feet) to little fractured (distance between fractures $\sim 1.0-4.0$ feet), with localized areas of intense fracturing (distance between fractures $\sim 0.05-0.1$ feet). Joint spacing was largely found to be a product of the lithology. The finer-grained dolomite lithologies were more thinly bedded, and therefore had a smaller distance (approximately 1 to 4 inches) between bedding plane joints. These lithologies also tended to fracture into rectangular blocks generally between 4 and 18 inches in length and width, and contained both bedding-confined and through-going fractures. Coarser-grained dolomite lithologies were more thickly bedded to massive, with bedding plane joints separated by between 6 inches to as much as several feet. These lithologies tended to fracture into rectangular blocks with highly variable dimensions, ranging in width and length from between a couple inches to several feet, though larger blocks (with dimensions of several feet x several feet x several feet) were most common. Most fracturing associated with the coarser-grained dolomite lithologies consisted of large through-going fractures.

Nearly all of the joints encountered in the field investigation were open, had slightly rough to rough surfaces, and did not contain a secondary mineralization, except rare calcite infilling in places. No slickensides were observed on any joint surface. Joint apertures varied from between

[^1]a few millimeters to a couple inches in width. Joints with smaller apertures tended to be devoid of any sort of fill, while the larger aperture joints were often filled with soil.

The dolomite bedrock described above covers all of the Lot 34 R property, with the exception of the southeastern corner of the property. This area, where TP-1 was excavated, contains a veneer of undifferentiated Quaternary colluvial and slopewash deposits up to as much as 12 feet thick. This unit is comprised of a combination of angular dolomite and rounded quartzite clasts, with the dolomite clasts commonly found to be moderately weathered and oxidized.

The preceding bedrock characteristics were discussed between the engineering geologist and the geotechnical engineer and were taken into consideration in development of the subsurface model, geologic cross section, and subsequent slope stability analysis.

Faulting

Based upon a review of the available geologic data for the Lot 34 R property and surrounding area, no evidence of faulting was observed. According to the USGS Quaternary Fault and Fold Database of the United States (USGS and UGS, 2006), the closest fault to the area of investigation is approximately 2.5 miles to the southwest. IGES reviewed three stereo pairs of aerial photographs that cover the Ridge Nests property and adjacent areas. The aerial photographs reviewed for this exercise are listed in Table 1. The aerial photographs were examined stereoscopically for the presence of photo-lineaments which might be indicative of faulting, as well as other additional geomorphic features. No photo-lineaments were observed either crossing or projecting toward the subject property. Additionally, no fault-related geomorphic features indicative of past surface faulting at or near the property, including fault scarps, vegetation lineaments, gullies, vegetation/soil contrasts, aligned springs or seeps, sag ponds, aligned or disrupted drainages, faceted spurs, grabens, or displaced landforms were observed in either the aerial photographs reviewed or the site reconnaissance.

Table 1
Stereoscopic Aerial Photographs Reviewed

SOURCE*	DATE	FLIGHT	PHOTOGRAPHS	SCALE
1947 AAJ	August 10, 1946	AAJ_1B	$88-90$	$1: 20,000$
1953 AAI	September 14, 1952	AAI_4K	$34-36$	$1: 20,000$
1963 ELK	June 25, 1963	ELK 3	$57-59$	$1: 15,840$

[^2]
Slope Stability Analysis

The global stability of the slope was modeled using gSTABL7 slope stability software. Bishop's Method and Janbu's Simplified method was used to model the slope, as appropriate. For our analysis, we have assessed Section A-A', illustrated on Figure 1 (Geologic Map) and the Geologic Cross-Section, Figure 2, attached. Calculations for stability were developed by searching for the minimum factor-of-safety for both a circular-type failure and a block-type (translational) failure. For the circular analysis model, arcuate failure surfaces and homogenous

Exhibit B

earth materials were assumed. For the block analysis, anisotropic strength parameters in the bedrock was assumed, based on the apparent dip of bedding and jointing as measured at bedrock outcrops just west and north of Lot 34R (apparent dip of approximately 4 degrees, the slope stability software has been allowed to search between 0 and 15 degrees). A minimum static factor-of-safety of 1.5 and seismic factor-of-safety of 1.0 (global stability) was considered acceptable for this project considering the available information and design assumptions.

The earth materials present on Lot 34R generally consist of relatively competent, moderately weathered dolomite and coarse colluvium. The software package RocLab (V. 1.033), which is based on the Hoek-Brown failure Criterion (1997) was utilized to estimate equivalent strength parameters for dolomite (friction angle and cohesion) to be used in conventional limitequilibrium slope stability software. Input parameters utilized to estimate reasonable strength parameters were as follows:

- Uniaxial Compressive Strength: $1,500 \mathrm{ksf}$
- GSI: 45 (geologic strength index)
- Mi Value: 9 (intact rock parameter)
- D: 0.7 (disturbance factor)
- MR: 425 (Modulus Ratio, used to estimate the intact rock deformation modulus, Ei)

Based on these input parameters, RocLab indicates an equivalent cohesion of 44.844 ksf and a friction angle of 20.1 degrees for the dolomite. For our analysis, IGES has conservatively reduced the estimated equivalent cohesion by approximately 20% to 35 ksf . For our anisotropic analysis, strength along bedding and/or jointing has been estimated to have a friction angle of 42 degrees and a cohesion of zero (IGES, 2015b). The output file for RocLab is attached.

The surficial unit described on the geologic map as Qc-sw is undifferentiated colluvium and slope wash. This material is generally very coarse and bouldery; constituents generally have a moderate degree of angularity. Accordingly, we have assigned a friction angle of 42 degrees and a cohesion of zero for the colluvium north of Lot 34R.

For the seismic (pseudo-static) assessment of the slopes, the seismic coefficient k_{h} is modeled as equal to 50% of the peak ground acceleration (PGA) resulting from a MCE seismic event (2PE50). From our referenced geotechnical report, the PGA resulting from a 2PE50 seismic event is taken as 0.33 g . Therefore, for seismic analysis we have adopted a seismic coefficient of 0.165 g .

The exact configuration of the new home's foundations is currently unknown; however, based on experience with similar projects, IGES has estimated an approximate and reasonable foundation configuration to assess the impact of a new home to the slope. Various surcharge loads have been included in the analysis to model a) possible fill sections, and b) foundation loading of 1500 psf .

Based on our analysis, the global stability of the north-facing natural slope meets the minimum factors-of-safety of 1.5 and 1.0 for static and seismic conditions, respectively. The results of the global stability analyses are attached.

Exhibit B

La: :H

Conclusions

Based on the geologic evidence presented on the attached Geologic Map (Figure 1), the associated Geologic Cross-Section (Figure 2), and the slope stability assessment presented herein, the following conclusions are made:

1. The stability of the slope is not adversely impacted by the geologic, stratigraphic, or hydrologic conditions observed.
2. There are no evident potential on-site or off-site geologic hazards that can adversely affect the subject property, and the site is considered suitable for development from a geologic hazards standpoint.
3. The site is considered suitable for development from a geotechnical perspective, provided the recommendations presented in the referenced 2014 geotechnical report are incorporated into the design and construction of the project.

Also, once construction plans are established, IGES should review the plans and assess compatibility with our recommendations and conclusions. The impact of the proposed foundation and grading to slope stability should also be assessed.

Exhibit B

Powder Mountain Resort. Weher Coumty. Utah
Lot 34R

Closure

We appreciate the opportunity to provide you with our services. If you have any questions please contact the undersigned at your convenience (801) 748-4044.

Respectfully Submitted,
IGES, Inc.

Peter E. Doumit, P.G., C.P.G.

David A. Glass, P.E.
Senior Geotechnical Engineer
Attachments:
References
Figure 1 - Geologic Map
Figure 2 - Geologic Cross-Section A-A'
Slope Stability Analysis

Exhibit B

References

American Geological Institute (AGI), 1984, Dictionary of Geological Terms (Third Edition), Robert L. Bates and Julia A. Jackson, Editors.

AGI, 2005, Glossary of Geology, $5^{\text {th }}$ Edition, Neuendorf, K.K, Mehr, Fr., J.P., and Jackson, J.A., editors.

Hoek, E., and Brown, E.T., 1997, Practical Estimates of Rock Mass Strength, in International Journal of Rock Mechanics \& Mining Science \& Geomechanics Abstracts, 34(8), 11651186.

IGES, Inc., 2014, Geotechnical Investigation Report (Revised), Lot 34 of Powder Mountain Resort, 7958 East Heartwood Drive, Weber County, Utah, Project No. 01628-006, dated August 11, 2014.

IGES, Inc., 2015a, Response to Review Comments-Geology, Geotechnical Investigation, The Ridge Nests Development, Powder Mountain Resort, Weber and Cache Counties, Utah, Project No. 01628-008, dated September 1, 2015.

IGES, Inc., 2015b, Response to Review Comments-Geotechnical Engineering, Geotechnical Investigation, The Ridge Nests Development, Powder Mountain Resort, Weber and Cache Counties, Utah, Project No. 01628-008, dated December 4, 2015.

Sorensen, M.L., and Crittenden, M.D., Jr., 1979, Geologic map of the Huntsville quadrangle, Weber and Cache Counties, Utah: U.S. Geological Survey Geologic Quadrangle Series Map GQ-1503, scale 1:24,000.
U.S. Geological Survey and Utah Geological Survey, 2006, Quaternary fault and fold database for the United States, accessed August 31, 2015, from USGS web site: http://earthquake.usgs.gov/hazards/qfaults/.

Western Geologic, 2012, Report: Geologic Hazards Reconnaissance, Proposed Area 1 MixedUse Development, Powder Mountain Resort, Weber County, Utah, dated August 28, 2012.

Exhibit B

Exhibit B

Exhibit B
\geqslant

Exhibit B


```
M
00000000000000000000
O00000000000000000000
00000000000000000000 00000000000000000000
```



``` 0000000000000000 a noo
```


Exhibit B

Exhibit B
号

Janbu＇s Empirical Coefficient（fo）$=1.082$
＊＊Factor Of Safety Is Calculated By The Simplified Janbu Method＊＊

Trial Failure Surface Specified By 18 Coordinate Points		
Point	X－Surf	Y－Surf
No．	（ft）	（ft）
1	10.00	697.67
2	31.16	684.34
3	53.72	673.57
4	77.38	665.50
5	101.82	660.24
6	126.70	657.85
7	151.70	658.38
8	176.46	661.81
9	200.66	668.09
10	223.96	677.15
11	246.04	688.86
12	266.62	703.06
13	285.40	719.56
14	302.14	738.13
15	316.60	758.53
16	328.60	780.46
17	337.95	803.64
18	339.76	810.26

Janbu＇s Empirical Coef．is being used for the case of c \＆phi both $>$ Cavitation Pressure $=0.0(\mathrm{psf})$ A Vertical Earthquake Loading Coefficient
of 0.000 Has Been Assigned Of0．170 Has Been Assigned
A Horizontal Earthquake Loading Coefficient
$N+\cdots \stackrel{z}{\stackrel{2}{0}}$

W000

0
C
+
0
0
0
0

\square
$\stackrel{0}{0}$
$\stackrel{0}{0}$

$\varepsilon 0^{\circ}$ 2T6Zも
$\sigma 8^{\circ} \varepsilon \square L$

芇

00

Exhibit B

**** Lneuno L'Tg甘LSS Jo ang ****

Exhibit B

Exhibit B

2 Boxes Specified For Generation Of Central Block Base					
Length Of Line Segments For Active And Passive Portions of Sliding Block Is 25.0					
$\begin{aligned} & \text { Box } \\ & \text { No. } \end{aligned}$	$\underset{(\mathrm{ft})}{\mathrm{x}-\mathrm{Left}}$	$\begin{gathered} \text { Y-Left } \\ (\mathrm{ft}) \end{gathered}$	$\underset{(\mathrm{ft})}{\mathrm{X} \text {-Right }}$	$\underset{(\mathrm{ft})}{\mathrm{Y}-\mathrm{Right}}$	Height （ft）
1	40.00	675.00	160.00	750.00	25.00
2	165.00	750.00	265.00	790.00	25.00
Following Is Displayed The Most Critical of the Trial Failure Surfaces Evaluated．					

2500 Trial Surfaces Have Been Generated．
A Critical Failure Surface Searching Method，Using A Random
Technique For Generating Sliding Block Surfaces，Has Been
Specified．

$\begin{aligned} & \text { NOTE－} \text { Intensity Is Specified As A Uniformly Distributed } \\ & \text { Force Acting On A Horizontally Projected Surface．}\end{aligned}$
$\begin{array}{cc} \\ & \text { Load（s）Specified } \\ \text { Load } \\ \text { No．} & \begin{array}{c}\text { X－Left } \\ (\mathrm{ft})\end{array} \\ & \\ 1 & 165.00 \\ 2 & 181.00 \\ 3 & 210.00 \\ 4 & 213.00 \\ 5 & 240.00\end{array}$ BOUNDARY LOAD（S）
C equal to zero，with no water weight in the tension crack．
（3）An input value of 0.03 for Phi will set both Phi and
C equal to zero，with water weight in the tension crack．

$2 \stackrel{e}{\substack{2 \\ 0 \\ 0 \\ 0}}$
酎忘
$\begin{array}{cc}\text { Hor } & \text { Ver } \\ \text {（lbs）} & \text {（lbs })\end{array}$
（sqT）（sqT）
peot iə
əбTeupans

のGALNか	zo

Failure Surface Specified By 6 Coordinate Points

Total Number of Trial Surfaces Evaluated $=2500$

Exhibit B

Exhibit B

Exhibit B

N

Janbu＇s Empirical Coef．is being used for the case of $c \&$ phi both >0 Cavitation Pressure $=0.0(\mathrm{psF})$ A Vertical Earthquake Loading Coefficient
Of 0.000 Has Been Assigned
Cavitation Pressure $=\quad 0.0(\mathrm{psf})$ A Vertical Earthquake Loading Coefficient A Horizontal Earthquake Loading Coefficient
Of 0.170 Has Been Assigned $\begin{aligned} & \text { NOTE－Intensity Is Specified As A Uniformly Distributed } \\ & \text { Force Acting On A Horizontally Projected Surface．}\end{aligned}$

0.0	$0 \cdot 00 \mathrm{St}$	00＊ロбて	00．0ヵて	¢
0.0	$0 \cdot 058$	$00^{\circ} \mathrm{S}$ こて	$00 \cdot \varepsilon \tau \tau$	\checkmark
0.0	$0 \cdot 005 \mathrm{~L}$	$00 *$ こL	$00 \cdot 012$	ε
0.0	$0 \cdot 096$	$00 \cdot 002$	00．18t	z
0.0	$0 \cdot 02 \mathrm{~L}$	00．081	$00^{\circ} \mathrm{S9}$［	I
（бәр）	（Jsd）	（75）	（7J）	－${ }^{\text {N }}$
	KıțsuəquI	7 7 ¢T¢ ${ }^{\text {－}}$－	วフəナ－х	peot

C equal to zero，with water weight in the tension crack．
BOUNDARY LOAD（S） C equal to zero，with no water weight in the tension crack．
（3）An input value of 0.03 for Phi will set both Phi and
C equal to zero，with water weight in the tension crack．

 in oo oid

Base
Leng．
（ft）

（Isd）
पュ6uəx7s xeəys әтqetteny

H.
N.
N. 0.0000000000000000000

0.000000000000000000000 | 0 |
| :--- |
| 0 |
| 0 |
| 0 | 0.000000000000000000000

30000000000000000000000
$\frac{T}{0}$

\qquad

Exhibit B

**** In dino LTguliss go ana ****

[^0]: ${ }^{1}$ A term loosely applied to ay transparent or translucent light-colored crystalline mineral, usually readily cleavable and somewhat lustrous (AGI, 1984).

[^1]: ${ }^{2}$ Girvanella is a microbial biscuit (hemispherical or disk-shaped calcareous mass) characterized by a complex of microscopic filaments (AGI, 2005).

[^2]: *https://geodata.geology.utah.gov/imagery/

