573 E 600 S SALITLAKE CITY, UT 84102 SALITLAKE CITY, UT 84102 P: 801.328.3245 E: WARREN@LLOYD.ARCH.COM COMIACT: WARREN LLOYD MECHANICAL ENGINEER HELIOCENTRIC 12341: ENFORMENTATION BRIGHTON, UT 84121 p: 802,453,9434 contact: JOHN EASTERLING EXECUTIVE ARCHITECT LLOYD ARCHITECTS CIVIL ENGINEER NV5 SV7 SOUTH STATE STREET SUITE 200 MURRAY, UT 84107 P. 801,743,1388 contact RYAN CATHEY DESIGN ARCHITECT SAUNDERS ARCHITECTURE VESTRE TORGGATE 22 5015 BERGEN PROJECT TEAM JISA ROSENTHAL p: 214.533.0553 STRUCTURAL ENGINEERS MATT JACKSON STRUCTURAL ENGINEERS 5873 SOUTH REDWOOD ROAD SUITE Z2 5871 JACK CITY, UTAH 94123 p. 801,905,1057 contact: MATT JACKSON NEW CONSTRUCTION OF FAMILY CABIN IN LOT 34R OF SUMMIT POWDER MOUNTAIN DEVELOPMENT SCOPE GENERAL CONTRACTOR SAUSAGESPACE p. 801-301-3648 e. MARK@SAUSAGESPACE.COM contact: MARK HASLAM ELECTRICAL ENGINEER E.C.E. 939 S. WEST TEMPLE SALT LAKE CITY, UT 84101 p: 801.521.8007 contact: AKBAR MATINKAH # ROSENTHAL CABIN 7958 E. HEARTWOOD DRIVE EDEN, UTAH 84310 # GENERAL G100 G101 G102 ARGHTECTURAL SD100 AREA SURVEY SD101 PARCEL SUPVEY SD101 DEVELOPMENT TRAIT SD103 DEVELOPMENT TRAIT SD103 DEVELOPMENT TRAIT SD103 SITE PLAN & LANDSCAPE NOTES SD105 SITE PLAN & LANDSCAPE NOTES SD105 CONSTRUCTION MITIGATION PLAN A101 MAIN FLOOR PLAN A102 ROOF FLOOR RCP A104 ROOF RCP A105 ROOF RCP A104 RAN FLOOR RCP A104 RAN FLOOR RCP A104 ROOF RAMINING PLAN A200 BUILDING ELEVATIONS BUILDING ELEVATIONS SUILDING SECTIONS A201 BUILDING SECTIONS A201 BUILDING SECTIONS STAR SECTIONS A202 SUILDING SECTIONS STAR SECTIONS A203 SUILDING SECTIONS A204 SUILDING SECTIONS A205 STAR SECTIONS & PLANS A206 STAR SECTIONS & PLANS A207 STAR SECTIONS & PLANS A208 STAR SECTIONS & PLANS A208 STAR SECTIONS & PLANS A209 SUILDING SECTIONS A200 SUILDING SECTIONS A201 SUILDING SECTIONS A202 SUILDING SECTIONS A203 STAR SECTIONS & PLANS A204 STAR SECTIONS & PLANS A205 STAR SECTIONS & PLANS # SHEET INDEX SITE PLAN GRADING PLAN EROSION CONTROL PLAN EROSION CONTROL DETAILS DETAILS MECHANICAL & ENERGY SEE PACKAGE SEE PACKAGE # COVER SHEET / CODE ANALYSIS SYMBOLS & ABBREVIATIONS GENERAL NOTES STRUCTURAL STOT GENERAL STRUCTURAL NOTES STOZ GENERAL STRUCTURAL NOTES STOZ GENERAL STRUCTURAL NOTES STOZ COMER FLOOR FRAMING PLAN SZOZ MAN FLOOR FRAMING PLAN SZOZ ROOF FRAMING PLAN SZOZ ROOF FRAMING PLAN SZOZ ROOF FRAMING PLAN SZOZ SCHEDULES FOOTING & FOUNDATION DETAILS FOOTING & FOUNDATION DETAILS FLOOR FRAMING DETAILS FLOOR FRAMING DETAILS FLOOR FRAMING DETAILS ROOF FRAMING DETAILS # VICINITY MAP # CODE ANALYSIS DRAWING REVISIONS 9/13/16 SEAL | APPLICABLE CODES: | | ACTUAL HEIGHT/AREA: | ALLOWABLE HEIGHT/AREA: | LOT AREA: | STORIES ABOVE GRADE: | CONSTRUCTION TYPE: | OCCUPANCY TYPE: | BUILDING USE: | ZONE: | PARCEL ID: | |---|---|---------------------|--|-----------|---|--------------------|-----------------|------------------------|---|------------------------------------| | 2015 NITEMATIONAL RESIDENTIAL CODE (RC) 2016 NATIONAL ELECTRICAL CODE (RC) 2016 NITEMATIONAL ELECTRICAL CODE (RC) 2016 NITEMATIONAL ELECTRICAL CODE (RC) 2015 NITEMATIONAL ELECTRICAL CODE (RC) 2015 NITEMATIONAL ENGENOLOGIE (RC) 2015 NITEMATIONAL ENGENOLOGIE (RC) 2015 NITEMATIONAL ENGENOLOGIE (RC) 2015 NITEMATIONAL FIRE CODE (RC) | TOTAL CONDITIONED AREA: 416 SF LOWER FLOOR CONDITIONED: 1895 SF MAIN FLOOR CONDITIONED: 2121 SF | 33.75 FT | 35 FT / 4500 BUILDING SF / 6309 FOOTPRINT SF | 34,058 SF | 1 STORY FRONT YARD (STREET FACING), 2 STORY REAR YARD | V-B | R-3 | SINGLE FAMILY DWELLING | RR, w/ SUMMIT POWDER MOUNTAIN DEVELOPMENT PRUD OVERLAY, PERMIT REVIEW PERFORMED BY WEBER COUNTY | CACHE COUNTY #16-112-0034, LOT 34R | G100 COVER SHEET ROSENTHAL CABIN 7958 E. HEARTWOOD DRIVE EDEN, UTAH 84310 4 of 128 LloydArchitect REVISION INDEX | Exhibit A war server loyst arch private - Bith Server ZURRosenthauf2016-06-21 rosenthal TEAMWORK Welton | esday, August 10, 2018 548 PM | |--|--| | DIMENSIONS DIMENSIONS IN THESE DRAWINGS ARE GENERALLY PLACED AS INDICATED BELOW, UNLESS NOTED OTHERWISE. 1. MASONING TO UNRINISHED PACE (NOTE @ SPLIT FACE CONDITION THESE DRAWINGS ASSUME STANDARD 2. CONDETE: TO UNRINISHED FACE 3. STRUCTURAL, TO STEEL AT RUBING FACE OR CENTER LINE 4. COLUMNS: CENTER LINE 5. NONDEARING PARTITIONS TO FACE OF STUD. SEE NOTE 9 BELOW 7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COOSDINATING ALL ARCHITECTURAL DIMENSIONS TO ASSURE PROPER PLACEMENT OF ALL PARTS AND MATERIALS IN CONJUNCTION WITH ALL OTHER DISCIPLINES REPRESENTED IN THESE DOCUMENTS, PRIOR TO COMMENCING WORK. 7. VERTEY ALL DIMENSIONS NOLUMBES STEE CONSTIDUS BEFORE STARTING WORK. 8. WRITTEN DIMENSIONS SHALL THE PRECEDENCE OVER SCALE. 9. DIMENSION GRAPHICS: 1. DIMENSION OF DIMENSION TO FACE OF STUD. OR OTHER UNFINISHED SUPRACE 1. CLEY SHAPE OF THE SUPPLIED TO THE SUBJECT SURPRICES 1. CLEY SHAPE OF THE SUPPLIED TO THE SUBJECT SURPRICES 1. CLEY SHAPE OF TH | A. ARCHOR BOLT ACC. ASPANLING CEILING THE ACC. ASPANLING ACC. ASPANLING ACC. ASPANLING ACC. ACC. ASPANLING ACC. ACC. ACC. ACC. ACC. ACC. ACC. ACC. | | ASSUME STANDARD ASSUME STANDARD DIMENSIONS TO ASSURE PROPER PLACEMENT OF ALL DIN THESE DOCUMENTS, PRIOR TO COMMENCING WORK. | LA. LAMOSCAPE AREA LAM. LAMINATE LIS. LAM.
LAMINATE LIS. LAM. LAMINATE SHETTING S | | CLEAR FINISH DIMENSION WALL ASSEMBLY TYPE. SEE WALL TYPES SHEET. ROOM ROOM NUMBER OUT AND DOOR TAG B.O.CITLANG GELING HEIGHT B.O.CITLANG CELLING HEIGHT | BUILDING OR WALL SECTION BUILDING OR WALL SECTION DERWING DENTIFICATION DERWING DENTIFICATION SHEET NUMBER WHERE DRAWN DRAWING STILLE DRAWING NUMBER WHERE DRAWN MAGE TO DRAWING STALE INTERIOR OR EXTERIOR ELEVATION DENTIFIES PECIFIC ELEVATION DENTIFIES SPECIFIC ELEVATION ELEVATION REFERENCE FILITAL ELEVATION REFERENCE FILITAL ELEVATION HEIGHT MEY NOTE GRID LINE BUILDING OR WALL SECTION DENTIFICATION MAGE TYPIOLA FOR GIVEN OR SMILLAR CONDITIONS UNILESS NOTED OTHERWISE. | | CONTINUOUS WOOD MEMBER WOOD MEMBER NTERRUPTED AT SHORT INTERVALS OR BLOOKING STEEL STUDS (DRAWINGS AT LARGER SCALES) | CONCRETE OR CEMENTITIOUS MATERIAL CONCRETE OR CEMENTITIOUS MATERIAL CEMENT PLASTER CEMENT PLASTER CEMENT PLASTER CHICATORY ON CONCRETE MASONRY UNIT FREER BOARD OTHER ASSEMBLY MATERIAL MISULATION: THERMAL OR SOUND AS REQUIRED BY ASSEMBLY DEFIAL. GYPSIAM WALLEDARD | | SHEET MAN SPORT IS ARROUGED PRINT. SCALE ACCORDING V. STEET TITLE SHEET MAN SPORT IS ARROUGED PRINT. SCALE ACCORDING V. SHEET TITLE SHEET MAN SECOND V. | DRAWING REVISIONS DRAWING REVISIONS DRAWING REVISIONS PRINT DATE DAT | The contractor shall be responsible for obtaining all permits required for construction by the permitting authorities having jurisdiction. The contractor shall carefully read, study, and understand all plans and specifications for trades. Coordination between trades will be necessary and the responsibility of the contractor, any questions that arise shall be clarified by the architect prior to construction. Drawings are not to be scaled. Dimensional discrepancies are to be clarified with the architect before proceeding with construction. The contractor shall verify existing power, water, data cable and other utilities prior to excavation. Contact blue-stakes or authorities having jurisdiction prior to any excavation. 208-2100 The contractor shall notify the designer of discrepancies in the documents and of any field conditions that deviate from the documents. 8. Shop drawings and other submittals are to be submitted for approval by the architeck with sufficient time for review prior to execution of work. Submittals must condorn to the requirements indicated on construction documents, structural notes, and specifications. 7. The architects approval must be obtained for any deviations from the construction documents, including but not limited to changes in dimensions, construction documents, including but not limited to changes in dimensions design, matterials, products, and finishes. In no case may the contractor make these changes without the approval of the architect. See door and window schedule for sizes, types, and finishes. All construction shall conform to and strictly comply with all applicable codes, covenants, restrictions, and Weber County building standards. 2. The contractor is to verify all dimensions, datum & levels prior to construction. Exterior would are dimensioned from face of exterior wall shots and increases otherwise noted. Exterior wall shuts at water spaces shall be 25% except as noted. All other wall studs shall be 25% except where noted otherwise on construction documents. 1. In no event shall the contractor substitute a standard construction detail for a detail specified in these documents. The contractor shall bring all work into conformity with the construction documents, as the designer orders, before approval of that construction will be granted. 13. Glazing in locations subject to human impact such as panes in doors, glazing within 12" of door opening, glazing within 18" of floor, and shower doors shall be tempered or laminated safety glass as per 2012 IBC. Provide and install smoke detectors as per 2012 IBC. Provide attic access, minimum 22" x 30" with minimum 30" headroom at unobstructed readily accessible opening as per 2012 IBC. 16. Building shall comply with Utah State Energy Code. The contractor is to seal and caulk all cracks to prevent air infiltration. The contractor shall insulate the walls to R-19, ceilings to R-38, and floors over unheated spaces to R-38 unless 17. These drawings are the exclusive property of Lloyd Architects and may be reproduced only with the written permission of the architect. Authorized reproductions must bear the name of the architect. Fireplaces shall conform to 2012 IBC. UL listing on fireplaces are as follows Mood burning units, UL#MH5850 Enclosed gas units; ICBO #4030 19. SITE PLAN & GRADING: remove sturing, situates and other and pub bile near thouse air indicated on all pains reducing legal of riske disposal of all debris and unusable III. Sorage topical layer define occasions and place onsite for install indiscape use. Examela, trench, and basell as required for richtys, foundations, stable, hillipses, innehinarial, bestimal and other work below foundations, stable, and press, innehinarial, bestimal and other work below gride required to complete the project, featings in accasion free of water and provide an adequate system for the installing and removal of surface. 20. Contact the Utah Division of Air Quality on all remodel projects: 536-4000 1, GEOTECHNICAL: SOIL BEARING: Assume 1500 psf soil load pressure per R401.4. CONCRETE: 3,000 psi in slabs and tootings, 3000 psi in foundation walls 3500 psi in garage slab and exterior steps. CONCRETE FOOTING SIZES AND DEPTH: see footing schedule on structural sheets (minimum footing size 9" by 20", minimum depth 30" below grade). MINIMUM REBAR: see structural sheets for minimum reinforcing requirements. ANCHOR BOLTS TO FOUNDATION: minimum 7" embedment per R403.1.6(maximum spacing allowed by code is 32" O.C.) CONCRETE FOUNDATION WALLS: see structural drawings for size and HEIGHT ABOVE FINISHED GRADE: concrete foundation wall to be 6* minimum above finish grade. Use treated sill plate where required. 6. FOUNDATION WALL DAMP-PROOFING AND FOUNDATION DRAIN: biturinous coating or equal to be applied on basement walls per R406. Foundation drain to be installed by new footings per R405. PLATE WASHERS: All plate washers to be 3"X3"X.227" (1/4") square slotted plate per R602.11.1 WINDOW WELLS AND LADDERS: 9 sq ft min area, 36 inches out from window deeper than 44 inches affix a ladder. EMERGENCY ESCAPE AND RESCUE OPENINGS: 41 inches max above floo in every sleeping room, 5.7 sq ft or 5 sq ft if within 44 inches of grade, 20 inch min width, 24 inch min height. EXIT DOORS AND HALLWAYS: one 3'-0" x 6'-8" door required, 36 inch min width in hallways.), LANDINGS AT DOORS AND STAIRWAYS: 36" min. out from door and door width minimum. RAMPS, SLOPES AND RAILS: maximum slope 1 in 8, railing required on ramp over 1 in 12 slope. WOOD COLUMNS: required to be 1" above the floor or finish grade, See structural for connection to foundation or slab. IO. INTERIOR MOISTURE VAPOR RETARDERS: on "warm-in-winter" side of wall # WALL CONSTRUCTION 2. EXTERIOR WALL COVERINGS AND WEATHER BARRIERS: 15# felt paper or approved equal. i. MID-HEIGHT BRIDGING: in unfinished walls 7. GARAGE SEPARATION FROM DWELLING: 1 hour separation. Walls shall have 1.2° GWB on walls and atto. If garage is below habitable rooms the celling shall have 5.0° type "X" GWB. Door shall have a 20 min. fire-resistance rating and shall be self-dosing. FLOOR JOISTS: double joists under bearing partitions and blocking shall be installed at bearing walls. DRAFT-STOPPING: shall be installed in all concealed spaces over 1,000 sq ft. 3. FIREBLOCKING: shall be installed in all concealed spaces at 10'-0" O.C. 4. SUBFLOOR SHEATHING: see structural sheets for all floor sheathing callouts (minimum requirements are as follows; 58 inch thick tongue & groove cab for joists @ 16" to 20" O.C. and 3/4" thick tongue & groove cab @ 24" O.C.) 6. EXPOSED LAMINATED TIMBERS: ATIC Rated Architectural grade Glu-laminated Timbers: See structural sheets for sizes and locations. not applicable # ROOF CONSTRUCTION ROOF FRAMING: see structural sheets pre-engineered truss type and layout. Submit shop drawings to architect/engineer for approval. 3. ROOF SLOPES and DRAINAGE: felt paper, 1/4" per foot minimum, provide "ice and water shield" at all valleys U.N.O. CHIMNEY TERMINATION: chimney shall be 2'-0" higher than any portion of building within 10'-0", 3'-0" tall minimum. STAIRWAYS: 36" width minimum, TREADS AND RISERS: 8" rise and 9" tread minimum, TRADROOM: 6"-8" minimum, UNDER STAIR PROTECTION: 1/2" GWI HANDRALLS: required with (2) or more risers, 34" to 38" in height and 1 1/4 to 2 5/8" in diameter if circular. 6. GUARDRAILS (GUARDS): required at floors over 30" above grade, 36" min. height, a 4" sphere shall not pass through with design as to eliminate ladder effect. LIMBER PROTECTION ACAINST DECAY: 8" minimum to grade under floor bists, 12" minimum to grade under floor pists, 2" minimum to grade under floor glorders. Provides the rained pilete on oncrete salts best than 8" above exposed ground and faming and siding less than 8" floor exposed ground and faming and siding less and the pist of MINIMUM AREA DIMENSIONS AND HEIGHTS: see all plan sheets for room tzes. All room minimums shall be: (1) 120 st room, 70 st bedrooms, 50 st Itchen, 7 feet min. heights, sloping to 5 feet min. 3 feet min. passageways in terbeer. INTERIOR WALL COVERINGS: 5/8" GWB. Green Gyp. board to be limited to R702.3.8.1 for no direct contact to moisture. STRUCTURAL COLUMNS: see structural sheets for all column sizes and ations. BRACED WALL LINES AND PANELS: see structural noise, Minimum quiement are to provide within 12-8" of wall corner, at 4"O" in length for lywood with railing @ 8" O.C. @ edges and 12" O.C. in field, at 8"-0" for GNB screens @ 1" O.C. @ edges and field. ODRS AND WINDOWS 6. HABITABLE ROOMS AND BATHROOMS: 8% of area in glazing, 4% in openings, and 3 sf window in bathrooms or bathrooms to have exhaust fan per IRC 303.3 # FLOOR
CONSTRUCTION FLOOR JOISTS SUPPORTING BEARING PARTITIONS OFFSETS: offset minimum floor joist depth. 2. ATTC VENTILATION: Provide a 1 to 150 sq.ft. (or 1 to 300 if 50% is in soffit and 505-80% located more than 30° above soffis) of the attic area in ventilation. Softials insulation shaffles to insure air flow through space. Cut or drift holes in trush softials of insulation shaffles to insure air flow through space. Cut or drift holes in trush shocking for vent air passage from soffit vents. ICE DAM PROTECTION: "ice and water shield" at eaves to 36" inside the wall slane of the building . MASONRY VENEERS, AND TIES: see structural sheets, provide minimum brick lees at 15 inches or center in either direction, with horizontal 9 gage wire mechanically attached to ties (if applicable) . LINTELS: see structural drawings for lintel sizes and locations. HEARWALLS & HOLDDOWN SCHEDULE: see structural sheets . GAS FIREPLACE: ICBO #4030 on typical gas unit 3. RES-CHECK: 2009 IECC See attached REScheck report. . FIREPLACE HEARTHS: Extend 20" min. from front of firebox and 12" min. ktension on both sides. s. BTU SIZES OF WATER HEATERS, FURNACES: see mechanical trawings for all mechanical sizing. CENTRAL FURNACE, CLEARANCE, ACCESS, PLATFORM, LIGHT; provide 3" de and rear of platform, space is 12 inches wider than furnace, 6 inches front if door or 30 inches in front, 30 x 30 inch access platform with light reservicing COMBUSTION AIR: provide duct or opening within 12 inches of ceiling nd size of 1 sq inch for every 3000 btu/h. 3. APPLIANCE PROTECTION FROM IMPACT: N/A (mechanical not in garage). r, ELEVATION OF COMBUSTION SOURCE OF APPLIANCES: see floor plans for loor heights. 10. GAS LINE SCHEMATIC: See mechanical sheets. . CONDENSATE DISPOSAL: provide an indirect drain, secondary ondensate if located in attic or on wood floor (to be trap seal primer type) It, WATER HATERS, LOCATIONS, EXPANSION TANKS, AND PRESSURE BELLET ANALYSIS, can not be located in cleans, bedooms, or bathrooms. The located within sealed encleares provide combustion air vent. Direct-went water heaters are okay. Provide and install high-efficiency radiant hydrooth heat system including connection of hot water storage thank, gas hot water heaters and plaing from the nidw vater tank or all houses as indicated in drawings, installation stall conform to all houses as indicated in drawings, installation stall conform to all houses are drawing and regulations of the period to the start. The provide trap seal primer type drain at water heaters. WATER HEATER ANCHORAGE, FLOOR DRAIN, AND PANS FOR PARINAGE: provide seismic strap to top third and bottom third of valet heater. Provide an indirect drain for water heaters. Provide pan or water heaters on wood floors. 13. CLOTHES DRYER EXHAUST: maximum 25'-0" to outside with 5'-0" reduction for 90 degree bends 15. SHOWER SIZE AND DOOR: 900 sq inches and 30" diameter, door swings outward 14. EXHAUST VENT TERMINATIONS: 4'-0" below or beside and 1'-0" above doors or windows, 12" above grade 16. HEATING: new construction to have a gas fired forced air furnace with air conditioning condenser unit. Heating facility to maintain 68 degrees. . WATER PIPING: Shall be pex. VENT PIPING: shall be ABS. HOSE CONNECTION BACKFLOW PREVENTER: provide at all exterior hose bib locations. Use frostproof type with vacuum breaker. S. WASTE INTERIOR TO BE ABS, WASTE INTERIOR UNDER SLAB AND EXTERIOR TO BE ABS. I. FLOOR DRAINS: Deep seal or Trap seal primer required in laundry or nechanical rooms per IbC 3201.2 1. WHIRLPOOL BATHTUB ACCESS PANEL: see plans for size and locations. 2. ELECTRICAL SERVICE PANEL LOCATION: shall not be located in bathnooms o firewalls. provide 30" clearance side to side and 36" clearance in front. Provide a minimum of 6-6" in height. 3. RECEPTACLE OUTLETS: see electrical drawings for all outlet locations. Electrical sub-contractor to walk through project with owner to verify all electrical fixture locations prior to commencing work. Follow all local electrical 6 of 128 LloydArchitect 4. ARC-FAULT CIRCUIT INTERRUPTER PROTECTION: provide in bedrooms. (GFCI PROTECTION: see electrical sheets for all locations. Provide in athrooms and jetted tub motors, garage, outdoor, crawispace, kitchen counters, kitchen islands, and wet bar. LIGHTING WALL SWITCHES: see electrical drawings for all switch locations. lectrical sub-contractor to walk through project with owner to verify all electrical fixture locations prior to commencing work. Follow all local lectrical codes. RECEPTACLES AND LIGHTING IN DAMP AND WET LOCATIONS: provide eatherproof covers for outlets, lighting to be listed for wet or damp locations. SUPPORT OF CEILING FANS: as per manufacturer's recommendations. LIGHT FIXTURES IN CLOSETS: incandescent fixtures 12" minimum to storage. fluorescent fixtures 6" minimum to storage ELECTRICAL: all wiring to be in accordance with the National Electrical Jode and applicable local codes. Locate main panel and meter where ndicated on the Drawings. Provide underground power connection from source to main panel 20. ROSENTHAL CABIN 7958 E. HEARTWOOD DRIVE EDEN, UTAH 84310 11. SMOKE DETECTORS: locate (1) inside each sleeping room, in corridors untside sleeping rooms, and on each level. All smoke detectors to be wired n series. 12. CO2 DETECTORS: Locate (1) on each level Home shall be provided with an NFPA 13D or 13R compliant fire suppression system to be included as a deferred submittal. 3. If building is equipped with an fire suppression system, there shall be a weather proof horn/strobe device located on the street side of the building as approved by the Fire Prevention Division (coordinate w/ fire inspector). . Temporary address marker to be provided at building site during onstruction. If the building is equipped with a fire department connection (FDC) there shall e a coment pad measuring 3 ft x 3 ft under the FDC (coordinate w/ fire ispector). SEAL 9/13/16 DRAWING REVISIONS GENERAL NOTES G102 SHEET NUMBE SUMMIT EDEN PHASE IB COVER SHEET, SIGNATURES, & VICINITY MAP GEDINACE APPLICABLE PHERETO AND NON IN FORCE AN INFECT. 24PECT. HERER COANT ATTORRY. THE CONDORN MIN THE COANTY THEY COANTY THERETO AND NOW IN FORCE AND SUMMIT EDEN PHASE IB I, RECHAD H, MILLER, DO JOBERT CERTER THAT I AM A NESER SELL INOCRESIONAL LAND GENERAL ME THE SELL ASSETT THAT I SHALL Piece m # RICHARD W. MILLER PROFESSIONAL LAND SURVEYOR UTAH CERTIFICATE NO. 1856/41 EGAL DESCRIPTION L'THIS SURVEY SUBDIVISED THE AFOREMID TRACT OF LAND INTO LOTS, STREETS, PARCELS, MID EASEIGNTS AS GROWN HERECN AND AS DRECTED BY THE CLIENT THE PROPERTY AS EMPICED ON THIS PLAY TO SERVED TO THE MOST OF DECLARAT AS EXCHANGE AND EXCLASION OF THE PROPERTY PROPER COLOMITE SHOW THE PROJECT WAS BE CONCEDENCE OF THE PROJECT I. DELAWAYT SESSEVES POR THE ENDETT OF TIREL, TIS SUCCESSORS AND ASSISTED. THE PARTY OF MANAGEMENT AND THE PARTY AND ASSISTED ASS A DELLAWAN (REMER PRESSENCE AND THE ENGINE OF THE A SUCCESSES AND A DELLAWAN (REMER PRESSENCE AND A DELLAWAN (REMER POWER)). THE ADMINISTRATION OF WHERE IS DEDICATION BY ANASE LLC (PRELIMENT), AS THE ANABLE OF THE LIGHTEN DESCRIPTION OF LAND, DOES HERED BY AND AND ADDRESS AND AND ADDRESS AND AND ADDRESS DECLANAT HEREN REJERVES FOR THE BERTH OF TISSE ITS SUCCESSIONS AND CASE, A BLANCH DUSTRISH AND DESIGN OF CHARRES AND CASE DESIGN OF DESIGN OF TISSES DESCRIPTOOF OF TISSES AND CASE BY, SHIRI INVESTIGATS, LICA FELAWARE LIMITED LIABILITY COMPANY ITS. SOLE HIPPARY SMIG PHASE I LLC, A DELAWARE LIMITED LIABILITY COMPANY ACKNOWLEDGEMENT: R. ALL LITTR AS DEPICTED ON THE PART, ARE LOCATED IN IN A HERTILY CONSIDERED. REPTHE DEPECTED AND CONTROL BOOK MINESTED IN IN A HERTILY CONSIDERED. REPTHE DEPECTED AND CONTROL BOOK MINESTED IN IN A HERTILY CONSIDERED. REPTHE DEPECTED AND CONTROL BOOK MINESTED IN IN A HERTILY CONSIDERED. REPTHE DEPTH OF THE ABOVE B. DELLAMAT INSTERT RESERVED FOR IT, EMERGY OF THEM, IT TO ACCIDENCE AND LOSSING AND ALMOST ALMOST MANUAL AND STREAM OF THE STRE AD DECLAMATI REMEDIT CHEMISTON OWN THE EXPERT OF THEM, IT IS INCLOSIONS AND ADMINISTRATION AND ADMINISTRATION OF THE EXPENSION EXPENSIO 24. PARCHE ON ANY STREETS AND ROADS SHOWN HERECH IS PROHIBEDD. 24. PARCHE ON ANY STREETS AND ROADS SHOWN HERECH IS PROHIBED BELLANATION AND PASTER DELANATION SET PORTH INE TEXTS AND RESTRECTIONS POR MAINTY STRETALS AND INCLUSING OF UTOR IN THE PROLECT. PRY CONTINUENCE DEPIRES, [1][1][24] VICINITY MAP THE PRESENT HENTHING MASSAGED BEFORE IT THE SEE THERE OF STAGE PLACE ! LLC GENERAL SEAL PLACE PLACE ! LLC GENERAL SEAL PLACE PLACE ! LLC GENERAL SEAL PLACE STATE OF UTAH Sheet 1 of CHARGINA-MEDER COUNTY PLANNING COTTESSION THIS 21 DAY OF SOUTH SOUTH SOUTH CONTROLLING CONTROLLI CACHE RECORDED * STATE OF UTAH, COUNTY OF CACHE, RECORDED AND FILED AT THE NOTE VERTICALFIVE **Exhibit A** ### Fxhihit A | <u>Exhib</u> | it A | | | | | | | | | | | | | | | | |
--	--	--	--
--	--	---	--
--	--	--	--
positional sections and supply means a proof-cleanle to read shown. Typical section are account point supply means appeared accounted in the section section of the section processors in the section and section are not section as the section of s	orizatione/g stall be reprosed to the schediolysider. The counties deal stall a retain council of the schediolysider before proceeding with the counties of schediolyside and council of the schediolyside and council of the counties of schediolyside. The counties of schediolyside is conditionated of consideration of the form of the counties of schediolyside and consideration of the form of the counties of schediolyside and consideration of the form of the counties of schediolyside and consideration of the form of the counties of schediolyside and schediolysi	in mich in consy mit the continue develops and perchassand. The contracts all provide and provide the contract of the contract of the contract of the contract of the contract of the contract of the contra	confact, blow the next stringert requirement and choracted by the articles/replanes at not additioned outs the shorters. 12.Chausters of confects (between the contract atmosph andly specifications deather behavior to be atmosphered to contract polysees where proceeding without profess made of proceedings and the process of the process of the process of the process of the process of the process pr
special polytude of the Control provided by the special polytude of the Control provided by the special polytude of the Control provided by the Scale	look also Tayling (1882-197)	1. Administration and the state of	1. Locales nootes another bus in 1. Fig. 120 to 1 high 120 feet of the fe
S602 NO SCALE 2 JOIST TO FLOOR BEAM DETAIL S602 NO SCALE 6 WOOD JOIST AT EXTERIOR WALL (PERPINDICULAR) S002 NO SOLIE. 2x STUD WALL SEI PLUN STLD WALL ABOVE SILL WALDIG, SEE SHEWWALL SCHEDULE FLOOR SHEATHONG SEE PLAN STANSON TOP FLANCE HANGER SHERRWILL SCHED JOIST TO STEEL BEAM WOOD JOIST AT EXTERIOR WALL (PARALLEL) 3 TYPICAL FLOOR JOIST AT FLUSH BEAM SEGE NO SCHE SOMETIME TOP. -OHOS AMANAT - SIT MATAGE MA 23 TANAMAT SHOWN THE BANA — FLR SHEATHING, SEE SCHED — 3x NULER, CONT W/ 1/278 STJDS AT 127cc SHEARWALL PLAN STRUCTURAL ENGINEERS 5573 S Redwood Rd. Saft Lake City, UT 94123 Office: 801-465-1997 mjstructualengineers.com Lloyd Architects FLOOR FRAMING DETAILS STE SAST NA SOUTH SATTAKE CRY OF BAROZ SOLOSE 2245 SEATTLE, MA SATIS LLOTE-ADDICTOR \$602 DATE 07/22/2016 **ROSENTHAL CABIN** 43 of 128 # **Exhibit A** STEEL BEAM AT FOUNDATION SECU- NO SPACE 5 FLOOR JOIST AT STEEL BEAM SEAR 9 BEAM TO COLUMN CONNECTION S603 NO SOLE PROVIDED AS ABILBAS A - UZ COP RI W (6) UP N BOTTS COLLAS COLLAS 2 BEAM TO BEAM CONNECTION SEGUE 6 STEEL BEAMS TO COLUMNS NOTE AT WIS SAME PROMOBILE AT DOME PLW (4) 78% ATS BOLTS NEB SIJHER JST TO BHIZNA, SEE (125942) STLEN, SEEP, M OCCURS (6) 3478 80.75 WES STOP MIRTO RO CALLAD Didente Trom Gev 1500 MIRE ## **Exhibit A** 1 TRUSS PERPINDICULAR TO WALL S701 PO SCALE 5 TRUSS AT EXTERIOR WALL (BEAM) 8 TYPICAL TRUSS CONNECTION DETAIL HANGER CONNECTION DESIGNED AND SUPPLIED BY TRUSS MIR THEE CONT W 1/2'0 SEE PLAN RXXF SHEATHENG, SEE SCHED RXXF XXXXF SEE PLAN DIAPHRAM BOUNDARY NALL (MN), SEE RXXF SHEATHENG SCHED 2 ROOF FRAMING PARALLEL TO WALL STOT MO SOME 6 OVERBUILD DETAIL S701 NO SCALE 9 TRUSS TO TRUSS CONNECTION STOT NO SCALE TRUSS TO TRUSS COMECTION PER HANDFACTURER ROOF SHATHING, SEE PLAN WOOD SHEATHING, SEE SCHED OVERBUILD FRANCING - 25d AT 24"0C (PMX SPAN = 8"-8") TO CEROES TRUSS TO CEROES TRUSS 2x WOOD NALER W (3) 16d NALS TO TOP OF EA JST HORE RENY, SEE SCHED RULWERN X.PL VEXT WER MEMBERS AT 16'00. NITERIOR SHEARWALL PARALLEL TO ROOF TRUSSES 10 CANOPY FRAMING TRUSS PANEL POINT TRUSS, SEE PLAN BENELED PL FULL SUBFACE GLUED TO ROOF SHEATHING + (2) 16d COMMON NULLS EA TRUSS - 2r4 STUDS AT 24"sc CENTERED ON TRUSSE - SIMPSON ATS FRANCING ANDHOR AT 28°00 W16 BEAM w/ 1/2"9 THREACED STUDS AT 18"0c, SEE PLAN SEE SCHED - 2x BLOCKING - ROFSHATIONA SESCIED SHEARWALL TRANSFER PERPENDICULAR TO TRUSS SIMPSON CSIA FOR EXTENT OF ROOF TRUSS BLK W/ (2) IND AT 4"OC (OMIT CSIA JE TOP PL OF WALL IS CONT BELOW BLK AND USE LTP46 AT 24"OC) TYPICAL WOOD BEAM CAP SEAT AT STEEL COLUMN STOIL PROSCUE ROOF TRUSS BLK OR OSB BLK MATCH SHEARWALL BELOW - DBL TOP PL STAPSON A35 FRANKING ANCHOR AT 24"00: STRUCTURAL ENGINEERS Lloyd Architects ROOF FRAMING DETAILS unaccoo de 128 S701 07/22/2016 ROSENTHAL CABIN ++ C300 EROSION CONTROL PLAN DRAWING REVISIONS 8/8/16 **ROSENTHAL CABIN** 7958 E. HEARTWOOD DRIVE EDEN, UTAH 84310 841-146 CTV UTA 100 SOUTH 8 11-146 S Exhibit A C301 EROSION CONTROL DETAILS SHEET TITLE DRAWING REVISIONS 9/8/16 SEAL **ROSENTHAL CABIN** 7958 E. HEARTWOOD DRIVE EDEN, UTAH 84310 August 7, 2014 Mr. Grant H. Blakeslee Summit, LLC 3632 North Wolf Creek Drive Eden, Utah 84310 IGES Project No. 01628-006 RE: Geotechnical Investigation Report Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive Weber County, Utah Mr. Blakeslee, As requested, IGES has conducted a geotechnical investigation for the proposed residence to be constructed on Lot 34R of the Powder Mountain Resort located at 7958 East Heartwood Drive in Weber County, Utah. The approximate location of the property is illustrated on the *Site Vicinity Map* (Figure A-1 in Appendix A). The purposes of our investigation was to assess the nature and engineering properties of the subsurface soils at the proposed home site and to provide recommendations for the design and construction of foundations, grading, and drainage. The scope of work completed for this study included subsurface exploration, laboratory testing, engineering analyses and preparation of this letter. #### Project Understanding Our understanding of the project is based primarily on our previous involvement with the Powder Mountain resort project, which included two geotechnical investigations for the greater 200-acre Powder Mountain Resort expansion project (IGES, 2012a and 2012b). The Powder Mountain Resort expansion project is located southeast of SR-158 (Powder Mountain Road), south of previously developed portions of Powder Mountain Resort, in unincorporated Weber County, Utah. The project is accessed by Powder Ridge Road. Lot 34R is a ¾-acre single-family residential lot with a buildable envelope of approximately 0.21 acres. A single-family home will be constructed at the site, presumably a high-end vacation home. Construction plans were not available for our review; however, we assume the new home will be a one- or two-story wood-framed structure, with a basement, founded on conventional spread footings. The development is expected to include improvements common for residential developments such as underground utilities, curb and gutter, flatwork, landscaping, and possibly appurtenant structures. Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah #### **METHOD OF STUDY** #### Literature Review IGES completed a geotechnical investigation for the Powder Mountain Resort expansion in 2012 (2012a, 2012b). Our previous work included twenty-two test pits and one soil boring excavated at various locations across the 200-acre development; as a part of this current study, the logs from relevant nearby test pits and other data from our reports were reviewed. In addition, Western Geologic (2012) completed a geologic hazard study for the greater 200-acre Powder Mountain expansion project – this report was reviewed to assess the potential impact of geologic hazards on the subject lot. #### Field Investigation Subsurface soils were investigated by excavating one test pit approximately 12 feet below the existing site grade. The approximate location of the test pit is illustrated on the *Geotechnical Map* (Figure A-2 in Appendix A). The soil types and conditions were visually logged at the time of the excavation in general accordance with the Unified Soil Classification System (USCS). Subsurface soil classifications and descriptions are included on the test pit log included as Figure A-3 in Appendix A. A key to USCS symbols and terminology is included as Figure A-4. ## Laboratory Testing Samples retrieved during the subsurface investigation were transported to the laboratory for evaluation of engineering properties. Specific laboratory tests include: - Moisture Content and Unit Weight - Soluble Sulfate, Soluble Chloride, pH and Resistivity Results of the laboratory testing are discussed in this report and presented in Appendix B. Some test results, including moisture content; and unit weight, have been incorporated into the test pit log (Figure A-3). In addition to laboratory testing on samples obtained from this lot, engineering analysis was also based on previously completed laboratory work on soil samples obtained near the site (IGES, 2012a & 2012b). ## **Engineering Analysis** Engineering analyses were performed using soil data obtained from laboratory testing and empirical correlations based on material density, depositional characteristics and classification. Appropriate factors of safety were applied to the results consistent with industry standards and the accepted standard of care. An allowable bearing pressure value was proportioned based on estimated shear strength of bearing soils. Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah ### **FINDINGS** ## Surface Conditions At the time of the excavation, the lot was in a relatively natural state and was covered with a variety of vegetation including weeds and native grasses. Frequent boulders (>12 inches) were observed throughout the site. The site is relative flat, draining gently to the north, away from Heartwood Drive. #### Earth Materials The soil at the surface of the site consists of approximately 6 inches of poorly-developed topsoil consisting of mottled, medium-dense silty sand. The topsoil encountered was characterized by an abundance of organic matter (roots, etc.). The topsoil was underlain by medium dense clayey sand extending to a depth of approximately 9 feet below existing grade. Underlying this layer, we encountered coarse colluvium consisting of medium-dense clayey gravel. The colluvium was characterized by abundant coarse angular rock fragments, which extended to the bottom of the excavation (approximately 12 feet below the existing grade). Detailed descriptions of earth materials encountered are presented on the test pit log, Figure A-3, in Appendix A. #### Groundwater Groundwater was not encountered in the test pit excavation. Based on our observations, groundwater is not anticipated to adversely impact the proposed construction. However, groundwater levels could rise at any time based on several factors including recent precipitation, on- or off-site runoff, irrigation, and time of year (e.g., spring run-off). Should the groundwater become a concern during the proposed construction, IGES should be contacted so that dewatering recommendations may be provided. ## Geology and Geologic Hazards Geology and geologic hazards have been previously addressed by Western Geologic in a separate submittal (Western Geologic, 2012). This work has also been referenced in our previous geotechnical reports for the project (IGES, 2012a and 2012b). The report by Western Geologic indicates that the lot is located outside of known geologically unstable areas. During our subsurface investigation, potentially adverse geologic structures (e.g., evidence of faulting or landslides) were not evident to the maximum depth of exploration (12 feet). Geomorphic expressions of shallow, surficial landslides were not observed on, or near the lot. Based on currently available data and our			
observations, the potential for geologic hazards such as landslides, liquefaction, or surface fault rupture impacting the site is considered low. Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah #### Seismicity Following the criteria outlined in the 2012 International Building Code (IBC, 2012), spectral response at the site was evaluated for the *Maximum Considered Earthquake* (MCE) which equates to a probabilistic seismic event having a two percent probability of exceedance in 50 years (2PE50). Spectral accelerations were determined based on the location of the site using the *U.S. Seismic "DesignMaps" Web Application* (USGS, 2012); this software incorporates seismic hazard maps depicting probabilistic ground motions and spectral response data developed for the United States by the U. S. Geological Survey as part of NEHRP/NSHMP (Frankel et al., 1996). These maps have been incorporated into both *NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures* (FEMA, 1997) and the *International Building Code* (IBC) (International Code Council, 2012). To account for site effects, site coefficients that vary with the magnitude of spectral acceleration and *Site Class* are used. Site Class is a parameter that accounts for site amplification effects of soft soils and is based on the average shear wave velocity of the upper 100 feet; based on our field exploration and our understanding of the geology in this area, the subject site is appropriately classified as Site Class C (*Very Dense Soil and Soft Rock*). Based on IBC criteria, the short-period (F_a) coefficient is 1.070 and long-period (F_v) site coefficient is 1.526. Based on the design spectral response accelerations for a *Building Risk Category* of I, II or III, the site's *Seismic Design Category* is D. The short- and long-period *Design Spectral Response Accelerations* are presented in Table 1.0; a summary of the *Design Maps* analysis is presented in Appendix C. The *peak ground acceleration* (PGA) may be taken as 0.4*SMs. Table 1.0 Short- and Long-Period Spectral Accelerations for MCE	Parameter	Short Period (0.2 sec)	Long Period (1.0 sec)
more stringent. #### Oversize Material Even though we did not encountered bedrock in the test pit for this lot, shallow bedrock was observed on some of the adjacent lots. Thus, it is possible shallow bedrock exists in some area of the lot. Frequent boulders (>12 inches) were also observed on the surface of the site. Based on our observations at the site and previously completed geotechnical investigation, there is a moderate potential for the presence of oversize materials (larger than 6 inches in greatest dimension). Large rocks, particularly boulders, may require special handling, such as segregation from structural fill, and disposal. Particularly large boulders may require special equipment for removal during excavation of the basement. #### **Foundations** Based on our field observations and considering the presence of relatively competent native earth materials, we recommend that the footings for proposed home be founded either entirely on competent native soils or entirely on structural fill. Native/fill transition zones are not allowed beneath a single structure footprint. If soft, loose, or otherwise deleterious earth materials are exposed in the footing excavations, then the footings should be deepened such that all footings bear on relatively uniform, competent native earth materials. Alternatively, the foundation excavation may be over-excavated a minimum of 2 feet below the bottom of proposed footings and replaced with structural fill, such that the footings bear entirely on a uniform fill blanket. We recommend that IGES inspect the bottom of the foundation excavation prior to the placement of steel or concrete to identify the competent native earth materials as well as any unsuitable soils or transition zones. Additional over-excavation may be required based on the actual subsurface conditions observed. Shallow spread or continuous wall footings constructed entirely on competent, uniform native earth materials or on a minimum of 2 feet of *structural fill* may be proportioned utilizing a maximum net allowable bearing pressure of **2,200 pounds per square foot (psf)** for dead load plus live load conditions. The net allowable bearing value presented above is for dead load plus live load conditions. The minimum recommended footing width is 20 inches for continuous wall footings and 30 inches for isolated spread footings. All conventional foundations exposed to the full effects of frost should be established at a minimum depth of 42 inches below the lowest adjacent final grade. Interior footings, not subjected to the full effects of frost (i.e., a continuously heated structure), may be established at higher elevations, however, a minimum depth of embedment of 12 inches is recommended for confinement purposes. Foundation drains should be installed around below-ground foundations (e.g., basement walls) to minimize the potential for flooding from shallow groundwater, which may be present at various times during the year, particularly spring run-off. Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah #### Settlement Static settlement of properly designed and constructed conventional foundations, founded as described above, are anticipated to be on the order of 1 inch or less. Differential settlement is expected to be half of total settlement over a distance of 30 feet. Competent native earth materials and/or properly compacted structural fill is expected to exhibit negligible seismically-induced settlement during a MCE seismic event. #### Earth Pressure and Lateral Resistance Lateral forces imposed upon conventional foundations due to wind or seismic forces may be resisted by the development of passive earth pressures and friction between the base of the footing and the supporting soils. In determining the frictional resistance against concrete, a coefficient of friction of 0.45 for sandy native soils or structural fill should be used. Ultimate lateral earth pressures from *granular* backfill acting against retaining walls, temporary shoring, or buried structures may be computed from the lateral pressure coefficients or equivalent fluid densities presented in Table 2.0: Table 2.0 Lateral Earth Pressure Coefficients		Level 1	Backfill
reinforcing steel, valves etc. #### Construction Considerations Although shallow bedrock was not identified during our subsurface investigation, it is known that shallow bedrock may occur locally within this area. Although not anticipated, if shallow bedrock is encountered, this material may require special equipment and/or blasting for removal during excavation of the basement. In addition, several large boulders were observed during our subsurface exploration; as such, excavation of the basement may generate an abundance of over-size material that may require special handling, processing, or disposal. ### **CLOSURE** The recommendations presented in this letter are based on limited field exploration, literature review, and a general understanding of the proposed construction. The subsurface data used in the preparation of this letter were obtained from the exploration(s) made for this investigation. It is possible that variations in the soil and groundwater conditions could exist beyond the point explored. The nature and extent of variations may not be evident until construction occurs. If any conditions are encountered at this site that are different from those described in this letter, IGES should be immediately notified so that any necessary revisions to recommendations contained in this letter may be made. In addition, if the scope of the proposed construction changes from that described in this letter, IGES should also be notified. This report was prepared in accordance with the generally accepted standard of practice at the time the report was written. No warranty, expressed or implied, is made. It is the Client's responsibility to see that all parties to the project including the Designer, Contractor, Subcontractors, etc. are made aware of this letter in its entirety. The use of information contained in this report for bidding purposes should be done at the Contractor's option and risk. Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah #### Additional Services The recommendations presented in this report are based on the assumption that an adequate program of tests and observations will be made during the construction. IGES staff should be on site to verify compliance with these recommendations. These tests and observations should include, but not necessarily be limited to, the following: - Observations and testing during site preparation, earthwork and structural fill placement. - Consultation as may be required during construction. - Quality control testing of cast-in-place concrete. - Review of plans and specifications to assess compliance with our recommendations. We appreciate the opportunity to be of service on this project. Should you have any questions regarding the report or wish to discuss additional services, please contact the undersigned at (801) 748-4044. Respectfully submitted, IGES, Inc. ZWZ Shun Li, P.E.I. Staff Engineer David A. Glass, P.E. Senior Geotechnical Engineer No. 637073 Reviewed by: Attachments: References Appendix A Figure A-1 – Site Vicinity Map Figure A-2 – Geotechnical Map Figure A-3 – Test Pit Log Figure A-4 – Key to Soil Symbols and Terminology Appendix B – Laboratory Results Appendix C – 2012 IBC MCE and Design Response Acceleration Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah #### References - AMEC, 2001, Report Engineering Geologic Reconnaissance/Geotechnical Study Powder Mountain Resort. - Federal Emergency Management Agency [FEMA], 1997, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA 302, Washington, D.C. - Frankel, A., Mueller, C., Barnard, T., Perkins, D., Leyendecker, E.V., Dickman, N., Hanson, S., and Hopper, M., 1996, *National Seismic-hazard Maps: Documentation*, U.S. Geological Survey Open-File Report 96-532, June. - IGES, Inc., 2012a, Design Geotechnical Investigation, Powder Mountain Resort, Weber County, Utah, Project No. 01628-003, dated November 9, 2012. - IGES, Inc., 2012b, Preliminary Geotechnical Investigation, Powder Mountain Resort, Weber County, Utah, Project No. 01628-001, dated July 26, 2012. - International Building Code [IBC], 2012, International Code Council, Inc. - PSI, 2012, Geophysical ReMi Investigation, Powder Mountain Resort, Phase 1A, Weber County, Utah, PSI Project No. 0710375, dated September 18, 2012. - U.S. Geological Survey, 2012, U.S. Seismic "Design Maps" Web Application, site: https://geohazards.usgs.gov/secure/designmaps/us/application.php. - Western Geologic, 2012, Report: Geologic Hazards Reconnaissance, Proposed Area 1 Mixed-Use Development, Powder Mountain Resort, Weber County, Utah, dated August 28, 2012. # **APPENDIX A** BASE MAP: USGS Huntsville, Browns Hole, James Peak and Sharp Mountain 7.5-Minute Quadrangle Topographic Maps (2011) Project No. 01628-006 MAP LOCATION Geotechnical Investigation Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive Weber County, Utah SITE SITE VICINITY MAP Figure **A-1** 64 of 128	H	STAI	RTEI
MEDIUM-TO-HIGH PLASTICITY		HIC	SHLY ORGANIC SOI
		A file with means the	40 Ch + C + + 11 h-
of approximately 9 feet below existing grade. Underlying this layer, we encountered coarse colluvium consisting of medium-dense clayey gravel. The colluvium was characterized by abundant coarse angular rock fragments, which extended to the bottom of the excavation (approximately 12 feet below the existing grade). Due to the coarsness of the colluvium at 12 feet, it is postulated that bedrock could have been within a few feet of the bottom of the test pit; however, difficult excavating conditions limited the depth of the test pit. Upon the topographic high point of the lot (illustrated on Figure A-2 in red, designated as geologic unit Cr), we observed bedrock outcrops consisting of highly weathered, closely fractured dark gray dolomite. The rock unit is fairly hard – samples could only be obtained with a firm blow from a rock hammer. It should be noted that the rock/colluvium contact it thought to dip steeply, since bedrock was not encountered in the test pit even though the test pit was excavated near the bedrock outcrop. Detailed descriptions of earth materials encountered are presented on the test pit log, Figure A-3, in Appendix A. ### Groundwater Groundwater was not encountered in the test pit excavation. Based on our observations, groundwater is not anticipated to adversely impact the proposed construction. However, groundwater levels could rise at any time based on several factors including recent precipitation, on- or off-site runoff, irrigation, and time of year (e.g., spring run-off). Should the groundwater become a concern during the proposed construction, IGES should be contacted so that dewatering recommendations may be provided. ## Geology and Geologic Hazards Geology and geologic hazards have been previously addressed by Western Geologic in a separate submittal (Western Geologic, 2012). This work has also been referenced in our previous geotechnical reports for the project (IGES, 2012a and 2012b). The report by Western Geologic indicates that the lot is located outside of known geologically unstable areas. The Western Geologic report also includes a large-scale geologic map that shows the subject lot in an area mapped as "undifferentiated dolomite". Dolomite is a rock that has similar mechanical properties to limestone and is fairly hard, often forming cliffs and other near-vertical formations. During our subsurface investigation, potentially adverse geologic structures (e.g., evidence of faulting or landslides) were not evident to the maximum depth of exploration (12 feet). Geomorphic expressions of shallow, surficial landslides were not observed on, or near the lot. Based on currently available data and our observations, the potential for geologic hazards such as landslides, liquefaction, or surface fault rupture impacting the site is considered low. ## Seismicity Following the criteria outlined in the 2012 International Building Code (IBC, 2012), spectral response at the site was evaluated for the *Maximum Considered Earthquake* (MCE) which equates to a probabilistic seismic event having a two percent probability of exceedance in 50 years (2PE50). Spectral accelerations were determined based on the location of the site using the *U.S. Seismic "DesignMaps" Web Application* (USGS, 2012); this software incorporates seismic hazard maps depicting probabilistic ground motions and spectral response data developed for the United States by the U. S. Geological Survey as part of NEHRP/NSHMP (Frankel et al., 1996). These maps have been incorporated into both *NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures* (FEMA, 1997) and the *International Building Code* (IBC) (International Code Council, 2012). To account for site effects, site coefficients that vary with the magnitude of spectral acceleration and Site Class are used. Site Class is a parameter that accounts for site amplification effects of soft soils and is based on the average shear wave velocity of the upper 100 feet; based on our field exploration and our understanding of the geology in this area, the subject site is appropriately classified as Site Class B (Rock). Based on IBC criteria, the short-period (F_a) coefficient is 1.0 and long-period (F_v) site coefficient is 1.0. Based on the design spectral response accelerations for a Building Risk Category of I, II or III, the site's Seismic Design Category is D. The short- and long-period Design Spectral Response Accelerations are presented in Table 1.0; a summary of the Design Maps analysis is presented in Appendix C. The peak ground acceleration (PGA) may be taken as 0.4*Sms. Table 1.0 Short- and Long-Period Spectral Accelerations for MCE | Parameter | Short Period
(0.2 sec) | Long Period
(1.0 sec) | |--|---------------------------------|---------------------------------| | MCE Spectral Response Acceleration (g) | $S_S = 0.826$ | $S_1 = 0.274$ | | MCE Spectral Response
Acceleration Site Class C (g) | $S_{MS} = S_s F_a = 0.826$ | $S_{M1} = S_1 F_v = 0.274$ | | Design Spectral Response
Acceleration (g) | $S_{DS} = S_{MS}*^2/_3 = 0.551$ | $S_{D1} = S_{M1}*^2/_3 = 0.183$ | ## **CONCLUSIONS AND RECOMMENDATIONS** Based on the results of the field observations, laboratory testing and previously completed geotechnical investigation (IGES, 2012a), the subsurface conditions are considered suitable for the proposed construction provided that the recommendations presented in this report are incorporated into the design and construction of the project. ## General Site Preparation and Grading Prior to the placement of foundations, general site grading is recommended to provide proper support for exterior concrete flatwork, concrete slabs-on-grade, and pavement sections. Site grading is also recommended to provide proper drainage and moisture control on the subject property and to aid in preventing differential movement in foundation soils as a result of variations in moisture conditions. Below proposed structures, fills, and man-made improvements, all vegetation, topsoil, debris and undocumented fill soils (if any) should be removed. Any existing utilities should be re-routed or protected in place. The exposed native soils should then be proof-rolled with heavy rubber-tired equipment such as a scraper or loader. Any soft/loose areas identified during proof-rolling should be removed and replaced with structural fill. All excavation bottoms should be observed by an IGES representative during proof rolling or otherwise prior to placement of engineered fill to evaluate whether soft, loose, or otherwise deleterious earth materials have been removed and that recommendations presented in this report have been complied with. #### **Excavations** Soft, loose, or otherwise unsuitable soils beneath structural elements, hardscape or pavements may need to be over-excavated and replaced with structural fill. If over-excavation is required, the excavations should extend one foot laterally for every foot of depth of over-excavation. Excavations should extend laterally at least two feet beyond flatwork, pavements, and slabs-on-grade. Structural fill should consist of granular materials and should be placed and compacted in accordance with the recommendations presented in this report. Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah Prior to placing engineered fill, all excavation bottoms should be scarified to at least 6 inches, moisture-conditioned as necessary at or slightly above optimum moisture content (OMC), and compacted to at least 90 percent of the maximum dry density (MDD) as determined by ASTM D-1557 (Modified Proctor). Scarification is not required where bedrock is exposed. ## **Excavation Stability** The contractor is responsible for site safety, including all temporary trenches excavated at the site and the design of any required temporary shoring. The contractor is responsible for providing the "competent person" required by Occupational Safety and Health (OSHA) standards to evaluate soil conditions. For planning purposes, Soil Type C is expected to predominate at the site (sands and gravels). Close coordination between the competent person and IGES should be maintained to facilitate construction while providing safe excavations. Based on OSHA guidelines for excavation safety, trenches with vertical walls up to 5 feet in depth may be occupied. Where very moist soil conditions or groundwater is encountered, or when the trench is deeper than 5 feet, we recommend a trench-shield or shoring be used as a protective system to workers in the trench. As an alternative to shoring or shielding, trench walls may be laid back at one and one half horizontal to one vertical (1½H:1V) (34 degrees) in accordance with OSHA Type C soils. Trench walls may need to be laid back at a steeper grade pending evaluation of soil conditions by the geotechnical engineer. Soil conditions should be evaluated in the field on a case-by-case basis. Large rocks exposed on excavation walls should be removed (scaled) to minimize rock fall hazards. Where dolomite bedrock is exposed, near-vertical walls (0.25H:1V) may be permitted provided adverse jointing or bedding patterns are absent and the excavation is assessed by the OSHA 'competent person' prior to occupancy. ## Structural Fill and Compaction All fill placed for the support of structures, flatwork or pavements should consist of structural fill. Structural fill should consist of granular native soils, which may be defined as soils with less than 25% fines, 10-60% sand, and contain no rock larger than 4 inches in nominal size (6 inches in greatest dimension). Structural fill should also be free of vegetation and debris. Soils not meeting these criteria may be suitable for use as structural fill; however, such soils should be evaluated on a case by case basis and should be approved by IGES prior to use. All structural fill should be placed in maximum
4-inch loose lifts if compacted by small hand-operated compaction equipment, maximum 6-inch loose lifts if compacted by light-duty rollers, and maximum 8-inch loose lifts if compacted by heavy duty compaction equipment that is capable of efficiently compacting the entire thickness of the lift. Additional lift thickness may be allowed by IGES provided the Contractor can demonstrate sufficient compaction can be achieved with a given lift thickness with the equipment in use. We recommend that all structural fill be compacted on a horizontal plane, unless otherwise approved by IGES. Structural fill underlying all shallow footings and pavements should be compacted to at least 95 percent of the MDD as determined by ASTM D-1557. Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah The moisture content should be at, or slightly above, the OMC for all structural fill. Any imported fill materials should be approved prior to importing. Also, prior to placing any fill, the excavations should be observed by IGES to confirm that unsuitable materials have been removed. Specifications from governing authorities such as Weber County and/or special service districts having their own precedence for backfill and compaction should be followed where more stringent. ## Utility Trench Backfill Utility trenches should be backfilled with structural fill in accordance with the previous section. Utility trenches can be backfilled with the onsite soils free of debris, organic and oversized material. Prior to backfilling the trench, pipes should be bedded in and shaded with a uniform granular material that has a Sand Equivalent (SE) of 30 or greater. Pipe bedding may be water-densified in-place (jetting). Alternatively, pipe bedding and shading may consist of clean ¾-inch gravel, which generally does not require densification. Native earth materials can be used as backfill over the pipe bedding zone. All utility trenches backfilled below pavement sections, curb and gutter, hardscape, should be backfilled with structural fill compacted to at least 95 percent of the MDD as determined by ASTM D-1557. All other trenches should be backfilled and compacted to approximately 90 percent of the MDD (ASTM D-1557). However, in all cases the pipe bedding and shading should meet the design criteria of the pipe manufacturer. Specifications from governing authorities having their own precedence for backfill and compaction should be followed where they are more stringent. ### **Foundations** Based on our field observations and considering the presence of bedrock exposures within the building envelope, we recommend that the footings for proposed home be founded *entirely* on bedrock. Bedrock/soil transition zones are not allowed. However, it is possible, and even likely, that deep colluvial deposits located on the north side of the building envelope may preclude the practical construction of all foundation on bedrock; as such, as an alternative to extending all foundations to bedrock, foundations constructed over colluvium may be underpinned with micropiles or a similar underpinning technology. This is conceptually illustrated on Figure D-1 in Appendix D. Since the bedrock/colluvium contact cannot be known with certainty, and since the design of the new home is currently in the planning stages, the extent to which micropiles will be necessary (or perhaps not required) will not be evident until the basement is excavated. We recommend that IGES inspect the bottom of the foundation excavation prior to the placement of steel or concrete to identify any unsuitable soils or transition zones. If bedrock/soil transitions zones are identified, the Contractor may wish to pot-hole to assess the depth to bedrock and thus determine if deepening the foundations is practical, or if underpinning the foundations is the preferred option. It should be noted that the bedrock at the site is expected to be very difficult to excavate (see *Construction Considerations* on page 11 of this report). Shallow spread or continuous wall footings constructed entirely on competent bedrock may be proportioned utilizing a maximum net allowable bearing pressure of **5,000 pounds per square foot (psf)** for dead load plus live load conditions. The net allowable bearing value presented above is for dead load plus live load conditions. The minimum recommended footing width is 20 inches for continuous wall footings and 30 inches for isolated spread footings. All conventional foundations exposed to the full effects of frost should be established at a minimum depth of 42 inches below the lowest adjacent final grade. Interior footings, not subjected to the full effects of frost (i.e., a continuously heated structure), may be established at higher elevations, however, a minimum depth of embedment of 12 inches is recommended for confinement purposes. Foundation drains should be installed around below-ground foundations (e.g., basement walls) to minimize the potential for flooding from shallow groundwater, which may be present at various times during the year, particularly spring run-off. ## Underpinning Underpinning, if used, should be designed by IGES or an engineer experienced in deep foundation design. *For planning purposes*, underpinning may consist of micropiles conforming to the following criteria: - Injection Bore micropile, R38N hollow bar, uncased. - 6-inch grouted diameter. - Socket a minimum of three feet into bedrock or 20 feet into colluvium, whichever is shorter. - A single micropile, as described above, may be assumed to have an allowable axial capacity of 35 kips. - Lateral resistance, if required by the Structural Engineer, will require a cased micropile and must be designed for specific project requirements. #### Settlement Static settlement of properly designed and constructed conventional foundations, founded as described above, are anticipated to be on the order of 1 inch or less. Differential settlement is expected to be half of total settlement over a distance of 30 feet. Competent native earth materials and/or properly compacted structural fill is expected to exhibit negligible seismically-induced settlement during a MCE seismic event. ## Earth Pressure and Lateral Resistance Lateral forces imposed upon conventional foundations due to wind or seismic forces may be resisted by the development of passive earth pressures and friction between the base of the footing and the supporting soils. In determining the frictional resistance against concrete, a coefficient of friction of 0.45 for sandy native soils or structural fill should be used. Ultimate lateral earth pressures from *granular* backfill acting against retaining walls, temporary shoring, or buried structures may be computed from the lateral pressure coefficients or equivalent fluid densities presented in Table 2.0. These lateral pressures should be assumed even if the backfill is placed in a relatively narrow gap between a vertical bedrock cut and the foundation wall. Table 2.0 Lateral Earth Pressure Coefficients | | Level | Backfill | 2H:1V Backfill | | | |--------------|------------------------------|--------------------------------|------------------------------------|--------------------------------|--| | Condition | Lateral Pressure Coefficient | Equivalent Fluid Density (pcf) | Lateral
Pressure
Coefficient | Equivalent Fluid Density (pcf) | | | Active (Ka) | 0.33 | 35 | 0.53 | 56 | | | At-rest (Ko) | 0.50 | 55 | 0.80 | 85 | | | Passive (Kp) | 3.0 | 320 | | _ | | These coefficients and densities assume no buildup of hydrostatic pressures. The force of water should be added to the presented values if hydrostatic pressures are anticipated. Clayey soils drain poorly and may swell upon wetting, thereby greatly increasing lateral pressures acting on earth retaining structures; therefore, clayey soils should not be used as retaining wall backfill. Backfill should consist of native granular soil with an Expansion Index (EI) less than 20. Walls and structures allowed to rotate slightly should use the active condition. If the element is to be constrained against rotation (i.e., a basement or buried tank wall), the atrest condition should be used. These values should be used with an appropriate factor of safety against overturning and sliding. A value of 1.5 is typically used. Additionally, if passive resistance is calculated in conjunction with frictional resistance, the passive resistance should be reduced by ½. #### Concrete Slab-on-Grade Construction To minimize settlement and cracking of slabs, and to aid in drainage beneath the concrete floor slabs, all concrete slabs should be founded on a minimum 4-inch layer of compacted gravel overlying properly prepared subgrade. The gravel should consist of free-draining gravel or road base with a 3/4-inch maximum particle size and no more than 5 percent passing the No. 200 mesh sieve. The layer should be compacted to at least 95 percent of the MDD as determined by ASTM D-1557. All concrete slabs should be designed to minimize cracking as a result of shrinkage. Consideration should be given to reinforcing the slab with a welded wire fabric, re-bar, or fibermesh. Slab reinforcement should be designed by the structural engineer; however, as a minimum, slab reinforcement should consist of 4"×4" W4.0×W4.0 welded wire mesh within the middle third of the slab. We recommend that concrete be tested to assess that the slump and/or air content is in compliance with the plans and specifications. We recommend that concrete be placed in general accordance with the requirements of the American Concrete Institute (ACI). A Modulus of Subgrade Reaction of 400 psi/inch may be used for design. A moisture barrier (vapor retarder) consisting of 10-mil thick Visqueen (or equivalent) plastic sheeting should be placed below slabs-on-grade where moisture-sensitive floor coverings or equipment is planned. Prior to placing this moisture barrier, any objects that could
puncture it, such as protruding gravel or rocks, should be removed from the building pad. Alternatively, the subgrade may be covered with 2 inches of clean sand. ### Moisture Protection Moisture should not be allowed to infiltrate into the soils in the vicinity of the foundations. As such, design strategies to minimize ponding and infiltration near the home should be implemented. The new home may be subject to sheet flow during periods of heavy rain or snow melt; therefore, the Civil Engineer may also wish to consider construction of additional surface drainage to intercept surface runoff, or a curtain drain to intercept seasonal groundwater flow, if any. We recommend that hand watering, desert landscaping or Xeriscape be considered within 5 feet of the foundations. We further recommend roof runoff devices be installed to direct all runoff a minimum of 10 feet away from structures. The home builder should be responsible for compacting the exterior backfill soils around the foundation. Additionally, the ground surface within 10 feet of the house should be constructed so as to slope a minimum of five percent away from the home. Pavement sections should be constructed to divert surface water off of the pavement into storm drains. Parking strips and roadway shoulder areas should be constructed to prevent infiltration of water into the areas surrounding pavement. Landscape plans must conform to Weber County development codes. IGES recommends a perimeter foundation drain be constructed for the proposed residential structure in accordance with the International Residential Code (IRC). ## Soil Corrosion Potential Laboratory testing of a representative soil sample obtained from the test pit indicated that the soil sample tested had a sulfate content of 8 ppm. Accordingly, the soils are classified as having a 'low' potential for deterioration of concrete due to the presence of soluble sulfate. As such, conventional Type I/II Portland cement may be used for all concrete in contact with site soils. To evaluate the corrosion potential of ferrous metal in contact with onsite native soil a sample was tested for soil resistivity, soluble chloride and pH. The test indicated that the onsite soil tested has a minimum soil resistivity of 3,156 OHM-cm, soluble chloride content of 3.8 ppm and a pH of 8.2. Based on this result, the onsite native soil is considered to be Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah moderately corrosive to ferrous metal. Consideration should be given to retaining the services of a qualified corrosion engineer to provide an assessment of any metal that may be associated with construction of ancillary water lines and reinforcing steel, valves etc. #### Construction Considerations - Excavation Difficulty: bedrock consisting of relatively hard dolomite is exposed at the surface within the building envelope. Based on conversations with contractors currently working in the vicinity, this rock is expected to be relatively difficult to remove. Special heavy-duty excavation equipment will likely be required, such as a hammer hoe. - Over-Size Material: A bedrock outcrop was observed within the building footprint of this lot. In addition, large boulders up to 12 inches were observed on the surface; larger boulders may be present within the colluvial soil. As such, development of the lot is expected to generate a substantial amount of over-size material (rocks larger than 6 inches in greatest dimension). Large rocks, particularly boulders, may require special handling, such as segregation from structural fill, and disposal. Bedrock is expected to require specialized equipment for removal during excavation of the basement. ## **CLOSURE** The recommendations presented in this letter are based on limited field exploration, literature review, and a general understanding of the proposed construction. The subsurface data used in the preparation of this letter were obtained from the exploration(s) made for this investigation. It is possible that variations in the soil and groundwater conditions could exist beyond the point explored. The nature and extent of variations may not be evident until construction occurs. If any conditions are encountered at this site that are different from those described in this letter, IGES should be immediately notified so that any necessary revisions to recommendations contained in this letter may be made. In addition, if the scope of the proposed construction changes from that described in this letter, IGES should also be notified. This report was prepared in accordance with the generally accepted standard of practice at the time the report was written. No warranty, expressed or implied, is made. It is the Client's responsibility to see that all parties to the project including the Designer, Contractor, Subcontractors, etc. are made aware of this letter in its entirety. The use of information contained in this report for bidding purposes should be done at the Contractor's option and risk. #### Additional Services The recommendations presented in this report are based on the assumption that an adequate program of tests and observations will be made during the construction. IGES staff should be on site to verify compliance with these recommendations. These tests and observations should include, but not necessarily be limited to, the following: Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive, Weber County, Utah - Observations and testing during site preparation, earthwork and structural fill placement. - Consultation as may be required during construction. - Quality control testing of cast-in-place concrete. - Review of plans and specifications to assess compliance with our recommendations. We appreciate the opportunity to be of service on this project. Should you have any questions regarding the report or wish to discuss additional services, please contact the undersigned at (801) 748-4044. Respectfully submitted, IGES, Inc. Shun Li, P.E.I. Staff Engineer Reviewed by: DAVID A. GLASS 08-11-14 GLECTRONIC SEAL OF UTA David A. Glass, P.E. Senior Geotechnical Engineer ## **Attachments:** References Appendix A Figure A-1 – Site Vicinity Map Figure A-2 – Geotechnical Map Figure A-3 – Test Pit Log Figure A-4 – Key to Soil Symbols and Terminology Appendix B – Laboratory Results Appendix C – 2012 IBC MCE and Design Response Acceleration Appendix B – Laboratory Results Figure D-1 – Conceptual Cross-Section – Foundation Underpinning Figure D-2 – Conceptual Cross-Section – Source Plan-View ## References - AMEC, 2001, Report Engineering Geologic Reconnaissance/Geotechnical Study Powder Mountain Resort. - Federal Emergency Management Agency [FEMA], 1997, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA 302, Washington, D.C. - Frankel, A., Mueller, C., Barnard, T., Perkins, D., Leyendecker, E.V., Dickman, N., Hanson, S., and Hopper, M., 1996, *National Seismic-hazard Maps: Documentation*, U.S. Geological Survey Open-File Report 96-532, June. - IGES, Inc., 2012a, Design Geotechnical Investigation, Powder Mountain Resort, Weber County, Utah, Project No. 01628-003, dated November 9, 2012. - IGES, Inc., 2012b, Preliminary Geotechnical Investigation, Powder Mountain Resort, Weber County, Utah, Project No. 01628-001, dated July 26, 2012. - International Building Code [IBC], 2012, International Code Council, Inc. - PSI, 2012, Geophysical ReMi Investigation, Powder Mountain Resort, Phase 1A, Weber County, Utah, PSI Project No. 0710375, dated September 18, 2012. - U.S. Geological Survey, 2012, U.S. Seismic "Design Maps" Web Application, site: https://geohazards.usgs.gov/secure/designmaps/us/application.php. - Western Geologic, 2012, Report: Geologic Hazards Reconnaissance, Proposed Area 1 Mixed-Use Development, Powder Mountain Resort, Weber County, Utah, dated August 28, 2012. # **APPENDIX A** Geotechnical Investigation Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive Weber County, Utah SITE VICINITY MAP Geotechnical Investigation Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive Weber County, Utah GEOTECHNICAL MAP **Exhibit B** TEST PIT NO: Geotechnical Investigation STARTED: 7/18/14 IGES Rep: SLLot 34R of Powder Mountain Resort TP-1 COMPLETED: 7/18/14 7958 East Heartwood Drive trackhoe Rig Type: Sheet 1 of 1 BACKFILLED: 7/18/14 Weber County, Utah Project Number 01628-006 DEPTH LOCATION Moisture Content Moisture Content % GRAPHICAL LOG UNIFIED SOIL CLASSIFICATION and LATITUDE 41.36961 LONGITUDE -111.75790 ELEVATION 8,808 Percent minus 200 WATER LEVEL Dry Density(pcf) Atterberg Limits ELEVATION Plasticity Index Liquid Limit Plastic Moisture Liquid Limit Content Limit SAMPLES FEET MATERIAL DESCRIPTION 0 Silty SAND - medium dense, moist, mottled, heavy roots in upper SM Clayey SAND - loose, moist, brown, occasional roots SC 83.8 27.2 5 -(4 LINE HEADER W ELEV) 01628-006 LOT 34R.GPJ IGES.GDT 8/6/14 Clayey GRAVEL with sand - loose to medium dense, moist, reddish GC brown, coarse angular rock (colluvium) disaggregated into angular rock fragments up to 3 inches in diameter 14.9 10 No groundwater encountered Bottom of Test Pit @ 12 Feet LOG OF TEST PITS (A) NOTES: SAMPLE TYPE GRAB SAMPLE - 3" O.D. THIN-W FIGURE - 3" O.D. THIN-WALLED HAND SAMPLER WATER LEVEL ▼- MEASURED ✓- ESTIMATED A - 3 #### UNIFIED SOIL CLASSIFICATION SYSTEM | | MAJOR DIVISIONS | (HON GIGIE | USCS
SYMBOL | | TYPICAL
DESCRIPTIONS | | |--|--|--|----------------|----|--|--| | | GRAVELS | CLEAN GRAVELS | 共 | GW | WELL-GRADED GRAVELS, GRAVEL-SAND
MIXTURES WITH LITTLE OR NO FINES | | | 2 + 22 | (More than half of coarse
fraction | WITH LITTLE
OR NO FINES | - U.S. | GP | POORLY-GRADED GRAVELS, GRAVEL-SAND
MIXTURES WITH LITTLE OR NO FINES | | | COARSE | is larger than
the #4 sieve) | GRAVELS | 00000 | GM | SILTY GRAVELS, GRAVEL-SILT-SAND
MIXTURES | | | GRAINED
SOILS | | WITH OVER
12% FINES | | GC | CLAYEY GRAVELS, GRAVEL-SAND-CLAY
MIXTURES | | | of material
is larger than
the #200 sieve) | | CLEAN SANDS
WITH LITTLE | | sw | WELL-GRADED SANDS, SAND-GRAVEL
MIXTURES WITH LITTLE OR NO FINES | | | | SANDS (More than half of coarse fraction is smaller than the #4 sieve) | OR NO FINES | | SP | POORLY-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES | | | | | SANDS WITH | | SM | SILTY SANDS, SAND-GRAVEL-SILT
MIXTURES | | | | | OVER 12% FINES | | sc | CLAYEY SANDS
SAND-GRAVEL-CLAY MIXTURES | | | | | | | ML | INORGANIC SILTS & VERY FINE SANDS,
SILTY OR CLAYEY FINE SANDS,
CLAYEY SILTS WITH SLIGHT PLASTICITY | | | | SILTS AND CLAYS (Liquid limit less than 50) | | | CL | INORGANIC CLAYS OF LOW TO MEDIUM
PLASTICITY, GRAVELLY CLAYS,
SANDY CLAYS, SILTY CLAYS, LEAN CLAYS | | | FINE
GRAINED
SOILS
(More than half
of material
is smaller than
the #200 sieve) | | | | | ORGANIC SILTS & ORGANIC SILTY CLAYS
OF LOW PLASTICITY | | | | | | | | INORGANIC SILTS, MICACEOUS OR
DIATOMACEOUS FINE SAND OR SILT | | | | | SILTS AND CLAYS (Liquid limit greater than 50) | | СН | INORGANIC CLAYS OF HIGH PLASTICITY,
FAT CLAYS | | | | | | | ОН | ORGANIC CLAYS & ORGANIC SILTS
OF MEDIUM-TO-HIGH PLASTICITY | | | HIG | HIGHLY ORGANIC SOILS | | | | PEAT, HUMUS, SWAMP SOILS
WITH HIGH ORGANIC CONTENTS | | ## MOISTURE CONTENT | DESCRIPTION | FIELD TEST | |-------------|--| | DRY | ABSENCE OF MOISTURE, DUSTY, DRY TO THE TOUCH | | MOIST | DAMP BUT NO VISIBLE WATER | | WET | VISIBLE FREE WATER, USUALLY SOIL BELOW WATER TABLE | #### STRATIFICATION | L | DESCRIPTION | THICKNESS | DESCRIPTION | THICKNESS | | |---|-------------|-------------|-------------|-------------------------------------|--| | | SEAM | 1/16 - 1/2" | OCCASIONAL | ONE OR LESS PER FOOT OF THICKNESS | | | | LAYER | 1/2 - 12" | FREQUENT | MORE THAN ONE PER FOOT OF THICKNESS | | ### LOG KEY SYMBOLS TEST-PIT SAMPLE LOCATION WATER LEVEL (level after completion) $\overline{\underline{\nabla}}$ WATER LEVEL (level where first encountered) #### CEMENTATION | DESCRIPTION | DESCRIPTION | |-------------|--| | WEAKELY | CRUMBLES OR BREAKS WITH HANDLING OR SLIGHT FINGER PRESSURE | | MODERATELY | CRUMBLES OR BREAKS WITH CONSIDERABLE FINGER PRESSURE | | STRONGLY | WILL NOT CRUMBLE OR BREAK WITH FINGER PRESSURE | #### OTHER TESTS KEY | OTTIL | IN TESTS KET | | | |-------|-------------------------------|------|-------------------| | С | CONSOLIDATION | SA | SIEVE ANALYSIS | | AL | ATTERBERG LIMITS | DS | DIRECT SHEAR | | UC | UNCONFINED COMPRESSION | T | TRIAXIAL | | S | SOLUBILITY | R | RESISTIVITY | | 0 | ORGANIC CONTENT | RV | R-VALUE | | CBR | CALIFORNIA BEARING RATIO | SU | SOLUBLE SULFATES | | COMP | MOISTURE/DENSITY RELATIONSHIP | PM | PERMEABILITY | | CI | CALIFORNIA IMPACT | -200 | % FINER THAN #200 | | COL | COLLAPSE POTENTIAL | Gs | SPECIFIC GRAVITY | | SS | SHRINK SWELL | SL | SWELL LOAD | #### **MODIFIERS** | DESCRIPTION | % | |-------------|--------| | TRACE | <5 | | SOME | 5 - 12 | | WITH | >12 | #### **GENERAL NOTES** - Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual. - 2. No warranty is provided as to the continuity of soil conditions between individual sample locations. - 3. Logs represent general soil conditions observed at the point of exploration on the date indicated. - In general, Unified Soil Classification designations presented on the logs were evaluated by visual methods only. Therefore, actual designations (based on laboratory tests) may vary. ## APPARENT / RELATIVE DENSITY - COARSE-GRAINED SOIL | APPARENT
DENSITY | SPT
(blows/ft) | MODIFIED CA.
SAMPLER
(blows/ft) | CALIFORNIA
SAMPLER
(blows/ft) | RELATIVE
DENSITY
(%) | FIELD TEST | |---------------------|-------------------|---------------------------------------|-------------------------------------|----------------------------|--| | VERY LOOSE | <4 | <4 | <5 | 0 - 15 | EASILY PENETRATED WITH 1/2-INCH REINFORCING ROD PUSHED BY HAND | | LOOSE | 4 - 10 | 5 - 12 | 5 - 15 | 15 - 35 | DIFFICULT TO PENETRATE WITH 1/2-INCH REINFORCING ROD PUSHED BY HAND | | MEDIUM DENSE | 10 - 30 | 12 - 35 | 15 - 40 | 35 - 65 | EASILY PENETRATED A FOOT WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER | | DENSE | 30 - 50 | 35 - 60 | 40 - 70 | 65 - 85 | DIFFICULT TO PENETRATED A FOOT WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER | | VERY DENSE | >50 | >60 | >70 | 85 - 100 | PENETRATED ONLY A FEW INCHES WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER | | CONSISTENCY -
FINE-GRAINED SOIL | | TORVANE | POCKET
PENETROMETER | FIELD TEST | |------------------------------------|-------------------|--------------------------------------|---|--| | CONSISTENCY | SPT
(blows/ft) | UNTRAINED
SHEAR
STRENGTH (tsf) | UNCONFINED
COMPRESSIVE
STRENGTH (tsf) | | | VERY SOFT | <2 | <0.125 | <0.25 | EASILY PENETRATED SEVERAL INCHES BY THUMB. EXUDES BETWEEN THUMB AND FINGERS WHEN SQUEEZED BY HAND. | | SOFT | 2 - 4 | 0.125 - 0.25 | 0.25 - 0.5 | EASILY PENETRATED ONE INCH BY THUMB. MOLDED BY LIGHT FINGER PRESSURE. | | MEDIUM STIFF | 4 - 8 | 0.25 - 0.5 | 0.5 - 1.0 | PENETRATED OVER 1/2 INCH BY THUMB WITH MODERATE EFFORT. MOLDED BY STRONG FINGER PRESSURE. | | STIFF | 8 - 15 | 0.5 - 1.0 | 1.0 - 2.0 | INDENTED ABOUT 1/2 INCH BY THUMB BUT PENETRATED ONLY WITH GREAT EFFORT. | | VERY STIFF | 15 - 30 | 1.0 - 2.0 | 2.0 - 4.0 | READILY INDENTED BY THUMBNAIL. | | HARD | >30 | >2.0 | >4.0 | INDENTED WITH DIFFICULTY BY THUMBNAIL. | Key to Soil Symbols and Terminology Figure A-4 IGES, Inc. Project No.:01628-**94 of 128** # **APPENDIX B** ## Exhibit Bontent and Unit Weight of Soil (In General Accordance with ASTM D7263 Method B and D2216) **Project: GTI - Powder Mountain Resort** No: 01628-006 Location: Weber County, Utah Date: 7/29/2014 By: MP | 0 | Boring No. | | | | |-------------------|--------------------------------------|----------|---|--| | Sample
Info. | | Lot34TP1 | ٦ | | | Ss | Depth: | 4.0' | | | | | Sample height, H (in) | 5.446 | | | | nfo. | Sample diameter, D (in) | 2.416 | | | | Unit Weight Info. | Sample volume, V (ft ³) | 0.0144 | | | | 'eig | Mass rings + wet soil (g) | 948.80 | | | | it W | Mass rings/tare (g) | 250.66 | | | | Un | Moist soil, Ws (g) | 698.14 | | | | | Moist unit wt., γ _m (pcf) | 106.53 | | | | ant an | Wet soil + tare (g) | 819.67 | | | | Water
Content | Dry soil + tare (g) | 670.76 | | | | 2 2 | Tare (g) | 122.36 | | | | , | Water Content, w (%) | | | | | | Dry Unit Wt., γ _d (pcf) | | | | | Entered by: | | |-------------|--| | Reviewed: | | ## Exhibit B aboratory Soil Resistivity, pH of Soil for Use in Corrosion Testing, and Ions in Water by Chemically Suppressed Ion Chromatography (AASHTO T 288, T 289, ASTM D4327, and C1580) Project: GTI - Powder Mountain Resort No: 01628-006 Location: Weber County, Utah Date: 8/5/2014 By: ET | Sample info. | Boring No. | | | | | |-----------------------|-------------------------------|---------------|--------------------|-----------------|----------------------| | info. | Sample | | Lot 34 | | | | | Depth | | 9.5 | | | | ata | Wet soil + tare (g) | | 140. | | | | ntent da | Dry soil + tare (g) | | 127. | | | | water
content data | Tare (g) | | 37.8 | | - 1 X-1- | | 3 | Water content (%) | | 14. | | | | ıta | pН | | 8.1 | | | | Chem. data | Soluble chloride* (ppm) | | 3.8 | 3 | | | neu | Soluble sulfate** (ppm) | | 8 | | | | ט | | | | | | | | Pin method | | 2 | | | | | Soil box | | Miller | Small | | | | | Approximate | | | | | | | Soil | Resistance | | D : .: .: | | | | condition (%) | Reading (Ω) | Multiplier (cm) | $(\Omega\text{-cm})$ | | | | | 8550 | 0.67 | 5729 | | | | As Is +3 | 6570 | 0.67 | 4402 | | | ķ i | +6 | 4710 | 0.67 | 3156 | | ta | | +9 | 4710 | 0.67 | 3189 | | ' da |] (0 | +9 | 4/00 | 0.67 | 3109 | | Resistivity data | | | | | | | isti | | | - | | | | Res | d | | - | - | | | | | | | | A NA | | | | | | | | | | | | | - | | | - | Minimum resistivity | | | | | | | Winimum resistivity
(Ω-cm) | | 315 | 56 | | | | (32-CIII) | | | | | ^{*} Performed by AWAL using EPA 300.0 | Entered by:_ | | |--------------|--| | Reviewed: | | ^{**} Performed by AWAL using ASTM C1580 # **APPENDIX C** ## **Exhibit B ISGS** Design Maps Summary Report **User-Specified Input** Report Title Lot 34R Tue August 12, 2014 00:42:37 UTC Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) **Site Coordinates** 41.3696°N, 111.7579°W Site Soil Classification Site Class B - "Rock" Risk Category I/II/III ## **USGS-Provided Output** $$S_s = 0.826 g$$ $S_{MS} = 0.826 g$ $S_{DS} = 0.551 g$ $$S = 0.551 \, q$$ $$S_1 = 0.274 g$$ $$S_1 = 0.274 g$$ $S_{M1} = 0.274 g$ $$S_{D1} = 0.183 g$$ For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge. ##
Exhibit B USGS Design Maps Detailed Report 2012 International Building Code (41.3696°N, 111.7579°W) Site Class B - "Rock", Risk Category I/II/III Section 1613.3.1 — Mapped acceleration parameters Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2012 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3. From Figure 1613.3.1(1) [1] $$S_{s} = 0.826 g$$ From Figure 1613.3.1(2) [2] $$S_1 = 0.274 g$$ Section 1613.3.2 — Site class definitions The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class B, based on the site soil properties in accordance with Section 1613. ## 2010 ASCE-7 Standard – Table 20.3-1 SITE CLASS DEFINITIONS | Site Class | -
v _s | \overline{N} or \overline{N}_{ch} | -
s _u | |----------------------------------|---------------------|---------------------------------------|---------------------| | A. Hard Rock | >5,000 ft/s | N/A | N/A | | B. Rock | 2,500 to 5,000 ft/s | N/A | N/A | | C. Very dense soil and soft rock | 1,200 to 2,500 ft/s | >50 | >2,000 psf | | D. Stiff Soil | 600 to 1,200 ft/s | 15 to 50 | 1,000 to 2,000 psf | | E. Soft clay soil | <600 ft/s | <15 | <1,000 psf | Any profile with more than 10 ft of soil having the characteristics: - Plasticity index PI > 20, - Moisture content $w \ge 40\%$, and - \bullet Undrained shear strength $s_{\parallel} < 500 \text{ psf}$ F. Soils requiring site response analysis in accordance with Section 21.1 See Section 20.3.1 For SI: $1ft/s = 0.3048 \text{ m/s} 1 \text{lb/ft}^2 = 0.0479 \text{ kN/m}^2$ TABLE 1613.3.3(1) VALUES OF SITE COEFFICIENT F | Site Class | Mapped Spectral Response Acceleration at Short Period | | | | | |------------|---|-----------------------|-----------------------|-----------------------|-----------------------| | | S _s ≤ 0.25 | S _s = 0.50 | S _s = 0.75 | S _s = 1.00 | S _s ≥ 1.25 | | Α | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | В | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | С | 1.2 | 1.2 | 1.1 | 1.0 | 1.0 | | D | 1.6 | 1.4 | 1.2 | 1.1 | 1.0 | | E | 2.5 | 1.7 | 1.2 | 0.9 | 0.9 | | F | See Section 11.4.7 of ASCE 7 | | | | | Note: Use straight-line interpolation for intermediate values of S_ς For Site Class = B and $S_s = 0.826 g$, $F_a = 1.000$ TABLE 1613.3.3(2) VALUES OF SITE COEFFICIENT F | Site Class | Mapped Spectral Response Acceleration at 1-s Period | | | | | |------------|---|----------------|----------------|----------------|----------------| | | S ₁ ≤ 0.10 | $S_{1} = 0.20$ | $S_{1} = 0.30$ | $S_{1} = 0.40$ | $S_i \ge 0.50$ | | Α | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | В | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | С | 1.7 | 1.6 | 1.5 | 1.4 | 1.3 | | D | 2.4 | 2.0 | 1.8 | 1.6 | 1.5 | | E | 3.5 | 3.2 | 2.8 | 2.4 | 2.4 | | F | See Section 11.4.7 of ASCE 7 | | | | | Note: Use straight-line interpolation for intermediate values of S_1 For Site Class = B and $S_1 = 0.274 \text{ g}, F_v = 1.000$ Equation (16-37): $$S_{MS} = F_a S_S = 1.000 \times 0.826 = 0.826 g$$ Equation (16-38): $$S_{M1} = F_{V_1} = 1.000 \times 0.274 = 0.274 g$$ Section 1613.3.4 — Design spectral response acceleration parameters Equation (16-39): $$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 0.826 = 0.551 g$$ Equation (16-40): $$S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.274 = 0.183 g$$ Section 1613.3.5 — Determination of seismic design category TABLE 1613.3.5(1) SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION | VALUE OF C | RISK CATEGORY | | | | | |----------------------------------|---------------|-----|----|--|--| | VALUE OF S _{DS} | I or II | III | IV | | | | S _{DS} < 0.167g | Α | А | Α | | | | 0.167g ≤ S _{DS} < 0.33g | В | В | С | | | | 0.33g ≤ S _{DS} < 0.50g | С | С | D | | | | 0.50g ≤ S _{DS} | D | D | D | | | For Risk Category = I and $S_{DS} = 0.551$ g, Seismic Design Category = D TABLE 1613.3.5(2) SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION | VALUE OF S_ | | RISK CATEGORY | | |---------------------------------|---------|---------------|----| | VALUE OF 3 | I or II | III | IV | | S _{D1} < 0.067g | Α | А | А | | $0.067g \le S_{_{D1}} < 0.133g$ | В | В | С | | $0.133g \le S_{D1} < 0.20g$ | С | С | D | | 0.20g ≤ S _{D1} | D | D | D | For Risk Category = I and $S_{D1} = 0.183$ g, Seismic Design Category = C Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above. Seismic Design Category \equiv "the more severe design category in accordance with Table 1613.3.5(1) or 1613.3.5(2)" = D Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category. ## References - 1. Figure 1613.3.1(1): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(1).pdf - 2. Figure 1613.3.1(2): http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(2).pdf February 11, 2016 Summit Powder Mountain c/o Ms. Andrea Milner 3632 North Wolf Creek Drive Eden, Utah 84310 IGES Project No. 01628-006 Subject: Addendum to Geotechnical Report - Geology & Slope Stability Lot 34R of Powder Mountain Resort 7958 East Heartwood Drive Weber County, Utah Ms. Milner: As requested, IGES has prepared the following addendum to the referenced geotechnical report to further address geologic issues, such as the presence (or absence) of geologic hazards and slope stability. This addendum is intended to address issues that have recently come to light during the review process for adjacent properties; specifically, geologic review comments by the Weber County geologist. The purpose of this addendum is to adequately address geology consistent with recent questions brought up by the Weber County geologist, and to comply with the Weber County Hillside Development Review Procedures. ## **Description of Geologic Units** A geologic investigation that included geologic mapping of Lot 13 and the surrounding area was conducted by IGES between August 26 and 27, 2015 (IGES, 2015a). This investigation covered the Lot 34R property area within its area of investigation, and included field mapping, aerial photograph review, and the review of other available geologic data (Western Geologic, 2012; Sorenson and Crittenden, Jr., 1979) pertaining to the area of interest. A brief description of the geologic units found adjacent to and across the Lot 34R property is presented in the following paragraphs. A prominent bedrock outcrop of the Dolomite Member of the Cambrian St. Charles Limestone near the southwestern corner of Lot 27 (located just south of Lot 34R) provided an understanding of the bedrock stratigraphy. At lot 27, approximately 45 feet of bedrock is continuously exposed, and displays four distinct lithologic units: 1. Unit 1: The uppermost unit is a dark gray, sparry¹ dolomite found to contain abundant round, curved, whitish-yellow shell fragments in massive blocks. The exposed thickness of this unit at this location is approximately 3 feet. ¹ A term loosely applied to ay transparent or translucent light-colored crystalline mineral, usually readily cleavable and somewhat lustrous (AGI, 1984). Presider Materian Reside Electer County, California 34k - 2. Unit 2: Immediately underlying Unit 1 is a dark gray to light gray sparry dolomite containing faint laminations in thickly bedded blocks. Within the unit are distinct dark gray beds that contain abundant rounded *Girvanella*² nodules up to 1 centimeter in diameter. Bedding becomes more prominent with depth in this unit, which is approximately 10 to 12 feet thick. - 3. Unit 3: Immediately underlying Unit 2 is a dark gray, sparry dolomite that is transitional between the overlying two units, in that it contains some laminations and curved shelly material. The unit is thickly to moderately bedded, and is distinct from the overlying units in that it contains abundant thin yellow stringers of calcium carbonate. The unit is seen to be approximately 20 to 25 feet thick. - 4. Unit 4: The basal unit in the exposed outcrop is a light gray to pinkish gray, finely sparry dolomite with a highly variegated, mottled coloration in irregular, elongated lobes. Distinct to this unit is the presence of small vugs up to 2 inches in diameter, commonly filled with recrystallized dolomite. The exposed thickness of this unit at this location is approximately 5 feet. Bedding at this outcrop (Lot 27) was found to strike at N24°W and dip at 25°NE, which was largely characteristic of the bedding found on Lot 34R and the Ridge Nest property to the west, which, as a whole, consist largely of bedrock outcrops. Across Lot 34R and adjacent properties to the west and south, the bedrock was found to have blocky jointing, with the two major joint sets being orthogonal to one another. The joint set parallel to the bedding has the same strike and dip orientation as the bedding, while the other major joint set perpendicular to the first has a strike of approximately N24°W and a dip of approximately 65°SW. Bedrock was found to be largely moderately fractured (distance between fractures ~ 0.5 -1.0 feet) to little fractured (distance between fractures ~ 1.0 -4.0 feet), with localized areas of intense fracturing (distance between fractures ~ 0.05 -0.1 feet). Joint spacing was largely found to be a product of the lithology. The finer-grained dolomite lithologies were more thinly bedded, and therefore had a smaller distance (approximately 1 to 4 inches) between bedding plane joints. These
lithologies also tended to fracture into rectangular blocks generally between 4 and 18 inches in length and width, and contained both bedding-confined and through-going fractures. Coarser-grained dolomite lithologies were more thickly bedded to massive, with bedding plane joints separated by between 6 inches to as much as several feet. These lithologies tended to fracture into rectangular blocks with highly variable dimensions, ranging in width and length from between a couple inches to several feet, though larger blocks (with dimensions of several feet x several feet x several feet) were most common. Most fracturing associated with the coarser-grained dolomite lithologies consisted of large through-going fractures. Nearly all of the joints encountered in the field investigation were open, had slightly rough to rough surfaces, and did not contain a secondary mineralization, except rare calcite infilling in places. No slickensides were observed on any joint surface. Joint apertures varied from between 2 ² Girvanella is a *microbial biscuit* (hemispherical or disk-shaped calcareous mass) characterized by a complex of microscopic filaments (AGI, 2005). Parecke Monakan Reserve Websii Cenary Taih Tan 248 a few millimeters to a couple inches in width. Joints with smaller apertures tended to be devoid of any sort of fill, while the larger aperture joints were often filled with soil. The dolomite bedrock described above covers all of the Lot 34R property, with the exception of the southeastern corner of the property. This area, where TP-1 was excavated, contains a veneer of undifferentiated Quaternary colluvial and slopewash deposits up to as much as 12 feet thick. This unit is comprised of a combination of angular dolomite and rounded quartzite clasts, with the dolomite clasts commonly found to be moderately weathered and oxidized. The preceding bedrock characteristics were discussed between the engineering geologist and the geotechnical engineer and were taken into consideration in development of the subsurface model, geologic cross section, and subsequent slope stability analysis. ## **Faulting** Based upon a review of the available geologic data for the Lot 34R property and surrounding area, no evidence of faulting was observed. According to the USGS Quaternary Fault and Fold Database of the United States (USGS and UGS, 2006), the closest fault to the area of investigation is approximately 2.5 miles to the southwest. IGES reviewed three stereo pairs of aerial photographs that cover the Ridge Nests property and adjacent areas. The aerial photographs reviewed for this exercise are listed in Table 1. The aerial photographs were examined stereoscopically for the presence of photo-lineaments which might be indicative of faulting, as well as other additional geomorphic features. No photo-lineaments were observed either crossing or projecting toward the subject property. Additionally, no fault-related geomorphic features indicative of past surface faulting at or near the property, including fault scarps, vegetation lineaments, gullies, vegetation/soil contrasts, aligned springs or seeps, sag ponds, aligned or disrupted drainages, faceted spurs, grabens, or displaced landforms were observed in either the aerial photographs reviewed or the site reconnaissance. Table 1 Stereoscopic Aerial Photographs Reviewed | SOURCE* | DATE | FLIGHT | PHOTOGRAPHS | SCALE | |----------|--------------------|--------|-------------|----------| | 1947 AAJ | August 10, 1946 | AAJ_1B | 88-90 | 1:20,000 | | 1953 AAI | September 14, 1952 | AAI_4K | 34-36 | 1:20,000 | | 1963 ELK | June 25, 1963 | ELK 3 | 57-59 | 1:15,840 | ^{*}https://geodata.geology.utah.gov/imagery/ ## **Slope Stability Analysis** The global stability of the slope was modeled using gSTABL7 slope stability software. Bishop's Method and Janbu's Simplified method was used to model the slope, as appropriate. For our analysis, we have assessed Section A-A', illustrated on Figure 1 (Geologic Map) and the Geologic Cross-Section, Figure 2, attached. Calculations for stability were developed by searching for the minimum factor-of-safety for both a circular-type failure and a block-type (translational) failure. For the circular analysis model, arcuate failure surfaces and homogenous Pewder Monatain Resour Webse County Utah. For 32R earth materials were assumed. For the block analysis, anisotropic strength parameters in the bedrock was assumed, based on the apparent dip of bedding and jointing as measured at bedrock outcrops just west and north of Lot 34R (apparent dip of approximately 4 degrees, the slope stability software has been allowed to search between 0 and 15 degrees). A minimum static factor-of-safety of 1.5 and seismic factor-of-safety of 1.0 (global stability) was considered acceptable for this project considering the available information and design assumptions. The earth materials present on Lot 34R generally consist of relatively competent, moderately weathered dolomite and coarse colluvium. The software package RocLab (V. 1.033), which is based on the Hoek-Brown failure Criterion (1997) was utilized to estimate equivalent strength parameters for dolomite (friction angle and cohesion) to be used in conventional limit-equilibrium slope stability software. Input parameters utilized to estimate reasonable strength parameters were as follows: - Uniaxial Compressive Strength: 1,500 ksf - GSI: 45 (geologic strength index) - Mi Value: 9 (intact rock parameter) - D: 0.7 (disturbance factor) - MR: 425 (Modulus Ratio, used to estimate the intact rock deformation modulus, Ei) Based on these input parameters, RocLab indicates an equivalent cohesion of 44.844 ksf and a friction angle of 20.1 degrees for the dolomite. For our analysis, IGES has conservatively reduced the estimated equivalent cohesion by approximately 20% to 35 ksf. For our anisotropic analysis, strength along bedding and/or jointing has been estimated to have a friction angle of 42 degrees and a cohesion of zero (IGES, 2015b). The output file for RocLab is attached. The surficial unit described on the geologic map as Qc-sw is undifferentiated colluvium and slope wash. This material is generally very coarse and bouldery; constituents generally have a moderate degree of angularity. Accordingly, we have assigned a friction angle of 42 degrees and a cohesion of zero for the colluvium north of Lot 34R. For the seismic (pseudo-static) assessment of the slopes, the seismic coefficient k_h is modeled as equal to 50% of the peak ground acceleration (PGA) resulting from a MCE seismic event (2PE50). From our referenced geotechnical report, the PGA resulting from a 2PE50 seismic event is taken as 0.33g. Therefore, for seismic analysis we have adopted a seismic coefficient of 0.165g. The exact configuration of the new home's foundations is currently unknown; however, based on experience with similar projects, IGES has estimated an approximate and reasonable foundation configuration to assess the impact of a new home to the slope. Various surcharge loads have been included in the analysis to model a) possible fill sections, and b) foundation loading of 1500 psf. Based on our analysis, the global stability of the north-facing natural slope meets the minimum factors-of-safety of 1.5 and 1.0 for static and seismic conditions, respectively. The results of the global stability analyses are attached. Powder Mountain Resort Weber County, Utali Lat 34R ### **Conclusions** Based on the geologic evidence presented on the attached *Geologic Map* (Figure 1), the associated *Geologic Cross-Section* (Figure 2), and the slope stability assessment presented herein, the following conclusions are made: - 1. The stability of the slope is not adversely impacted by the geologic, stratigraphic, or hydrologic conditions observed. - 2. There are no evident potential on-site or off-site geologic hazards that can adversely affect the subject property, and the site is considered suitable for development from a geologic hazards standpoint. - 3. The site is considered suitable for development from a geotechnical perspective, provided the recommendations presented in the referenced 2014 geotechnical report are incorporated into the design and construction of the project. Also, once construction plans are established, IGES should review the plans and assess compatibility with our recommendations and conclusions. The impact of the proposed foundation and grading to slope stability should also be assessed. Powder Mountain Resort, Weber County, Utah Lot 34R ## Closure We appreciate the opportunity to provide you with our services. If you have any questions please contact the undersigned at your convenience (801) 748-4044. Respectfully Submitted, IGES, Inc. Reviewed by: No. 5248599 C. CHARLES PAYTON 07.11-16 LECTRONC C. Charles Payton, P.G. Engineering Geologist Peter E. Doumit, P.G., C.P.G. Senior Geologist DAVID A. GLASS 02-11-16 No. 6370734 David A. Glass, P.E. Senior Geotechnical Engineer Attachments: References Figure 1 – Geologic Map Figure 2 – Geologic Cross-Section A-A' Slope Stability Analysis Pew der Managum Resort, Weiger County, Utah. Lan 38R ## References - American Geological Institute (AGI), 1984, Dictionary of Geological Terms (Third Edition), Robert L. Bates and Julia A. Jackson, Editors. - AGI, 2005, Glossary of Geology, 5th Edition, Neuendorf, K.K, Mehr, Fr., J.P., and Jackson, J.A., editors. - Hoek, E., and Brown, E.T., 1997, Practical Estimates of Rock Mass Strength, in *International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts*, 34(8), 1165-1186. - IGES, Inc., 2014, Geotechnical Investigation Report (Revised), Lot 34 of Powder Mountain Resort, 7958 East Heartwood Drive, Weber County, Utah, Project No. 01628-006, dated August 11, 2014. - IGES, Inc., 2015a, Response to Review Comments-Geology, Geotechnical Investigation, The Ridge Nests Development, Powder Mountain Resort, Weber and Cache Counties, Utah, Project No.
01628-008, dated September 1, 2015. - IGES, Inc., 2015b, Response to Review Comments-Geotechnical Engineering, Geotechnical Investigation, The Ridge Nests Development, Powder Mountain Resort, Weber and Cache Counties, Utah, Project No. 01628-008, dated December 4, 2015. - Sorensen, M.L., and Crittenden, M.D., Jr., 1979, Geologic map of the Huntsville quadrangle, Weber and Cache Counties, Utah: U.S. Geological Survey Geologic Quadrangle Series Map GQ-1503, scale 1:24,000. - U.S. Geological Survey and Utah Geological Survey, 2006, Quaternary fault and fold database for the United States, accessed August 31, 2015, from USGS web site: http://earthquake.usgs.gov/hazards/qfaults/. - Western Geologic, 2012, Report: Geologic Hazards Reconnaissance, Proposed Area 1 Mixed-Use Development, Powder Mountain Resort, Weber County, Utah, dated August 28, 2012. ### GSTABL7 *** 125.00 142.00 161.00 | | * | |----------|---------| | GOTODE | COTABLE | | Ž | ; | | ATTER | Carro | | : | - | | Orchora. | Crocory | | | U | | | • | | | × | | | | December 2001 ** ** Original Version 1.0, January 1996; Current Version 2.002, (All Rights Reserved-Unauthorized Use Prohibited) (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Modified Bishop, Simplified Janbu, or GLE Method of Slices. SLOPE STABILITY ANALYSIS SYSTEM Surfaces, Pseudo-Static Earthquake, and Applied Force Options. Output Filename: Input Data Filename: Run By: Analysis Run Date: Time of Run: Unit System: C:al. C:al.OUT 2/11/2016 11:32AM English Plotted Output Filename: C:a1.PLT PROBLEM DESCRIPTION: Summit/Lot 34R; A-A'; 01628-005; Static BOUNDARY COORDINATES 23 26 Top Total Boundaries Boundaries Boundary No. 0.00 24.00 53.00 65.00 72.00 92.00 117.00 120.00 730.00 736.00 738.00 740.00 696.00 700.00 710.00 716.00 717.00 (ft) X-Right (ft) 24.00 53.00 65.00 72.00 92.00 102.00 117.00 120.00 Y-Right (ft) 700.00 710.00 716.00 717.00 730.00 736.00 738.00 740.00 Soil Type Below Bnd L L 2 2 2 2 2 2 2 2 BOUNDARY LOAD(S) Load(s) Specified Load No. 165.00 181.00 210.00 213.00 240.00 X-Left (ft) X-Right (ft) 180.00 200.00 212.00 225.00 244.00 Intensity (psf) 720.0 960.0 1500.0 840.0 1500.0 Deflection 0.0 54321 NOTE -Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface. ISOTROPIC SOIL PARAMETERS Type(s) of Soil Type Unit Wt. (pcf) Total Saturated Unit Wt. Intercept Angle (deg) Pressure Constant Pressure (psf) Surface No. Pore Param. (psf) Cohesion Friction 145.0 135.0 150.0 140.0 (pcf) 35000.0 20.0 42.0 0.00 0.0 748.00 779.00 770.00 777.00 777.00 777.00 808.00 808.00 814.00 814.00 814.00 814.00 814.00 600.00(ft) 142.00 161.00 180.00 220.00 251.00 258.00 268.00 281.00 309.00 318.00 349.00 349.00 369.00 369.00 369.00 369.00 310.00 792.00 808.00 808.00 814.00 8114.00 8114.00 8114.00 8114.00 8114.00 705.00 723.00 User Specified Y-Origin 180.00 251.00 258.00 258.00 268.00 281.00 319.00 318.00 343.00 363.00 60.00 114 of 128 654321 10.00 31.16 53.72 77.38 101.82 126.70 697.67 684.34 673.57 665.50 660.24 657.85 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 2500 Trial Surfaces Have Been Generated. 151.70 176.46 658.38 661.81 50 Surface(s) Initiate(s) From Each Of 50 Points Equally Spaced Along The Ground Surface Between X = 10.00(ft) and X = 125.00(ft) Each Surface Terminates Between and × × 160.00(ft) 360.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is $Y = 0.00 \, (\text{ft})$ 25.00(ft) Line Segments Define Each Trial Failure Surface Restrictions Have Been Imposed Upon The Angle Of Initiation The Angle Has Been Restricted Between The Angles Of -40.0 And -20.0 deg. Following Is Displayed The Most Critical Of The Trial Failure Surfaces Evaluated. Safety Factors Are Calculated By The Modified Bishop Method Total Number of Trial Surfaces Evaluated Statistical Data On All Valid FS Values: FS Max = 58.513 FS Min = 14.573 FS Ave = Standard Deviation = 4.572 Coefficient of Ve 2 Failure Surface Specified By 18 Coordinate Points Point No. Y-Surf | ש | 3 | 12.3 | 8133.7 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | |---------------------|----|------|----------|-----|-----|----|----|-----|-----|---------| | | 2 | 1.7 | 2417.1 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | ω | 7.2 | 14526.4 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 4 | 21.8 | 84015.9 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | თ | 0.7 | 3726.1 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | 3ishop Method * * | 6 | 6.3 | 35411.4 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 7 | 5.0 | 31606.3 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 80 | 7.0 | 48209.4 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 9 | 5.4 | 40488.5 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 10 | 14.6 | 129033.2 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 1 | 1.0 | 9792.5 | 0.0 | 0.0 | 0. | ٥. | 0.0 | 0.0 | 0.0 | | | 12 | 8.8 | 91454.4 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | 20.333 | 13 | 0.2 | 2006.5 | 0.0 | 0.0 | 0. | ٥. | 0.0 | 0.0 | 0.0 | | /ariation = 22.49 % | 14 | 15.0 | 168010.6 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 15 | 3.0 | 34958.1 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 16 | 5.0 | 62166.5 | 0.0 | 0.0 | 0. | ٥. | 0.0 | 0.0 | 0.0 | | | 17 | 1.7 | 22374.9 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 18 | 15.3 | 214257.1 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 19 | 9.7 | 146611.8 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 20 | 9.3 | 146411.4 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 21 | 4.0 | 64261.1 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 22 | 11.5 | 187060.3 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 8251.2 | | | 23 | 3.5 | 58559.0 | 0.0 | 0.0 | 0. | ٥. | 0.0 | 0.0 | 2548.8 | | | 24 | 1.0 | 16578.0 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 25 | 19.0 | 318154.6 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 18240.0 | | | 26 | 0.7 | 11096.6 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 27 | 9.3 | 157957.4 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | | 28 | 2.0 | 33787.5 | 0.0 | 0 |) | , | ; | , | | | Width Weight (ft) (lbs) | Individual data on | *** 14.573 *** | |---|--------------------|----------------| | Water
Force
Top
(lbs) | ıl data | 1.573 | | Water
Force
Bot
(1bs) | on the | * '`
* '< | | Tie
Force
Norm
(1bs) | 48 slices | | | Tie
Force
Tan
(lbs) | ices | | | Earthquake Force Surcharge Hor Ver Load (1bs) (1bs) (1bs) | | | | uake
ce Su
Ver
(1bs) | | | | rcharge
Load
(lbs) | | | | Width | | | | Circle | 1. | ۳. | | .: | 1, | 13 | 1; | 1: | 1(| | |-------------------|------------|------------------------|---------------------------------|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Weight | | Individu | Factor | | w | 7 | | | | | | | | • | | Force
Top | Water | Individual data on the | Factor of Safety *** 14.573 *** | Center At X = | 339.76 | 337.95 | 328.60 | 316.60 | 302.14 | 285.40 | 266.62 | 246.04 | 223.96 | 200.66 | | Force
Bot | Water | on the | ty
** | 134.64 ; Y | 810.26 | 803.64 | 780.46 | 758.5 | 738.13 | 719.56 | 703.0 | 688. | 677.1 | 668.09 | | Force
Norm | Tie | 48 sli | | ; Y = | 26 | 64 | 16 | 53 | L3 | 6 | 6 | 36 | 15 | 9 | | Force
Tan | Tie | slices | | 871.83; | | | | | | | | | | | | Force
Hor | Earthquake | | | 871.83 ; and Radius | | | | | | | | | | | | ١ ٣ | luake | | | ius = | | | | | | | | | | | | Surcharge
Load | | | | 214.17 | _ | _ | _ | | | • | _ | | 2 | <u>.</u> | 3 | > | > | > | > | > | > | > | |----|----------|----------|-----|-----|----|----|-----|-----|--------| | 30 | 7.0 | 118178.9 | 0.0 | 0.0 | 0: | | 0.0 | 0.0 | 5880.0 | | 31 | 4.0 | | 0.0 | 0.0 | 0. | 0 | 0.0 | 0.0 | 3323.6 | | 32 | 1.0 | 17638.6 | 0.0 | 0.0 | 0. | ٥. | 0.0 | 0.0 | 876.4 | | မ | 15.0 | | 0.0 | 0.0 | ٥. | ٥. | 0.0 | 0.0 | 0.0 | | 34 | 4.0 | | 0.0 | 0.0 | ٥. | ٥. | 0.0 | 0.0 | 6000.0 | | 35 | 2.0 | | 0.0 | 0.0 | ٥. | 0. | 0.0 | 0.0 | 0.0 | | 36 | 5.0 | | 0.0 | 0.0 | ٥. | ٥. | 0.0 | 0.0 | ٥. | | 37 | 7.0 | | 0.0 | 0.0 | 0. | ٥. | 0.0 | 0.0 | 0. | | 38 | 8.6 | | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0. | | 39 | 1.4 | | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | 40 | 13.0 | | 0.0 | 0.0 | 0. | ٥. | 0.0 | 0.0 | 0.0 | | 41 | 4.4 | | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | 42 | 16.7 | | 0.0 | 0.0 | 0. | ٥. | 0.0 | 0.0 | 0.0 | | 43 | 6.9 | | 0.0 | 0.0 | 0. | ٥. | 0.0 | 0.0 | 0.0 | | 44 | 7.6 | | 0.0 | 0.0 | ٥. | ٥. | 0.0 | 0.0 | 0.0 | | 45 | 1.4 | | 0.0 | 0.0 | 0. | ٥. | 0.0 | 0.0 | 0.0 | | 46 | 10.6 | | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | 47 | 9.4 | | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 | | , | 1.8 | | 0.0 | 0.0 | ٥. | 0. | 0.0 | 0.0 | 0.0 | #### **Exhibit B** GSTABL7 *** | | * | |--------|--------------------------------------| | | GSTABL7 | | | bу | | | Garry | | 1 | Ξ. | | | GSTABL7 by Garry H. Gregory, P.E. ** | | | P.E. | |)
) | * | | | | December 2001 ** ** Original Version 1.0, January 1996; Current Version 2.002, (All Rights Reserved-Unauthorized Use Prohibited) Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) SLOPE STABILITY ANALYSIS SYSTEM Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Honlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static Earthquake, and Applied Force Options. 2/11/2016 11:32AM Input Data Filename: Output Filename: Unit System: Analysis Run Date: Time of Run: Plotted Output Filename: C:alp.OUT English C:alp. C:alp.PLT DAG PROBLEM DESCRIPTION: Summit/Lot 34R; A-A'; 01628-005; P-Stati BOUNDARY COORDINATES 23 Top Boundaries 26 Total Boundaries Boundary No.
987654321 0.00 24.00 53.00 65.00 72.00 92.00 102.00 117.00 X-Left 717.00 730.00 736.00 738.00 740.00 696.00 700.00 716.00 710.00 X-Right (ft) 24.00 53.00 65.00 72.00 92.00 1102.00 117.00 120.00 Y-Right (ft) 700.00 710.00 7116.00 7117.00 7117.00 730.00 736.00 738.00 740.00 748.00 Soil Type Below Bnd 112222222 BOUNDARY LOAD(S) Load(s) Specified 165.00 181.00 210.00 213.00 240.00 X-Left (ft) X-Right (ft) 180.00 200.00 212.00 225.00 244.00 Intensity 720.0 960.0 1500.0 840.0 1500.0 (psf) Deflection 0.000 Load No. 54884 NOTE -Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface. User Specified Y-Origin 125.00 112.00 118.00 180.00 220.00 251.00 258.00 258.00 258.00 319.00 319.00 319.00 349.00 349.00 369.00 748.00 776.000 777.00 777.00 806.00 808.00 808.00 814.00 814.00 814.00 814.00 814.00 814.00 600.00(ft) 142.00 180.00 220.00 251.00 258.00 258.00 268.00 318.00 318.00 349.00 349.00 369.00 369.00 319.00 319.00 760.00 777.00 777.00 806.00 808.00 814.00 812.00 814.00 812.00 814.00 814.00 813.00 814.00 ISOTROPIC SOIL PARAMETERS Type(s) of Soil Type Unit Wt. Unit Wt. Intercept (deg) Angle Pressure Constant Surface Pressure No. Cohesion Friction Total Saturated ö. 145.0 135.0 (pcf) 150.0 140.0 (pcf) 35000.0 20.0 0.00 0.0 00 118 of 128 A1P #### Exhibit R No. | <u>Exh</u> | <u>ibit</u> | <u>B</u> |--------------------|--------------------------------------|--------------|-------------|--|----------|----------|---------|---------------------|-----------------------------|---------|-----------------------|---------|-----------|--------|----------|--------------|-----------|------------|-------------|---------|---------|------------|----------|--------|---------|---------|---------|---------|----------|---------|---------|----------|------------|---------|---------|-------------|---------------|--------|---------------------|---------------|-------------|----------|--|--| | Slice
No. | Width
(ft) | | | | Factor Of | I | | | | * | | Janbu's | | 18 | 17 | 16 | 7 L | 1 1 3 | 72. | 11 | 10 | 9 | œ ~ | 7 6 | ٠ J | .4 | ω | 2 | H | N C . | Point | | | Trial | | | Janbu's | | | Cavita | OIO.OOO mas | A Vert | | A Horizontal
Of0.170 Has | | | Weight (lbs) | | ***Table | | | | | | | Factor Of Safety | | s Empirical | | ω | ω | ω (| <i>.</i> . (| . r | . ~ | 2 | 2 | 2 | ⊷ . | | ىم د | | | | | | | | | Failure | | | s Empirical | | | Cavitation Pressure | | H | | zontal E
0 Has Be | | | Top
(1bs) | Water | 1 - Ind | | ty For | ı | | | | Safety | | cal Coe | | 339.76 | 337.95 | 328.60 | 316 60 | 202.40 | 266.62 | 246.04 | 223.96 | 00.66 | 76.46 | 151 70 | 101.82 | 77.38 | 53.72 | 31.16 | 10.00 | (11) | X-Surf | | | Surface | | | cal Coef. | | | ssure = | been Assigned | thquake | | . Earthquake L
Been Assigned | | | Bot
(1bs) | Water | Individual I | | The Prece | į | | | | Is Calculated | | Coefficient | | 810.26 | 803.64 | 780.46 | 758 52 | 738 13 | 703.06 | 688.86 | 677.15 | 668.09 | 661.81 | 82.838 | 660.24 | 665.50 | 673.5 | 684.34 | 697.6 | (1-1) | Y-Surf | | | Specified | | | r. | | | 0.0(psf) | gneu | Loading | | ke Loadir
gned | | | Norm (1bs) | Tie | Data on t | | Safety For The Preceding Specified Surface | : | | | | Ву | | (fo) = | | 26 | 4 | 16 | ű : | - o | 50 | . 66 | 15 | 9 | <u>~</u> ? | ž č | 124 | 0 | 57 | 34 | 57 | | Ħ | | L | Bv 18 | | | being used | | | osf) | | Coefficient | | A Horizontal Earthquake Loading Coefficient
Of0.170 Has Been Assigned | | | Tan
(1bs) | Tie | the 48 S | | cified Su | | | | | The Simplified Janbu Method | | 1.082 | Coordinate | | | for the c | | | | | ent | | cient | | | Hor (| Earthquake | Slices*** | | irface = | | | | | lified J | Point | | | case of | | | | | | | | | | Ver
Lbs | | * | | 10.498 | | | | | anbu Me | w | | | c & phi | | | | | | | | | | Load (1bs) | | | | | | | | | thod * * | both > | | | | | | | | | | N 11 | Since
No.
* | 2 | | 4.6 | 46 | 45 | 44 | 43 | 41 | 40 | ى
% د | 37 | 36 | 35 | 34 | ر
ا
ا | <i></i> ∪ | 31 | 29 | 28 | 27 | 26 | 25.4 | 23 | 22 | 21 | 20 | 19 | - A | 16 | 15 | 14 | 13 | 12 | 10 | 0 9 | œ | 7 | σ (| л 4 | - ω | 2 | | | | -32
-32 | e Alpha
(deg) | | | <u> </u> | ,
10. | <u>-</u> | 7. | 16. | . 4. | 13. | 1.4 | . 7 | 5. | 2. | <u>.</u> | <u>.</u> |
 | ٠. | ı <u></u> - | 2. | 9. | 0. | <u>.</u> | ٠ | 11. | 4. | 9. | 9. | <u>,</u> | - · | ω. | 15. | 0 : | ∞ ⊦ | 14. | 5. | 7. | 5. | o | ٠ ١ | 77. | <u>.</u> | 12. | | | .20 | | ŗ. | * | 8 255 | | | | 7 206696
9 70654 | | ш | 6 134881.
4 20877. | | 0 82211.(| | | 0 252226 | | | | | | , | . 1 | | | | | | | | | | | | | | | | | _ | | | m | | | 16.15
23.15 | x-Coord.
Slice Cntr
(ft) | | **Table 2 - | 887.6 | 62712.3 | 26.3 | 05.3 | | . 5 | ο. | 77.3 | 87.2 | 11.0 | 11.1 | 26.5 | 26.0 | 7.70 | | | 33789.2 | 01.7 | | 218158 5 | 56.7 | ٠ | 59.0 | | 63.4 | 214280 1 | 62166.3 | 34957.6 | 168004.5 | 962.9 | 91493-0 | 04.5 | 14.8 | 48210.3 | 07.3 | 35391.8 | ٠, | 14540.2 | • | ω | | | | | 1 | ase | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |) · | | 0.0 | 0.0 | 0.0 | | 0.0 | o . | | | | 0.0 | 0.0 |) · | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | 14.54
2.01 | Leng. (ft) | | Stress Data | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | 0.0 | 0.0 | | | 42 | Available
Shear Strength
(psf) | , | | 0.0 | 0.0 | 0.0 | 0.0 | 00. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | | | | 743.84
2912.03 | Available
ar Strengtl
(psf) | | 48 | 0.0 | 0 | .0 | 0 0 | | 0 | 0 | 0.0 | 0 | 0 | 0 | | > < | · • | 0 | 0 | | 0 | | > < | 0.0 | 0 | 0 | 0 | |) c | | 0 | 0 | 0 | 0.0 | 0 | 0.0 | 0.0 | | 0.0 | | 0.0 | 0.0 | | | | | נ | | Slices*** | 4316.4
150.9 | | 1806.5 | 11237.9 | 35138.5
12011 2 | 10452.6 | 32370.8 | 22929.9
3549.1 | 19377.8 | 13975.9 | 5781.9 | 11360.5 | 12878 4 | 2999 1 | 20091.4 | 2871.6 | 5744.2 | 26843.3 | 1897. | 2010.2 | 9954.6 | 31799.3 | 10924.0 | 24879.6 | 24932.8 | 36427 6 | 10568.3 | 5942.8 | 28560.8 | 333.7 | 15553.8 | 21930.8 | 6887.5 | 195. | 5373.2 | 6016.6 | | 471. | 411.1 | 1382.7 | | | -25
-55 | Mobilized
Shear Stres
(psf) | ; | | 0.0 | 0.0 | 0.0 | 0.0 | 00. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | -257.28
-553.53 | ized
tress | | | 0.0 | 0.0 | 0.0 | 0.0 | 00. | • | | 0.0 | • | 0.0 | 0.0 | 6000.0 |)
)
) | 3326.4 | 5880.0 | 0.0 | 3000.0 | 0.0 | 0.0 | 18240 0 | , | 8251.2 | | • | | 0.0 | • | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 。
<u>1</u> | •
1 | 9° |)
(0 | °° | °
1 | 。
28 | | Sum of the Driving Forces = 2074292.50 (lbs) Sum of the Resisting Forces (including Pier/Pile, Tieback, Reinforcing Soil Nail, and Applied Forces if applicable) = ******** (1bs) Average Available Shear Strength (including Tieback, Pier/Pile, Reinforcing, Soil Nail, and Applied Forces if applicable) = 49454.76 (psf) | | | | 0 | | | ć | |--|----------|-----------|-------|--------|--------|----| | | 495.02 | 118363.88 | 789 | 28 85 | 74 71 | 48 | | | 2691.10 | 88590.83 | 24.99 | 333.27 | 68.03 | 47 | | | 5672.85 | 72786.53 | 22.08 | 323.30 | 61.31 | 46 | | | 7277.94 | 73980.15 | 2.92 | 317.30 | 61.31 | 45 | | | 7951.28 | 62921.02 | 13.14 | 312.80 | 54.67 | 44 | | | 9415.23 | 63881.96 | 11.86 | 305.57 | 54.67 | 43 | | | 10576.62 | 56800.55 | 25.00 | 293.77 | 47.97 | 42 | | | 11007.97 | 1782. | 5.86 | 283.20 | 41.30 | 41 | | | 11538.40 | 52099.46 | 17.30 | 274.50 | 41.30 | 40 | | | 11917.28 | 52325.61 | 1.84 | 267.31 | 41.30 | 39 | | | 11076.00 | 48287.30 | 10.47 | 262.31 | 34.61 | 38 | | | 11526.46 | 48562.13 | 8.50 | 254.50 | 34.61 | 37 | | | 11732.37 | 48687.77 | 6.03 | 248.52 | 34.61 | 36 | | | 10315.35 | 45647.00 | 2.31 | 245.02 | 27.94 | 35 | | | 11039.48 | 46267.78 | 4.53 | 242.00 | 27.94 | 34 | | | 10403.78 | 45704.82 | 16.98 | 232.50 | 27.94 | 33 | | | 10854.00 | 46081.69 | 1.18 | 224.48 | 27.94 | 32 | | | 9103.93 | 43886.84 | 4.25 | 221.98 | 21.25 | 31 | | | 9098.20 | 43882.61 | 7.51 | 216.50 | 21.25 | 30 | | | 8797.96 | 43562.03 | 1.07 | 212.50 | 21.25 | 29 | | | 9343.14 | 44141.17 | 2.15 | 211.00 | 21.25 | 28 | | | 8805.46 | 43567.57 | 10.02 | 205.33 | 21.25 | 27 | | | 7030.00 | 42138.72 | 0.68 | 200.33 | 14.55 | 26 | | | 7202.70 | 42435.13 | 19.63 | 190.50 | 14.55 | 25 | | | 6891.94 | 42014.96 | 1.03 | 180.50 | 14.55 | 24 | | | 7057.69 | 42269.74 | 3.66 | 178.23 | 14.55 | 23 | | | 5087.11 | 41397.59 | 11.57 | 170.73 | 7.89 | 22 | | | 4909.57 | 41040.07 | 4.04 | 163.00 | 7.89 | 21 | | | 4809.29 | 40920.07 | 9.39 | 156.35 | 7.89 | 20 | | | 2890.30 | 40482.55 | 9.70 | 146.85 | 1.21 | 19 | | | 2677.22 | 40077.04 | 15.30 | 134.35 | 1.21 | 18 | | | 967.61 | 40101.78 | 1.71 | 125.85 | -5.49 | 17 | | | 915.08 | 39839.96 | 5.02 | 122.50 | -5.49 | 16 | | | 857.62 | 39553.54 | 3.01 | 118.50 | -5.49 | 15 | | | 824.34 | 39387.63 | 15.07 | 109.50 | -5.49 | 14 | | | 802.59 | 39279.25 | 0.18 | 101.91 | -5.49 | 13 | | | -458.60 | 39961.65 | 9.02 | 97.41 | -12.15 | 12 | | **** END OF GSTABL7 OUTPUT
**** | -432.90 | 39743.63 | 1.02 | 92.50 | -12.15 | 1 | | | -390.09 | 0 | 14.95 | 84.69 | -12.15 | 10 | | | -1219.38 | 40353.05 | 5.68 | 74.69 | -18.83 | ø | | | -1115.19 | 40102.65 | 7.40 | 68.50 | & | œ | | Total length of the failure surface = 406.86(ft) | -1023.59 | | 5.28 | 62.50 | -18.83 | 7 | | | -912.54 | 39615.59 | 6.64 | 6 | œ | თ | | | -1443.93 | 41571.14 | 0.80 | 53.36 | -25.52 | ۍ | | Average Mobilized Shear Stress = 5098.31(psf) | -1067.05 | 41013.98 | 24.20 | 0 | -25.52 | 4 | | | -790.11 | 43179.41 | 8.46 | 27.58 | -32.20 | ω | ### GSTABL7 *** GSTABL7 by Garry H. Gregory, P.E. ** December 2001 ** Original Version 1.0, January 1996; Current Version 2.002, (All Rights Reserved-Unauthorized Use Prohibited) 142.00 161.00 180.00 220.00 251.00 258.00 268.00 268.00 319.00 319.00 349.00 349.00 363.00 93.00 748.00 770.00 770.00 777.00 777.00 806.00 808.00 814.00 811.00 811.00 6811.00 705.00 142.00 180.00 220.00 251.00 258.00 268.00 268.00 318.00 349.00 349.00 349.00 369.00 369.00 117.00 7760.00 777.00 777.00 777.00 792.00 806.00 808.00 814.00 8114.00 8114.00 8114.00 8114.00 8114.00 723.00 Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water SLOPE STABILITY ANALYSIS SYSTEM Surfaces, Pseudo-Static Earthquake, and Applied Force Options. Unit System: Output Filename: Run By: Analysis Run Date: Time of Run: Plotted Output Filename: Input Data Filename: C:a2. C:a2.OUT C:a2.PLT DAG English 2/11/2016 11:35AM PROBLEM DESCRIPTION: Summit/Lot 34R; A-A'; 01628-005; Block A nalysis, anisotropic; Static BOUNDARY COORDINATES 23 Top 26 Tota Total Boundaries Boundaries Boundary No 987654321 0.00 24.00 53.00 65.00 72.00 92.00 102.00 X-Left 696.00 700.00 710.00 716.00 717.00 730.00 738.00 740.00 X-Right 24.00 53.00 65.00 72.00 92.00 117.00 120.00 125.00 Y-Right 700.00 710.00 716.00 717.00 717.00 730.00 738.00 740.00 748.00 (ft) Below Soil Type 112222222 ISOTROPIC SOIL PARAMETERS User Specified Y-Origin = 600.00(ft) Type(s) of Soil Type Unit Wt. No. (pcf) 145.0 135.0 Total Saturated Unit Wt. 150.0 140.0 (pcf) 35000.0 Intercept Cohesion Friction (psf) 20.0 Angle 0.00 Pore Constant Pressure 0.0 (psf) Surface 00 o. ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) 1 Is Anisotropic Number Of Direction Ranges Specified Direction No. Counterclockwise Direction Limit (deg) 0.0 15.0 90.0 35000.00 0.00 35000.00 Intercept (psf) Friction Angle (deg) 20.00 42.00 20.00 ANISOTROPIC SOIL NOTES: (1) An input value of 0.01 for C and/or Phi will cause Aniso C and/or Phi to be ignored in that range.(2) An input value of 0.02 for Phi will set both Phi and 122 of 128 C equal to zero, with no water weight in the tension crack. (3) An input value of 0.03 for Phi will set both Phi and C equal to zero, with water weight in the tension crack. ## BOUNDARY LOAD (S) ш # 5 Load(s) Specified | H H H | | | |---|---|------------------| | Intensity Is Sp
Force Acting Or | 165.00
181.00
210.00
213.00
240.00 | X-Left
(ft) | | pecified As A
n A Horizonta
is being used | 180.00
200.00
212.00
225.00
244.00 | X-Right
(ft) | | Uniformly Di
lly Projected
d for the cas | 720.0
960.0
1500.0
840.0
1500.0 | Intensity (psf) | | stributed Surface. e of c & phi both > 0 | 00000 | Deflection (deg) | | | NOTE - Intensity Is Specified As A Uniformly Distributed
Force Acting On A Horizontally Projected Surface.
Janbus Empirical Coef is being used for the case of c & phi both > (| H, 0" | 2500 Trial Surfaces Have Been Generated. Boxes Specified For Generation Of Central Block Base Box Length Of Line Segments For Active And Passive Portions Of Sliding Block Is $25.0\,$ X-Left (ft) Y-Left (ft) X-Right (ft) Y-Right (ft) Height (ft) Following Is Displayed The Most Critical Of The Trial Failure Surfaces Evaluated. 40.00 165.00 675.00 750.00 160.00 265.00 750.00 790.00 25.00 25.00 Safety Factors Are Calculated By The Simplified Janbu Method * * ## Individual data on the 22 | 17
18 | 16 | 16 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | œ | 7 | σ | Çī | 4 | w | 2 | щ | No. | Slice | | | |----------|-------|---------|---------|---------|---------|---------|---------|--------|--------|---------|---------|--------|---------|---------|---------|---------|--------|------|----------|--------|--------|------------| | 7.0 | 0.3 | 6.7 | 4.0 | 4.6 | 10.4 | 5.0 | 7.0 | 1.0 | 2.0 | 10.0 | 19.0 | 1.0 | 15.0 | 4.0 | 19.0 | 9.3 | 7.7 | 0.5 | (ft) | Width | | | | 17441.8 | 982.9 | 21966.6 | 15792.9 | 20784.4 | 47810.9 | 22042.7 | 29991.1 | 4220.2 | 8392.3 | 40998.3 | 73474.1 | 3706.5 | 53778.7 | 13767.2 | 57962.4 | 22270.3 | 8793.7 | 50.1 | (lbs) | Weight | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | (lbs) | Top | Force | Water | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | (1bs) | Bot | Force | Water | | . 0 | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | (lbs) | Norm | Force | Tie | | . 0 | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | (1bs) | Tan | Force | Tie | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | (lbs) | Hor | Force | Earthquake | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | (lbs) | Ver | | uake | | 0.0 | 0.0 | 0.0 | 6000.0 | 0.0 | 0.0 | 4200.0 | 5880.0 | 0.0 | 3000.0 | 0.0 | 18240.0 | 0.0 | 10800.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | s) (lbs) | Load | charge | | Total Number of Trial Surfaces Evaluated = Statistical Data On All Valid FS Values: FS Max = 480.270 FS Min = 20.109 FS Ave = 45.025 Standard Deviation = 35.793 Coefficient of Variation = Failure Surface Specified By 6 Coordinate Points | σ (| .T. 42 | ω | 2 | ш | No. | Point | |------------|------------------|--------|--------|--------|------|--------| | 273.79 | 250.66
268.15 | 235.36 | 132.69 | 124.48 | (ft) | X-Surf | | 810.67 | 785.89
803.76 | 766.12 | 738.99 | 47 | (ft) | Y-Surf | Factor of Safety *** 20.109 *** ⁷⁹:50 **123** of 128 #### Exhibit B 1 0.1 92.4 0.0 0.0 0. 0. 0.0 0.0 0 2 5.6 1764.8 0.0 0.0 0. 0. 0.0 0.0 0 ### GSTABL7 *** GSTABL7 by Garry H. Gregory, P.E. ** December 2001 ** ** Original Version 1.0, January 1996; Current Version 2.002, (All Rights Reserved-Unauthorized Use Prohibited) 125.00 161.00 180.00 220.00 251.00 258.00 268.00 268.00 319.00 319.00 349.00 349.00 363.00 93.00 748.00 770.00 770.00 777.00 777.00 806.00 808.00 814.00 811.00 811.00 811.00 811.00 142.00 180.00 220.00 221.00 258.00 258.00 268.00 318.00 318.00 318.00 319.00 319.00 319.00 319.00 319.00 7760.00 777.00 777.00 777.00 7792.00 806.00 808.00 814.00 814.00 814.00 814.00 814.00 723.00 Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) SLOPE STABILITY ANALYSIS SYSTEM Surfaces, Pseudo-Static Earthquake, and Applied Force Options. ************************* Analysis Run Date: 2/11/2016 Output Filename: Run By: Unit System: Input Data Filename: Time of Run: Plotted Output Filename: C:a2p.PLT C:a2p.OUT DAG English 11:36AM PROBLEM DESCRIPTION: Summit/Lot 34R; A-A'; 01628-005; Block A nalysis, anisotropic; P-Static BOUNDARY COORDINATES 23 26 Top Boundaries Total Boundaries Boundary No 987654321 24.00 53.00 65.00 72.00 92.00 102.00 117.00 696.00 700.00 710.00 716.00 717.00 730.00 736.00 738.00 740.00 (ft) X-Right 24.00 53.00 65.00 72.00 92.00 117.00 120.00 125.00 Y-Right 700.00 710.00 716.00 717.00 730.00 736.00 738.00 740.00 Soil Type Below Bnd 112222222 > ISOTROPIC SOIL PARAMETERS Type(s) of Soil User Specified Y-Origin = 600.00(ft) Type Unit Wt. No. (pcf) Total Saturated Unit Wt. (pcf) Intercept Cohesion Friction (psf) (deg) Angle Constant Pressure Zo. 145.0 135.0 150.0 140.0 35000.0 20.0 42.0 0.00 0.0 ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = | 3 2 H | Direction
Range
No. | |---------------------|--| | 0.0
15.0
90.0 | Counterclockwise Direction Limit (deg) | | 35000.00 | Cohesion | | 0.00 | Intercept | | 35000.00 | (psf) | | 20.00 | Friction | | 42.00 | Angle | | 20.00 | (deg) | ANISOTROPIC SOIL NOTES: (1) An input value of 0.01 for C and/or Phi will cause Aniso C and/or Phi to be ignored in that range.(2) An input value of 0.02 for Phi will set both Phi and 126 of 128 C equal to zero, with no water weight in the tension crack (3 BOUNDARY LOAD (S) 5 Load(s) Specified | * * Factor Of | Janbu's E | | σ | , U | 1 .1 | > ' | ω | 2 | ₽ | | No. | Point | | Trial Fai | | | Janbu's E | | | Cavitatio | | Of0.000 H | A Vertica | | Of0.170 Has | A Horizon | | | | | NOTE - In | | | 5 | 4 | ω | 2 | ш | | | Load
No. | |---------------------------------|-----------------------|---------|---------|---------|---|---------------|----------|---------|----------|----------|------|--------|----------------|------------------------------------|---------------------|-----------|-------------------------|------------------|----------------|-----------------------|---------|---------------------------|---|---------
---|---|-----------------|--------|---------|---------------|---|--------------------------------------|---------|---------|---------|--------|--------|--------|-------|--------|------------------| | Safety Is Calculated By | Empirical Coefficient | | 213.19 | 268.15 | 000.00 | 250 66 | 235.36 | 132.69 | 124.48 | | (ft) | X-Surf | | lure Surface | | | Janbu's Empirical Coef. | | | Cavitation Pressure = | | Of0.000 Has Been Assigned | l Earthquake | | as Been Assigned | tal Earthqua | | | | rce Acting Or | Intensity Is Sp | | | 240.00 | 213.00 | 210.00 | 181.00 | 165.00 | | | X-Left
(ft) | | | ficient (fo) | | 010.07 | 803.76 | 203.00 | 785.89 | 766.12 | 738.99 | 747.17 | | (ft) | Y-Surf | | Trial Failure Surface Specified By | | | . is being used | | | 0.0(psf) | | Jned - | Vertical Earthquake Loading Coefficient | | ned | A Horizontal Earthquake Loading Coefficient | | | | n A Horizonta | ecified As A | | | 244.00 | 225.00 | 212.00 | 200.00 | 180.00 | | | X-Right
(ft) | | | = 1.062 | | | | | | | | | | | | | | 6 Coordinate Points | | | sed for the case | ed for the cas | | | | ficient | | ř + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + | | Eficient | | , | | Force Acting On A Horizontally Projected Surface. | Specified As A Uniformly Distributed | | | 1500.0 | 840.0 | 1500.0 | 960.0 | 720.0 | | • | | The Simplified Janbu Method * * | | | | | | | | | | | | | | e Points | | | ase of c & phi both > 0 | | | | | | | | | | | | | Surface. | stributed | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | , | Deflection (deg) | | 12 | 10 | യ | 0 ~ | υσ | ٠ (| 'n | 4. | ω | 23 | j | | * | No. | 2 | | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | دسز
دسر | 10 | 9 | œ | 7 | თ | ບາ | 4 | w | 2 | ji | | No. | Slice | | | 14.80 | 14.80 | 14.80 | 14.00 | 14.80 | | 14 80 | 14.80 | 14.80 | -44.89 | -44.89 | | | (deg) | | | 5.6 | 0.1 | 10.0 | 7.0 | 0.3 | 6.7 | 4.0 | 4.6 | 10.4 | 5.0 | 7.0 | 1.0 | 2.0 | 10.0 | 19.0 | 1.0 | 15.0 | 4.0 | 19.0 | 9.3 | 7.7 | 0.5 | | | Width | | | 216 | 211 | 205 | 100 | 100 | 1 0 | 163 | 151 | 137 | 128.85 | 124. | | (ft) | Slice Cnt | 3 | ***Table 2 | | 94.6 | 13777.7 | 17444.4 | 979.1 | 21975.0 | 15796.6 | 20767.1 | 47839.4 | 22045.2 | 29994.4 | 4220.7 | 8393.2 | 41002.3 | 73480.0 | 3706.8 | 53781.7 | 13767.8 | 57963.8 | 22266.1 | 8802.3 | 50.9 | | (1bs) | Weight | | | 50 | 58 | .00 | | | | 00 | .50 | . 35 | . 85 | .74 | | | Cntr | Ł. | 2 - Base | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ٠ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | (1bs) | | Water | | 7.24 | 2.07 | 10.34 | 10.65 | 10.01 | 1 4 | 4 1 4 | 19.65 | 9.63 | 10.85 | 0.73 | | (ft) | Leng. | | Stress | 0.0 | | (1bs) | Bot | Water
Force | | | | | | | | | | | | | | | Shear | • | Data on the | 0.0 | | 0.0 | | (1bs) | Norm | Tie
Force | | 4696.34 | 5220.21 | 3757.35 | 3396.79 | 3945.40 |) () () () () () () () () () (| 315/ 11 | 2795.6 | 2191.63 | 51262.16 | 50710.71 | | (psf) | Shear Strength | | the 22 | 0.0 | | (lbs) | Tan | Tie
Force | | | 3 11 | 35 | ی ز | | 40 | · i- | - | 1 | Ξ | | 71 | : | | ltp. | ' | Slices*** | |) 16.1 | | | | | | | | | , n | | | | - | | | | 9853. | 378 | 1496.4 | 8. | | (lbs) | Hor | | | 2145.09 | | | | | | | _ | i | | | J) | Shear Stress | | * | 0.0 | | 2 0.0 | | | 7 0.0 | | | | | | | 0.0 | | | | | | | 0. | | 7 0.0 | | (lbs) | ۷e1 | | | 2013.55 | | 1721.42 | 9000 | T 689 | 7 7 | - | 1280.80 | 1004.09 | -669.93 | -57. | | (psf) | ear Stres | | | J | J | J | J | J | | 0 6000 | J | | | 0 5880.0 | | 3000.0 | | 0 18240.0 | | 0 10800.0 | J | J | J | J | J | | (lbs) | Load | Surcharge | Factor Of Safety For The Preceding Specified Surface = 14.598 ***Table l - Individual Data on the 22 Slices*** | ₽ | ω | დ ⊅> | ນ ນ | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | |--------------------------------|----------------------|--|---|----------|----------|----------|----------|----------|----------|----------|----------|---------|---------| | verage Mobi: | Sum of the D | verage Avai
oil Nail, a | Sum of the Re
Soil Nail, an | 50.79 | 45.62 | 45.62 | 45.62 | 45.62 | 52.26 | 52.26 | 52.26 | 14.80 | 14.80 | | Average Mobilized Shear Stress | the Driving Forces = | Average Available Shear Strength (including Tieback, Soil Nail, and Applied Forces if applicable) = 2352 | Resisting Forces and Applied Force | 270.97 | 268.08 | 263.00 | 254.50 | 250.83 | 247.33 | 242.00 | 237.68 | 230.18 | 222.50 | | 11 | = 302453.66 (lbs) | rength (includ
ces if applica | s (including P
ces if applica | 8.92 | 0.21 | 14.30 | 10.01 | 0.49 | 10.88 | 6.54 | 7.58 | 10.72 | 5.17 | | 1711.61 (psf) | (1bs) | | Resisting Forces (including Pier/Pile, Tieback, Rein and Applied Forces if applicable) = 4157308.00 (lbs) | 53895.55 | 49115.23 | 49494.21 | 50059.62 | 50256.29 | 57303.10 | 58541.56 | 57980.70 | 4231.54 | 4810.09 | | | | Pier/Pile, Reinfo:
5.56(psf) | Reinforcing (lbs) | 275. | 525. | 1148. | 2077. | 2400. | 2952. | 4720. | 4005. | 1938. | 2065. | **** END OF GSTABL7 OUTPUT **** Total length of the failure surface = 176.71(ft)