

GEOTECHNICAL INVESTIGATION

PRADO PHASE 2 SUBDIVISION

POWDER MOUNTAIN RESORT

EDEN, UTAH

PREPARED FOR:

POWDER MOUNTAIN SKI RESORT 3923 NORTH WOLF CREEK DRIVE EDEN, UTAH 84310

ATTN: ERIK ANDERSON

PROJECT NO. 1250439

OCTOBER 13, 2025

TABLE OF CONTENTS

EXECUTIVE	SUMMARY	Page 2
SCOPE		Page 2
SITE COND	DITIONS	Page 2
FIELD STUI	DY	Page 3
SUBSURFA	CE CONDITIONS	Page 3
SUBSURFA	CE WATER	Page 5
PROPOSED	CONSTRUCTION	Page 5
RECOMME	NDATIONS	Page 5
A. B. C. D. E. F. G.	Site Grading. Foundations . Subsurface Drains. Concrete Slabs on Grade. Lateral Earth Pressures . Seismicity. Preconstruction Meeting.	
LIMITATIOI	NS	Page 15
REFERENCI	ES	Page 16
FIGURES		
TES TES CON	T PIT LOCATIONS T PIT LOGS T PIT LEGEND AND NOTES ISOLIDATION TEST RESULTS IMARY OF LABORATORY TEST RESULTS	FIGURE 1 FIGURES 2-4 FIGURE 5 FIGURES 6-8 TABLE I

EXECUTIVE SUMMARY

- 1. Approximately 1 to 3 feet of topsoil was encountered in the test pits. Gravel was encountered below the topsoil, and extended to the maximum depths investigated in all of the test pits except Test Pits TP-12 and TP-13. Clay was encountered below the gravel in Test Pits TP-12 and TP-13 at depths of approximately 8½ and 6 feet, respectively, and extends to the full depth of the test pits, approximately 12½ feet. Clay was encountered in Test Pit TP-8 from depths of approximately 6 to 9 feet. Practical excavation refusal was encountered in Test Pit TP-15 on boulders.
- 2. No subsurface water was encountered in the test pits to the maximum depth investigated, approximately 13 feet. We anticipate that perched water conditions may occur during wet times of the year.
- 3. Foundations bearing on the undisturbed gravel or on properly compacted structural fill extending down to the undisturbed gravel may be designed using an allowable net bearing pressure of 2,500 psf.
- 4. The clay is moisture sensitive and should be removed from below proposed buildings.
- 5. The soil encountered in test pits ranges from clay to sand and gravel. The clay can be easily disturbed by construction traffic when it is very moist to wet. Placement of 1 to 2 feet of gravel will improve site access when the subgrade consists of very moist to wet clay.
- 6. Geotechnical information related to foundations, subgrade preparation, materials and compaction is included in the report.

SCOPE

This report presents the results of a geotechnical investigation for the proposed Prado Phase 2 Subdivision to be constructed at the Powder Mountain Ski Resort west of the Shelter Hill Subdivision in Eden Utah. The report presents the subsurface conditions encountered, laboratory test results and recommendations for foundation support. The study was conducted in general accordance with our proposal dated July 7, 2025.

Field exploration was conducted to obtain information on the subsurface conditions. Samples obtained from the field investigation were tested in the laboratory to determine physical and engineering characteristics of the on-site soil. Information obtained from the field and laboratory was used to define conditions at the site for our engineering analysis and to develop recommendations for proposed foundations.

This report has been prepared to summarize the data obtained during the study and to present our conclusions and recommendations based on the proposed construction and the subsurface conditions encountered. Design parameters and a discussion of geotechnical engineering considerations related to construction are included in the report.

SITE CONDITIONS

The site consists of approximately 45 undeveloped lots in the south portion of the Powder Mountain Resort. There are no permanent structures or pavements on the site. A dirt road runs down the middle of the of project area. There are boulders up to approximately 3 feet in size scattered across the western portion of the site.

The site is situated along a ridge line sloping gently down to the west. Slopes are steeper north and south of the area planned for development. The topography of the site is presented on Figure 1. Vegetation consists of grass, brush and trees.

Page 3

The surrounding areas are undeveloped. The Shelter Hill subdivision is about ½ mile to

the east of the project site. Marcie Rae Way runs through the project site.

FIELD STUDY

Sixteen test pits were excavated between July 15 and 18, 2025 at the approximate

locations indicated on Figure 1 using a trackhoe. The test pits were logged and soil

samples obtained by a representative from AGEC. Logs of the subsurface conditions

encountered in the test pits are graphically shown on Figures 2 through 4, with legend

and notes on Figure 5.

The test pits were backfilled with the excavated material without significant compaction.

The backfill in the test pits should be removed and properly compacted where it will

support proposed structures, floor slabs or other settlement-sensitive site improvements.

SUBSURFACE CONDITIONS

Approximately 1 to 3 feet of topsoil was encountered in the test pits. Gravel was

encountered below the topsoil, and extended to the maximum depths investigated in all

of the test pits except Test Pits TP-12 and TP-13. Clay was encountered below the

gravel in Test Pits TP-12 and TP-13 at depths of approximately 81/2 and 6 feet,

respectively, and extends to the full depth of the test pits, approximately 12½ feet. Clay

was encountered in Test Pit TP-8 from depths of approximately 6 to 9 feet. Practical

excavation refusal was encountered in Test Pit TP-15 on boulders.

Page 4

A description of the soils encountered in the test pits follows:

<u>Topsoil</u> - The topsoil consists of clayey sand to clayey gravel with sand. It contains frequent cobbles and occasional boulders up to approximately 3 feet in

size. The topsoil is moist, dark brown and contains organics.

Sandy Fat Clay - The sandy fat clay contains small to moderate amounts of gravel

and occasional cobbles. It is stiff to very stiff, moist, and reddish brown.

Laboratory tests conducted on samples of the sandy fat clay indicate it has natural

moisture contents of 18 percent and natural dry densities of 108 to 110 pounds

per cubic foot. Consolidation tests on the sandy fat clay indicate the clay is

moisture sensitive. Results of the consolidation tests are presented on Figures 7

and 8.

Sandy Lean Clay - The sandy lean clay contains small to moderate amounts of

gravel and occasional cobbles and boulders. It is stiff, moist and reddish brown.

Laboratory tests conducted on a sample of the sandy lean clay indicate it has a

natural moisture content of 22 percent and a natural dry density of 104 pounds

per cubic foot.

Silty or Clayey Gravel with Sand - The gravel contains cobbles and boulders. It is

medium dense to very dense, slightly moist to moist and light brown to reddish

brown.

Laboratory tests conducted on samples of the gravel indicate it has natural

moisture contents of 3 to 22 percent and natural dry densities ranging from 112

to 118. Consolidation tests on the clayey portion of the gravel deposit indicates

the clay will compress a small amount with the addition of light to moderate loads.

Results of the consolidation tests are presented on Figures 6 and 7.

Page 5

Results of the laboratory tests are summarized on Table I and are included on the logs of

the test pits.

SUBSURFACE WATER

No subsurface water was encountered in the test pits to the maximum depth

investigated, approximately 12 feet at the time of our investigation. We anticipate that

perched water conditions may occur during wet times of the year.

PROPOSED CONSTRUCTION

We anticipate that the proposed residences will consist of one to three-story structures

with basements. We have assumed building loads will consist of wall loads of up to

4 kips per lineal foot and column loads of up to 50 kips.

If the proposed construction or building loads are significantly different from those

described above, we should be notified to reevaluate the recommendations given.

RECOMMENDATIONS

Based on the subsurface conditions, our understanding of the proposed construction and

our experience in the area, the following recommendations are given:

A. Site Grading

We anticipate that less than 15 feet of cut and/or fill will be needed to facilitate

construction at the site.

1. Subgrade Preparation

Prior to placing grading fill, the topsoil, organics, unsuitable fill, debris and other deleterious materials should be removed from below building areas.

The soil encountered in test pits ranges from clay to sand and gravel. The clay can be easily disturbed by construction traffic when it is very moist to wet. Placement of 1 to 2 feet of gravel will improve site access when the subgrade consists of very moist to wet clay.

2. Excavation

We anticipate that excavation in the soil can be accomplished with heavyduty excavation equipment.

There is a potential to encounter bedrock in areas of the site. Jack hammering or other rock excavation methods will likely be required where excavations extend down into the bedrock.

Temporary unretained excavations may be sloped at $1\frac{1}{2}$ horizontal to 1 vertical or flatter.

3. Cut and Fill Slopes

Permanent unretained cut and fill slopes in the sand, gravel and bedrock may be constructed at 2 horizontal to 1 vertical or flatter. Permanent unretained cut and fill slopes in the clay may be constructed at 3 horizontal to 1 vertical or flatter. Slopes should be protected from erosion by revegetation or other methods. Surface drainage should be directed away from cut and fill slopes.

4. Materials

Listed below are materials recommended for imported structural fill.

Fill to Support	Recommendation
Footings	Non-expansive granular soil Passing the No. 200 Sieve <35% Liquid Limit < 30% Maximum size 4 inches
Floor Slabs (Upper 4 inches)	Sand and/or Gravel Passing the No. 200 Sieve < 5% Maximum size 2 inches
Slab Support	Non-expansive granular soil Passing the No. 200 Sieve < 50% Liquid Limit < 30% Maximum size 6 inches

The clay is not recommended for use as structural fill in proposed building, pavement and slab areas, but may be used as site grading fill and as utility trench backfill outside of the proposed building, pavement and slab areas. The gravel that meets the imported structural fill criteria given above may be used as structural fill for the project. The topsoil, organics and other deleterious materials should be removed prior to use of the soil as fill.

The use of the on-site soil as fill may require moisture conditioning (wetting or drying) to facilitate compaction. Drying of the soil may not be practical during cold or wet times of the year.

5. Compaction

Compaction of fill placed at the site should equal or exceed the minimum densities as indicated below when compared to the maximum dry density as determined by ASTM D1557.

Fill To Support	Compaction Criteria				
Foundations	≥ 95 %				
Concrete Slabs	≥ 90%				
Pavement Base Course Fill placed below Base Course	≥ 95% ≥ 90%				
Landscaping	≥ 85 %				
Retaining Wall Backfill	85 - 90%				

To facilitate the compaction process, the fill should be compacted at a moisture content within 2 percent of the optimum moisture content.

Fill and pavement materials placed for the project should be frequently tested for compaction.

B. Foundations

1. <u>Bearing Material</u>

With the proposed construction and the subsurface conditions encountered, the proposed residences may be supported on spread footings bearing on the undisturbed natural gravel or on compacted structural fill extending down to the undisturbed natural gravel. The clay should be removed from below building areas. Structural fill should extend out away from the edge of footings at least a distance equal to the depth of fill beneath the footings.

Topsoil, organics, unsuitable fill, debris and other deleterious materials should be removed from below proposed footing areas.

2. Bearing Pressure

Foundations bearing on the undisturbed natural gravel or structural fill extending down to the undisturbed natural gravel may be designed using an allowable net bearing pressure of 2,500 psf.

Footings should have a width of at least 1½ feet and a minimum depth of embedment of at least 1 foot.

3. Settlement

We estimate that settlement will be less than 1 inch for footings designed as indicated above. Differential settlement is estimated to be less than ¾ of an inch.

Disturbance of the soil below foundations can result in greater settlement. Care should be taken to minimize disturbance of the soil to remain below foundations so that settlement can be maintained within tolerable limits.

4. Temporary Loading Conditions

The allowable bearing pressure may be increased by one-half for temporary loading conditions such as wind or seismic loads.

5. Frost Depth

Exterior footings and footings beneath unheated areas should be placed at least 42 inches below grade for frost protection.

6. Foundation Base

The base of foundation excavations should be cleared of loose or deleterious material prior to structural fill or concrete placement.

7. Drainage

The ground surface surrounding the proposed residences should be sloped away from the structures in all directions with at least 6 inches of drop in the first 10 feet. Roof downspouts and drains should discharge beyond the limits of foundation backfill.

8. Construction Observation

A representative of the geotechnical engineer should observe footing excavations prior to structural fill or concrete placement.

C. Subsurface Drains

The below grade floor portions of the residences should be protected with subsurface drains. We recommend the subsurface drains include at least the following items:

- The subsurface drain systems should consist of a perforated pipe installed in a gravel filled trench around the perimeter of the subgrade floor portion of the residences. The gravel should extend up foundation walls to within 3 feet of the finished ground surface adjacent the foundation walls. A geotextile drain could be considered for the portion of the drains which extends up the foundation walls.
- At least 6 inches of free-draining gravel should be placed below the basement floor slabs. The gravel should connect to the drain pipes.
- The flow line of the pipes should be placed at least 18 inches below the finished floor level and should slope to sumps where water can be removed by pumping or gravity flow.

4. If placing the gravel and drain pipe requires excavation below the bearing level of the footings, the excavations for the drain pipe and gravel should have a slope no steeper than 1 horizontal to 1 vertical so as not to disturb the soil below the buildings.

5. A filter fabric should be placed between the natural soil and the drain gravel. This will help reduce the potential for fine grained material filling in the void spaces of the gravel.

6. Consideration should be given to installing cleanouts to allow access into the perimeter drains should cleaning of the pipe be required in the future.

D. Concrete Slabs on Grade

1. Slab Support

Concrete slabs may be supported on the undisturbed natural gravel or on compacted structural fill extending down to the undisturbed natural gravel. The clay, topsoil, unsuitable fill, organics, debris and other deleterious materials should be removed from below proposed concrete slabs.

2. Underslab Sand and/or Gravel

A 4-inch layer of free-draining sand and/or gravel (less than 5 percent passing the No. 200 sieve) should be placed below the concrete slabs for ease of construction and to promote even curing of the slab concrete.

E. Lateral Earth Pressures

1. Lateral Resistance for Footings

Lateral resistance for spread footings placed on compacted structural fill or the natural soil is controlled by sliding resistance developed between the footing and the structural fill or natural soil. A friction value 0.35 may be used in design for ultimate lateral resistance for footings bearing on the natural granular soil and granular structural fill. The passive resistance of the soil adjacent footings may also be considered in design for lateral resistance of footings.

2. <u>Subgrade Walls</u>

The following equivalent fluid weights are given for design of subgrade walls. The active condition is where the wall moves away from the soil. The passive condition is where the wall moves into the soil and the at-rest condition is where the wall does not move. The values listed below assume a horizontal surface adjacent the top and bottom of the wall.

Soil Type	Active	At-Rest	Passive
Sand & Gravel	40 pcf	55 pcf	300 pcf
Clay	50 pcf	65 pcf	250 pcf

3. Seismic Conditions

Under seismic conditions, the equivalent fluid weight should be increased by 26 pcf for the active condition and 11 pcf for at-rest condition. The equivalent fluid weight should be decreased by 26 pcf for the passive condition. This assumes a horizontal ground acceleration of 0.44g, which represents a 2 percent probability of exceedance in a 50-year period.

4. Safety Factors

The values recommended above for active and passive conditions assume mobilization of the soil to achieve the soil strength. Conventional safety factors used for structural analysis for such items as overturning and sliding resistance should be used in design.

F. Seismicity

Listed below is a summary of the site parameters that may be used with the 2021 International Building Code:

Description	Value		
Site Class	Default D¹		
S_s - MCE _R ground motion (period = 0.2s)	0.81g		
S_1 - MCE _R ground motion (period = 1.0s)	0.28g		
F _a - Site amplification factor at 0.2s	1.2		
PGA - MCE _G peak ground acceleration	0.36g		
PGA _M - Site modified peak ground acceleration	0.44g		

¹Site Class Default D was selected based on a lack of deep subsurface information. The shear wave velocity of the upper 100 feet of the site could be measured to determine the site class to be used in design.

2. Faulting

There are no mapped active faults extending through the site. The closest mapped active fault is the Wasatch Fault located approximately 10 miles to the west of the site (Utah Geological Survey, 2025).

3. Liquefaction

Based on the subsurface conditions encountered and our understanding of the geology of the area, liquefaction is not a potential hazard.

G. Preconstruction Meeting

A preconstruction meeting should be held with representatives of the owner, project architect, geotechnical engineer, general contractor, earthwork contractor and other members of the design team to review construction plans, specifications, methods and schedule.

The geotechnical engineer should observe the excavation, earthwork and foundation phases of the work to determine that subsurface conditions are consistent with those used in the analysis and design. During site grading and placement of structural fill, the work should be observed and tested to confirm that the proper density has been achieved.

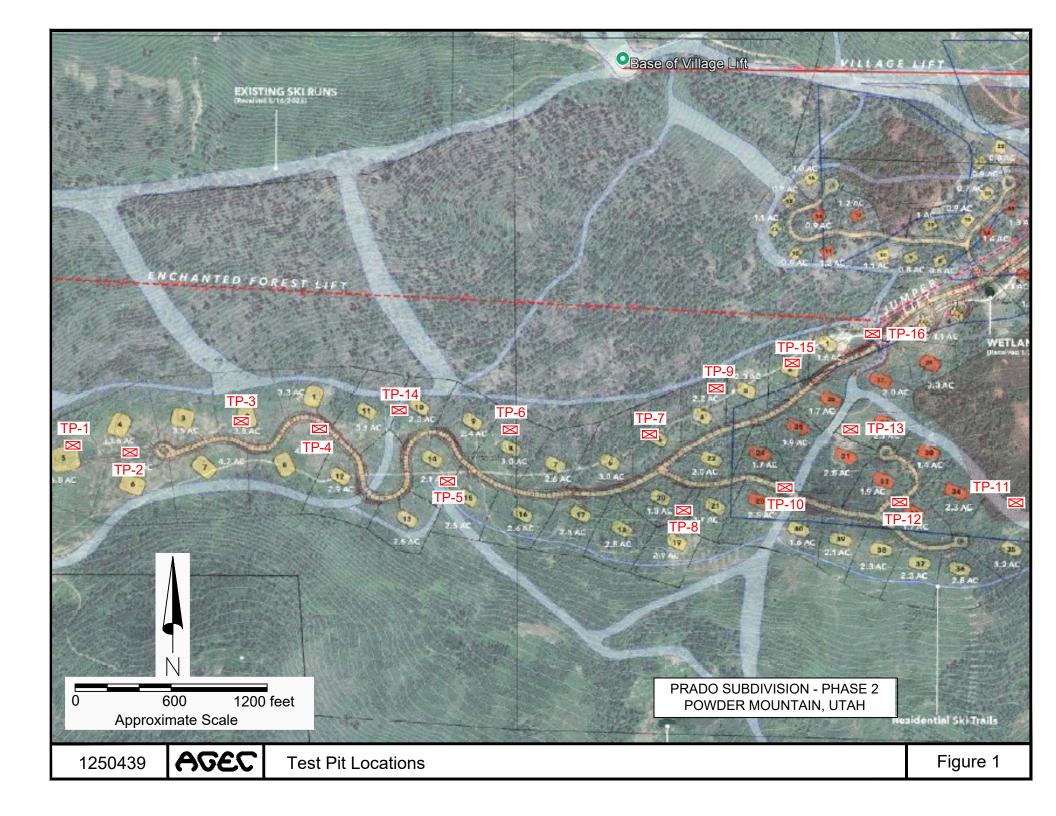
LIMITATIONS

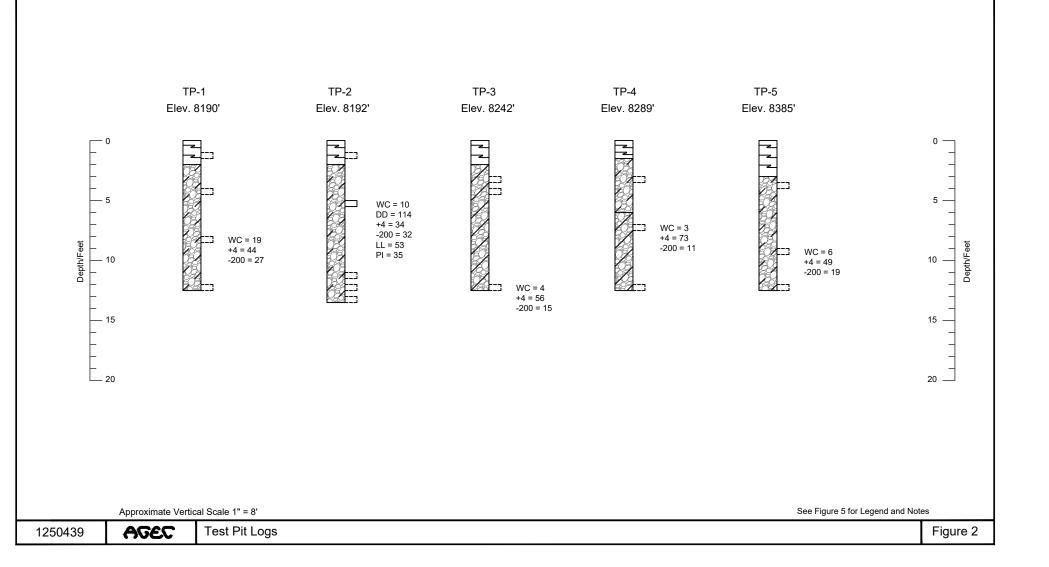
This report has been prepared in accordance with generally accepted soil and foundation engineering practices in the area for the use of the client for design purposes. The conclusions and recommendations included within the report are based on information obtained from the test pits excavated at the approximate locations indicated on the site plan, the data obtained from laboratory testing and our experience in the area. Variations in the subsurface conditions may not become evident until additional exploration or excavation is conducted. If the proposed construction, subsurface conditions or groundwater level is found to be significantly different from what is described above, we should be notified to reevaluate our recommendations.

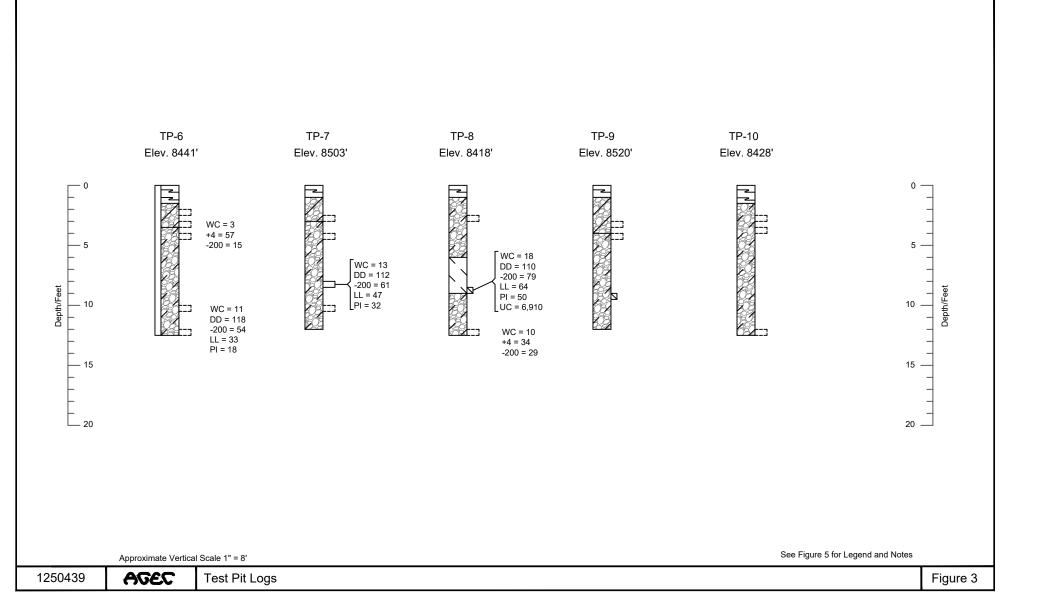
APPLIED GEOTECHNICAL ENGINEERING CONSULTANTS, INC.

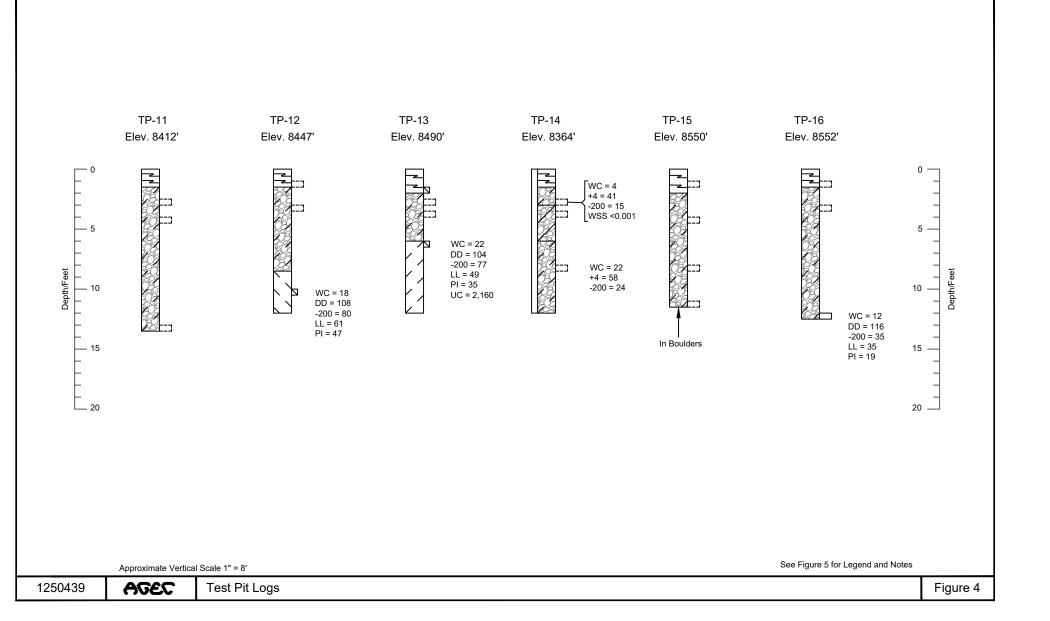
David J. Nordquist, P.E.

Danch Roberton


Reviewed by Douglas R. Hawkes, P.E., P.G.


DJN/bw


REFERENCES


International Code Council, Inc., 2020; 2021 International Building Code; Falls Church, Virginia.

Utah Geological Survey, 2025; Utah Geologic Hazards Portal accessed October 7, 2025 at https://geology.utah.gov/apps/hazards/.

LEGEND:

Topsoil; clayey sand to clayey gravel with sand, frequent cobbles and occasional boulders up to 3 feet in size, moist, dark brown, roots and organics.

Sandy Lean Clay (CL); small to moderate amounts of gravel, occasional cobbles and boulders, stiff, moist, reddish brown.

Sandy Fat Clay (CH); small to moderate amounts of gravel, occasional cobbles, stiff to very stiff, moist, reddish brown.

Clayey Gravel with Sand (GC); frequent cobbles, occasional boulders, dense to very dense, moist, reddish brown.

Silty Gravel with Sand (GM); frequent cobbles, occasional boulders, medium dense, slightly moist, light brown.

Indicates relatively undisturbed hand drive sample taken.

Indicates disturbed sample taken.

Indicates relatively undisturbed block sample taken.

Indicates practical excavation refusal.

NOTES:

- 1. The test pits were excavated on July 15, 16 and 18, 2025 with a trackhoe.
- 2. Locations of the test pits were measured approximately by pacing from features shown on the site plan provided.
- 3. Elevations of the test pits were determined by interpolating between contours shown on the site
- 4. The test pit locations and elevations should be considered accurate only to the degree implied by the method used.
- 5. The lines between materials shown on the logs represent the approximate boundaries between material types and the transitions may be gradual.
- 6. No free water was encountered in the test pits at the time of excavation.

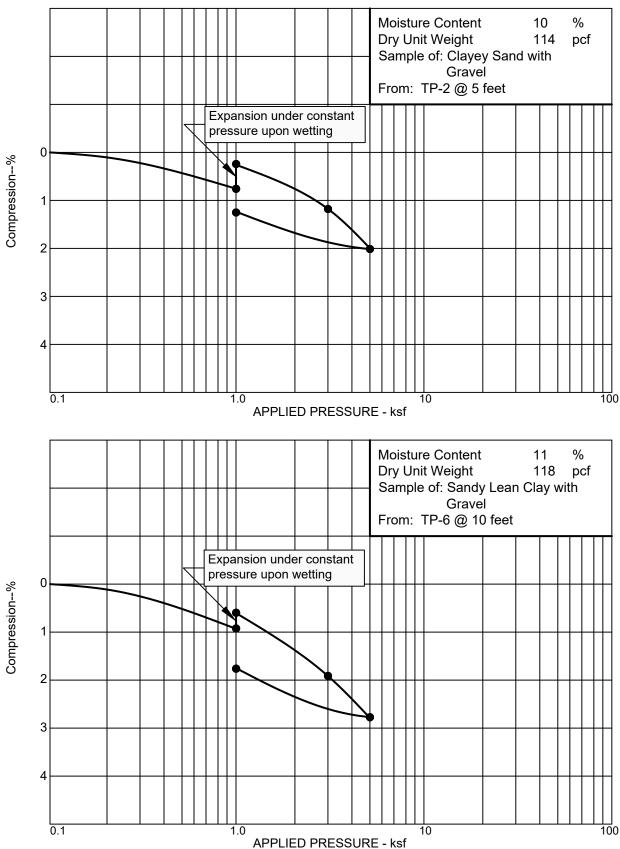
7. WC = Water Content (%);

DD = Dry Density (pcf);

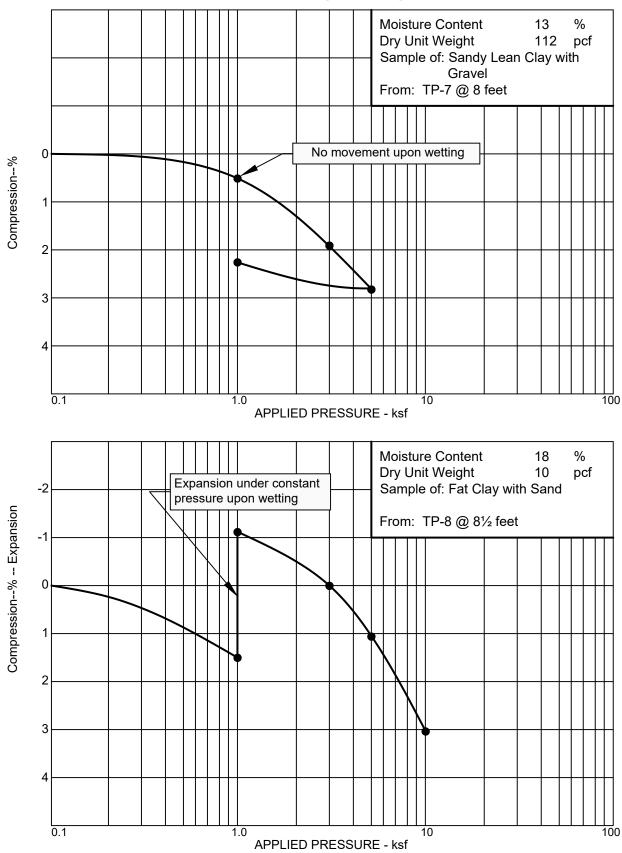
+4 = Percent Retained on the No. 4 Sieve;

-200 = Percent Passing the No. 200 Sieve;

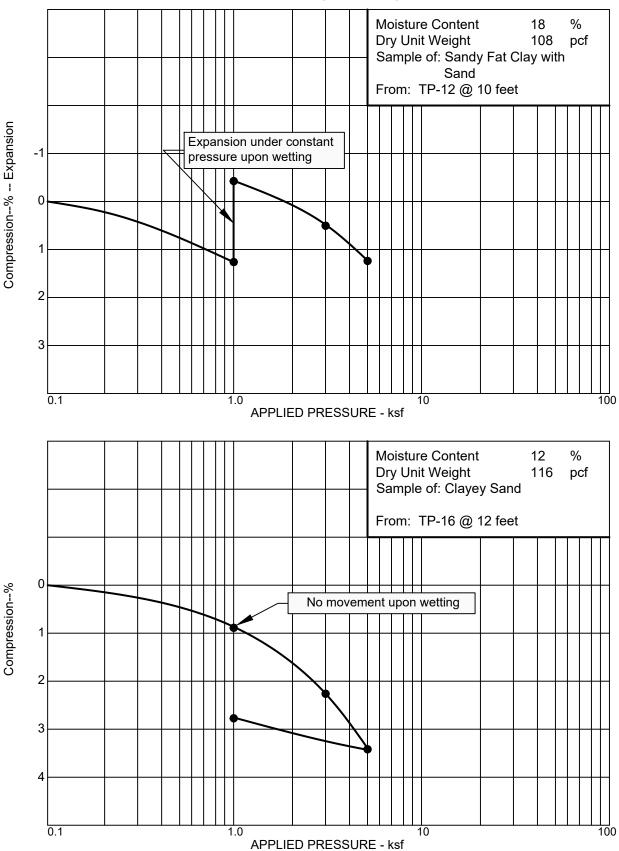
LL = Liquid Limit (%);


PI = Plasticity Index (%);

UC = Unconfined Compressive Strength (psf);


WSS = Water Soluble Sulfates (%).

AGEC 1250439


Applied Geotechnical Engineering Consultants, Inc.

Applied Geotechnical Engineering Consultants, Inc.

Applied Geotechnical Engineering Consultants, Inc.

APPLIED GEOTECHNICAL ENGINEERING CONSULTANTS, INC.

TABLE I SUMMARY OF LABORATORY TEST RESULTS

Page 1 of 2 PROJECT NUMBER: 1250439

SAMPLE LOCATION		NATURAL	NATURAL	GRADATION			ATTERBERG LIMITS		UNCONFINED	WATER	
TEST PIT	DEPTH (FEET)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	GRAVEL (%)	SAND (%)	SILT/ CLAY (%)	LIQUID LIMIT (%)	PLASTICITY INDEX	COMPRESSIVE STRENGTH (PSF)	SOLUBLE SULFATE (%)	SAMPLE CLASSIFICATION
TP-1	8	19		44	29	27					Clayey Gravel with Sand (GC)
TP-2	5	10	114	34	34	32	53	35			Clayey Sand with Gravel (SC)
TP-3	12	4		56	29	15					Silty Gravel with Sand (GM)
TP-4	7	3		73	16	11					Poorly Graded Gravel with Silt
- ' '											and Sand (GP-GM)
TP-5	9	6		49	32	19					Clayey Gravel with Sand (GC)
TP-6	3	3		57	28	15					Silty Gravel with Sand (GM)
	10	11	118			54	33	18			Sandy Lean Clay with Gravel (CL)
TP-7	8	13	112			61	47	32			Sandy Lean Clay with Gravel (CL)
TD 0		40	440			70	0.4	50	0.040		Fet Olympith One (OL)
TP-8	9	18	110	0.4		79	64	50	6,910		Fat Clay with Sand (CH)
	12	10		34	37	29					Caye Sand with Gravel (SC)
TP-12	10	18	108			80	61	47			Fat Clay with Sand (CH)
TP-13	6	22	104			77	49	35	2,160	<0.001	Lean Clay with Sand (CL)

APPLIED GEOTECHNICAL ENGINEERING CONSULTANTS, INC.

TABLE I SUMMARY OF LABORATORY TEST RESULTS

Page 2 of 2 PROJECT NUMBER: 1250439

SAMPLE CDADATION ATTERPED LIMITS CONTROL WATER									1 1100E01 110MBEN: 1200+03		
LOCA	TION	NATURAL MOISTURE	NATURAL NATURAL DRY	GRADATION			ATTERBERG LIMITS		UNCONFINED COMPRESSIVE	WATER SOLUBLE	
TEST PIT	DEPTH (FEET)	CONTENT (%)	DENSITY (PCF)	GRAVEL (%)	SAND (%)	SILT/ CLAY (%)	LIQUID LIMIT (%)	PLASTICITY INDEX	STRENGTH (PSF)	SULFATE (%)	SAMPLE CLASSIFICATION
TP-14	3½	4		41	44	15				<0.001	Clayey Sand with Gravel (SC)
	8	22		58	18	24					Clayey Gravel with Sand (GC)
TP-16	12	12	116			35	35	19			Clayey Sand (SC)